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1. Optimal trajectory planning for robotic manipulators

1.1 Introduction

Complex space missions require high precision control of sophisticated robotic system to
perform variety of difficult tasks. Robotic arm manipulator plays an important role and is
widely used in modern space mission due to its reliability and versatility of application. It is
capable to perform specific tasks such as payloads transportation and capturing, stabilizing a
tumbling satellite, space station construction and monitoring.
Heavy lifting, payload transportation and capturing are the most common and frequently
used applications of robotic system. The Canadarm is a classic example of payload
manoeuvring robotic system in space. Modern space robot such as The Japanese Experiment
Module Remote Manipulator System (JEMRMS) was also developed to support Japanese
Experiment Module (JEM) maintenance tasks. Due to the new challenges of space missions
to date, there is a need for developing new and robust technology to increase the efficiency of
operation as well as reduce the likelihood of mission failure in performing complex tasks.
Panfeng Huang proposed a Particle Swarm Optimization (PSO) to search the global time
optimal trajectory for space manipulator. (Huang & Xu, 2006) SongHua Hu also applied
PSO to optimize the trajectory of robotic manipulator for the reorientation of satellite after
capturing. (Hu et al., 2008) Similar research and simulation was developed by Wenfu Xu. (Xu
et al., 2009)
The increasing complexity of missions tends to increase the likelihood of collision between
robotic arms and wandering obstacles in the surrounding environment. Such undesirable
collision should be avoided to prevent causing damage to the robotic arm and payloads
during operation. Therefore, collision free optimal path planning of robotic arm manipulators
becomes critical to successful mission completion. An example of the two staged collision
free path planning for the space manipular was illustrated by using virtual robotic test-bed
(VRT). (Yoshida et al., 2008) The development of Real-time adaptive motion planning (RAMP)
also provides optimal trajectory planning for robotic arm control in different dynamic
environments and for various scenarios. (Vannoy & Xiao, 2008)
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2 Advances in Spacecraft Technologies

Previous publications of the authors have successfully demonstrated the methodology of
collision free trajectory planning for two-link robotic arm manipulators in the presence of
morphing mobile obstacles by minimizing the actuation efforts and performing payload
capture in two-dimensional formulation. (Williams et al., 2009) It has been further extended to
the optimal control system, which continuously evaluates the change of the position, velocity
and shape of tumbling objects in the three-dimensional space.

1.2 Mathematical model of the three-dimensional rigid robotic manipulators

Fig. 1 shows the model of a three-dimensional two-link robotic manipulators with three
rotational joints (RRR) and an end effector with a payload. θ1, θ2 and θ3 represent the positive
orientation of the three joints. L1, L2 and L3 define the length of each link with the center of
mass m1, m2 and m3 at the position r1, r2 and r3, respectively.
The equation of motion of the robotic manipulators is obtained by using the Lagrange
equation

L = Ek − Ep (1)

where Ek is the kinetic energy and Ep is the potential energy of the system. Using the above
equation, the Lagrange Equation for each link is expressed as follows:

ηi =
d

dt

(

∂L

∂θ̇i

)

−

(

∂L

∂θi

)

, (i = 1,2,3, ...) (2)

By substituting Equation 1 into Equation 2, the second-order differential equation in terms of
the manipulator joint variables can be expressed in the following form

τ = M(Θ) Θ̈ + V(Θ, Θ̇) (3)

where M(Θ) is mass matrix of the manipulator and V(Θ, Θ̇) is the vector of centrifugal,
Coriolis forces and Θ = (Θ1,Θ2,Θ3).
The final Lagrange Equation for each link of motion can be expressed as follows

η1 = (θ̈1 cosθ2
2 − 2θ̇1 θ̇2 cosθ2 sinθ2) (4)

×(L2
2m3 + L2

2m4 + L2
3m4 + m2r22 + m3r32 + 2L2L3m4 + 2L2m3r3)

η2 = (L2
2m3 θ̇1

2
sin(2θ2))/2 − (L2

2m3 θ̇2
2

sin(2θ2))/2

+ (L2
2m4 θ̇1

2
sin(2θ2))/2 − (L2

2m4 θ̇2
2

sin(2θ2))/2

+ (L2
3m4 θ̇1

2
sin(2θ2))/2 + (L2

3m4 θ̇3
2

sin(2θ3))/2

+ (m2r2
2 θ̇1

2
sin(2θ2))/2 − (m2r2

2 θ̇2
2

sin(2θ2))/2 (5)

+ (m3r2
3 θ̇1

2
sin(2θ2))/2 + (m3r2

3 θ̇3
2

sin(2θ3))/2

+ L2L3m4 θ̇1
2

sin(2θ2) + L2m3r3 θ̇1
2

sin(2θ2)

+ L2L3m4 θ̇2 θ̇3 sin(θ2 − θ3) + L2m3r3 θ̇2 θ̇3 sin(θ2 − θ3)
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η3 = θ̇3 cosθ3(m4 θ̇3 sinθ3L2
3 + L2m4 θ̇2 sinθ2L3

+ m3 θ̇3 sinθ3r2
3 + L2m3 θ̇2 sinθ2r3)

− (m3(2r3 θ̇3 cosθ1 cosθ3(r3 θ̇1 cosθ2 sinθ1 + r3 θ̇3 cosθ1 sinθ3

+ 2r3 θ̇3 cosθ3 sinθ1(L2 θ̇2 sinθ1 sinθ2 + r3 θ̇3 sinθ1 sinθ3

− L2 θ̇1 cosθ1 cosθ2 − r3 θ̇1 cosθ1 cosθ2)))/2

− (m4(2L3 θ̇3 cosθ1 cosθ3(L2 θ̇1 cosθ2 sinθ1

+ L2 θ̇2 cosθ1 sinθ2 + L3 θ̇1 cosθ2 sinθ1

+ L3 θ̇3 cosθ1 sinθ3) + 2L3 θ̇3 cosθ3 sinθ1(L2 θ̇2 sinθ1 sinθ2

+ L3 θ̇3 sinθ1 sinθ3 − L2 θ̇1 cosθ1 cosθ2 − L3 θ̇1 cosθ1 cosθ2)))/2 (6)

1.3 Formulation of the path contraints for collision avoidance

Previous research of a two-dimensional collision avoidance modelling was developed by Paul
Williams et al. (Williams et al., 2009) and (Trivailo, 2007) An extension of this method to the
three-dimensional cases is presented below. Fig. 2 illustrates the model of collision avoidance
constraints for the ith link. The wandering obstacle is assumed to be rotating at the center
of mass, Pob, with an unknow orientation. It is modeled as a spheroid with a radius of Rob.
Which also represents the distance from the center of mass to the edge of the obstacle at the
very end point. The length of the ith link is denoted by Li along the two joints at point Pi and
point Pi+1.
In order to prevent collision, it is required to find the shortest distance between the obstacle

and the robotic arms. Consider the three displacement vectors �Pi,i+1, �Pi,ob and �Pi+1,ob are given
by

�Pi,i+1 = Pi+1 − Pi (7)

�Pi,ob = Pob − Pi (8)

Fig. 1. Coordinate system of the 3D robotic manipulator
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and Invariant Manifold Based Control for Robotic Systems in Space

www.intechopen.com



4 Advances in Spacecraft Technologies

�Pi+1,ob = Pob − Pi+1 (9)

The projection from the center of mass of the obstacle normal to the link is given by

li = �Pi,ob · �Pi,i+1/
∣

∣

∣

�Pi,i+1

∣

∣

∣
(10)

The distance between the center of mass of the obstacle and the link can then be determined
by

di =
∣

∣

∣

�Pi,ob − li�Pi,i+1

∣

∣

∣
(11)

The path constraint of the ith is defined by gi which is subjest to three conditions that are
expressed in Equation 12. If the projected length li is last than zero or larger than the length
of the ith link Li, the path constraint is set to avoid the obstacle collide with the particular
joint. Otherwise the distance from the obstacle to the ith link should always be larger than the
radius of spheroid. The path constraints are always forced to be larger than zero preventing
collision.

gi :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∣

∣

∣

�Pi,ob

∣

∣

∣

2
− R2

ob ≥ 0, li ≤ 0
∣

∣

∣

�Pi+1,ob

∣

∣

∣

2
− R2

ob ≥ 0, li ≥ Li

d2
i − R2

ob ≥ 0, otherwise

(12)

1.4 Direct transcription method

In order to find the optimal control trajectory of the robotic manipulators, minimization of the
following performance index is required

J =M[x(t f ), t f ] +
∫ t f

t0

L[x(t),u(t), t]dt (13)

subject to the dynamical constraints

ẋ(t) = f [x(t),u(t), t] (14)

where t ∈ R , x ∈ R
N and u ∈ R

M, and boundary conditions

Fig. 2. Representation of Wandering Obstacle Relative to ith Link
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ψ0[x(t0),u(t0), t0] = 0

ψ f [x(t f ),u(t f ), t f ] = 0
(15)

where ψ0 ∈ R
p and ψ f ∈ R

q with p ≤ n and q ≤ n, and the state and control box constraints

xi(min) ≤ xi(t) ≤ xi(max)

ẋi(min) ≤ ẋi(t) ≤ ẋi(max)

uj(min) ≤ uj(t) ≤ uj(max)

(16)

where i = 1, . . . , N and j = 1, . . . , M
In this work, we applied Chebyshev polynomials for the interpolation. The
Chebyshev-Gauss-Lobatto(CGL) points lie in the interval [-1, 1] and are located at the extrema
of the Nth-order Chebyshev polynomial TN(ζ). The jth-order Chebyshev polynomial of the
first kind Tj(ζ) is expressed as

Tj(ζ) = cos(j cos−1 ζ) (17)

where the extreme values occur at the points ζ j is

ζ j = −cos

(

π j

N

)

(18)

The Lagrange interpolating polynomials

µj(ζ) =
(−1)j+1(1 − ζ2) ṪN(ζ)

cj N2(ζ − ζ j)
(19)

where cj = 1 for 1 ≤ j ≤ N − 1 and c0 = cN = 2 for j = 0, N.
The states and controls are approximated by using Lagrange interpolating polynomials
function

xN(ζ) =
N

∑
j=0

x(ζ j)µj(ζ) (20)

uN(ζ) =
N

∑
j=0

u(ζ j)µj(ζ) (21)

The Chebyshev differentiation matrices can be obtained by finding the derivatives of the
approximating functions in Equation 20 at the CGL node

dk = ẋ(ζk) =
N

∑
j=0

Dk,j x(ζ j) (22)

d
(2)
k = ẍ(ζk) =

N

∑
j=0

D
(2)
k,j x(ζ j) (23)

where Dk,j represents the differentiation matrix.

501Applications of Optimal Trajectory Planning
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6 Advances in Spacecraft Technologies

Since the Chebyshev polynomials are defined over the interval [-1,1], it is required to perform
a linear transformation for the expression in physical time domain t.

t = [(t f − t0)ζ + t f + t0]/2 (24)

The derivatives with respect to physical time t is then given by

ẋ(t) =
2

t f − t0
ẋ(ζ) (25)

ẍ(t) =
2

t f − t0
ẍ(ζ) (26)

The control problem can then be formulated as a nonlinear programming problem that aims
to minimize the performance index

JN =M

[

4

(t f − t0)2
d
(2)
N ,

2

t f − t0
, xN , t f

]

+
N

∑
k=0

L

[

4

(t f − t0)2
d
(2)
k ,

2

t f − t0
dk, xk,uk, t

]

ωk (27)

where ωk is the Legendre-Gauss-Lobatto weights.
The direct discretization method has been developed and implemented in Matlab known as
DIRECT by Paul Williams at RMIT University. (Williams, 2005) It is capable of discretizing
constrained nonlinear programming problem and search for the numerical solution by
employing SNOPT as a solver. (Gil et al., 2002)

1.5 Optimal trajectory planning

Point-to-point optimal trajectory planning is usually classified into two main categories:
minimum travelling time and actuation effort. Optimization tasks are generally aimed to
minimize the performance index that is defined in the cost function. Variety of research
has been done using different techniques and strategies. Xiong Luo deployed evolutionary
programming algorithms to search for the optimal solution. (Luo et al., 2004) Minimum
travelling time path planning was also developed by using polytope method with penalty
function. (Cao et al., 1997) Other work involved collision avoidance and minimum-energy
path planning (MEPP) or minimum-fuel path planning (MFPP) was undertaken by using
method of local variations (MLV). (Seshadri & Ghosh, 1993)
In this work, we consider minimization of the energy consumption which is more critical in
space applications. Therefore, the actuation effort should be minimized with the cost function
J defined by

J =
3

∑
i=1

∫ t f

0
ui

2(t)dt (28)

where ui represents the input of ith actuator and t f is the pre-defined non-dimensional time
constant for finishing the particular task.

1.5.1 Case study and results

Fig. 3 shows the optimized trajectory motion of the robotic arms which aims to deliver a mass
payload from the bottom point to the top while an obstacle is wandering along the straight
line between the start and end position. The robotic arm has been chosen to pass around the
obstacle from behind because the obstacle travel path and speed is predicted. It can be noted

502 Advances in Spacecraft Technologies
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Fig. 3. Optimal Trajectory and the final position of the robotic manipular and obstacle

that the total end effector travelling trajectory should not necessary be the shortest path to
minimize the actuator efforts.
Fig. 4 shows the time history of the position angles θj and angular velocities θ̇j of the robotic
manipulors, respectively. Fig. 4(a) also shows the initial conditions of the position angle as
θ1 = 0 deg, θ2 = −30 deg and θ3 = −30 deg at time t0 = 0 while θ1 = 0 deg, θ2 = 30 deg and
θ3 = 30 deg at time t f = 1. It is interesting to note that the angular velocity constraints have

been ensured: as Fig. 4(b) clearly shows, θ̇2 and θ̇3 hit the upper bound of 90 deg per unit time
and did not exceed this imposed limit.
Fig. 5 shows the time history of control inputs uj. Similar to the angular velocities, the

control inputs u1 and u3 were limited by the pre-defined constraints
∣

∣

∣
uj

∣

∣

∣
≤ 45 and have always

remained within these limits, as shown in Fig. 5(a). Maximum power consumption should
also be considered as an important factor. Fig. 5(b) shows the time history of the summation
of squared inputs which represents the combined effort of the system during its operation.
The two peak consumption values can be found when the manipulator begins to accelerate
at the beginning and decelerates near the end. Finally, the time history of the minimized cost
function J , which was defined in Equation 13, is shown in Fig. 6

2. Invariant manifold based control for space robotic system

2.1 Introduction

A planar space robot is a nonholonomic system, and the problem of the reorientation
of a planar space robot has attracted the interest of many researchers. There exist no
smooth time-invariant control methods that can stabilize nonholonomic systems, even if the
system is controllable. This negative fact is well known as Brockett’s theorem. (Brockett,

503Applications of Optimal Trajectory Planning
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Fig. 4. Time history of position angles and angular velocities
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1983) Reyhanoglu et al. (Reyhanoglu & McClamroch, 1992) have proposed a feed-forward
control method that defines the trajectory of the joint angles before controlling. Yamada
(Yamada, 1994) proposed a method which involves prescribing the arm path first and then
determining the quasi-optimal path that causes the desired attitude change with minimal arm
movement. In order to get around Brockett’s theorem and stabilize nonholonomic systems,
some advanced nonlinear control techniques have been proposed, and these can be classified
into various classes, such as canonical form based methods (Sordalen & Egeland, 1995)
(Samson, 1995) (Luo & Tsiotras, 1998), smooth time-varying feedback control methods (Luo &
Tsiotras, 1998) (Pomet, 1992) (Teel & Walsh, 1995), discontinuous methods, time-varying and
discontinuous combining methods, sliding-mode control, and center-manifold based control
methods. Although the canonical form based method is useful, a space robot reorientation
system cannot be transformed to canonical form, because it has singularities. In order to
handle this situation, Cerven et al. (Cerven & Coverstone, 2001) have proposed optimal
control theory, using averaging theory, and Hashimoto, et al.(Hashimoto & Amemiya, 2006)
have proposed a feedback controller by approximating the system with a first order chained
system. In some studies of the reorientation problem for a planar space robot, an invariant
manifold has been utilized. Mukherjee et al. (Mukherjee & Kamon, 1999) have proposed the
concept of a “radially isometric orientation”, and have established a smooth time-invariant
feedback control method based on this concept.
However, their method suffers from a slow rate of convergence if the desired attitude and
joint angles are near zero holonomy curves, which are defined as curves in the joint space for
which the first-order Lie bracket becomes zero, that is, when the attitude of the main body of
a space robot cannot be changed by controlling the joint angles.
In order to overcome this disadvantage of the radially isometric orientation based control
method, Hokamoto and Funasako (Hokamoto & Funasako, 2007) have proposed a modified
version of the smooth time-invariant feedback method by introducing a moving manifold that
has a virtual desired point. However, time delay for the planar space robot has apparently not
yet been considered.
In this secton, an “invariant-based switching control” method is proposed. This is a
discontinuous control method, consisting of two steps: firstly, the link angles are controlled
periodically to reach the invariant manifold by feedback control, and secondly, the ratio
between the angular velocities of joint angles is controlled constantly so that the state slides
on the invariant manifold until reaching the goal state. The proposed method is useful
for estimating the time delay in the system because the manifold depends on the system
parameters but is independent of time; it can estimate the time delay by comparing the
predicted trajectories of arm angles and the actual ones. The difference between them is
caused by the time delay. In addition, after estimating the time delay, modeling errors, which
are assumed to be related to the moment of inertia of the main body in this study, can also be
estimated by comparing the predicted attitude change of the main body with the actual one.
The effectiveness of the proposed control scheme’s functions, that is, the reduction in the
convergence time, the estimation of not only the time delay, but also modeling errors, is
verified experimentally.

2.2 Modelling of the system

2.2.1 Two-link planar space robot

Fig. 7 shows a schematic model of a planar space robot, which has a two-link manipulator,
connected by revolution joints.
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Fig. 7. Model of a Planar Two-Link Space Robot

Suppose that the orientation of the main body is θ, the first link angle 1, φ1, and the second
link angle 2, φ2. The masses of the main body, the first arm, and the second arm are denoted
by m0, m1, and m2, respectively and correspondingly, J0, J1, and J2 are the moments of inertia
of the main body, and that of the first and second arms, respectively.
Distances between the mass center of each body and the angle joints are denoted as in Fig. 7.
Given that the initial total angular moment is zero, and that no external torque and force
affects the system, the angular momentum conservation law holds, and then the angular
velocity of the main body of the space robot is represented by functions of the two-link angles
h1 and h2, and their angular velocities as follows:

θ̇ = h1(φ1,φ2) φ̇1 + h2(φ1,φ2) φ̇2 (29)

Now suppose that the state vector �x, and the control input �u are, respectively, given as �x =

[φ1,φ2,θ]T , and �u = [u1,u2]
T = [φ̇1, φ̇2]

T
. Then Equation 29 can be rewritten in the following

affine form:
⎡

⎣

φ̇1

φ̇2

θ̇

⎤

⎦ =

⎡

⎣

1 0
0 1

h1(φ1,φ2) h2(φ1,φ2)

⎤

⎦

[

u1

u2

]

(30)

2.2.2 Equations of motion

Here, we derive the equations of motion for a planar two-link space robot. Let the mass,
moment of inertia, center of mass, and velocity of mass center of the i link be denoted
respectively by mi, Ji, (xi,yi), and (ẋi, ẏi). The angular momentum Pg is given by

Pg =
2

∑
i=0

Ji θ̇i +
1

M

1

∑
i=0

2

∑
j=i+1

mimj

(

x̄ji ˙̄yji − ˙̄xji ȳji

)

(31)
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where

θi =
i

∑
j=0

φj

x̄ji = xj − xi, ȳji = yj − yi

xi =
i

∑
j=1

l(j−1)j cosθj−1 +
i

∑
j=1

ljj cosθj

yi =
i

∑
j=1

l(j−1)j sinθj−1 +
i

∑
j=1

ljj sinθj

M =
2

∑
i=0

mi

For the case of zero angular momentum, that is, Pg = 0, we have

a(φ1,φ2)θ̇0 + b(φ1,φ2)φ̇1 + c(φ1,φ2)φ̇2 = 0 (32)

where

a(φ1,φ2) = J0 + J1 + J2

+
{

m0m1

(

l2
01 + l2

11

)

+ m2

(

m0

(

l2
01 + (l11 + l12)

2

+ l2
21 + 2l01l21 cos(φ1 + φ2)

)

+ m1

(

l2
12 + l2

21

)

+ 2 (m0 (l11 + l12) + m1l12) l21 cosφ2)

+ 2m0l01 (m1l11 + m2(l11 + l12))cosφ1

}

/M

b(φ1,φ2) = J1 + J2

+
{

m0m1l2
11 + m2

(

m0

(

(l11 + l12)
2 + l2

21

+ l01l21 cos(φ1 + φ2)) + m1(l
2
12 + l2

21)

+ 2l21 cosφ2 (m0(l11 + l12) + m1l12))

+ m0l01 cosφ1 (m1l11 + m2 (l11 + l12))
}

/M

c(φ1,φ2) = J2 + {m2l21 ((l21 + (l11 + l12)cosφ2

+ m0l01 cos(φ1 + φ2)) + m1 (l21 + l12 cosφ2))}/M

h1 and h2 in Equation 30 are, respectively, as follows:

h1(φ1,φ2) = −b(φ1,φ2)/a(φ1,φ2) (33)

h2(φ1,φ2) = −c(φ1,φ2)/a(φ1,φ2) (34)
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12 Advances in Spacecraft Technologies

2.2.3 First-order lie bracket and zero-holonomy curves

The attitude deviation of the main body due to the arm motion is determined by integrating
the third term of Equation 30, or Equation 29. Now suppose that the trajectory of arm motion
is a closed curve in the link angle space (φ1,φ2). Then the attitude deviation of the main body
is given by

∆θ =
∮

h1(φ1,φ2)dφ1 + h2(φ1,φ2)dφ2 (35)

Using Stokes’s theorem, Equation 35 can be rewritten from path integral form to surface
integral form as follows:

∆θ =
∮

(

∂h1

∂φ2
−

∂h2

∂φ1

)

dφ1 ∧ dφ2 (36)

where h3 := ∂h1

/

∂φ2 − ∂h2

/

∂φ1 is the first-order Lie bracket, and dφ1 ∧ dφ2 is the exterior
derivative, in which the direction of the path integral is defined so that the closed surface is
seen on the left side of the path.
Equation 36 implies that, even if the link angles return to the initial angles after moving along
a closed path in link angle space, the main body does change its attitude. This phenomenon
is called “Lie bracket motion.”
Fig. 8 shows a contour map for h3. Note that the main body does not change its attitude
when the link angles move along a contour line of h3 = 0. This special contour line of h3 = 0
is referred to as a “zero holonomy curve.”
Link motion along a zero holonomy curve is desirable in the case where the link motion
must not affect the attitude of the main body. On the other hand, link motion along the
zero holonomy curve is undesirable in the case where the main body is required to change
its attitude by means of the link motion. In this sense, the zero holonomy curve is regarded as
being representative of uncontrollable motion with respect to the attitude of the main body. In
addition, h3 changes sign across the zero holonomy curve. This implies that the attitude of the
main body increases or decreases on opposite sides of the zero holonomy curve. (Mukherjee
& Kamon, 1999)
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Fig. 8. Contour map of h3, and the zero holonomy curve
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2.2.4 The radially isometric orientation(invariant manifold) and its approximation

As mentioned above, the attitude variation of the main body is not determined directly
from the link angles, but depends on the path in link angle space. Here, by referring to
(Mukherjee & Kamon, 1999) we explain the definition of the “radially isometric orientation,”
or, hereinafter, the invariant manifold.
Let the difference between the goal link angles (φ1d,φ2d) and the current link angle (φ1,φ2) be
parameterized in polar coordinates (r, ϕ), as shown in Fig. 9

φ̂1 = φ1 − φ1d = r cos ϕ (37)

φ̂2 = φ2 − φ2d = r sin ϕ (38)

where

r =
√

φ̂2
1 + φ̂2

2 (39)

ϕ = tan−1
(

φ̂2

/

φ̂1

)

(40)

Suppose that the phase argument ϕ, which indicates the direction from the goal link angles to
the current link angles, is kept constant, or that link angles are moved [along the straight line
from the current angles to the goal angles] in Cartesian coordinates (φ1,φ2). In this case, the
attitude variation of the main body is obtained as

∆θ =
∫

ϕ=const

h1(r, ϕ)dφ1(r, ϕ) + h2(r, ϕ)dφ2(r, ϕ) (41)

In order to change the integral variables from (φ1,φ2) to (r, ϕ) the following relation is taken
into consideration.

dφ̂1(r, ϕ) = dr cos ϕ − r sin ϕ dϕ (42)

dφ̂2(r, ϕ) = dr sin ϕ + r cos ϕ dϕ (43)
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Because the phase argument is assumed to be constant, Equation 41 can be rewritten as

∆θ∗ =
∫ r

0

[

h1(r, ϕ)cos ϕ + h2(r, ϕ)sin ϕ
]

ϕ=const
dr (44)

The difference between the goal attitude of the main body and that after moving the link angle
directly to the goal link angles is given by

β := θ̂ − ∆θ∗ (45)

The condition of β = 0 is presented to show that if the link angles move [along the straight
line from the current angles to their goals in Cartesian coordinates (φ1,φ2)], the attitude of
the main body reaches its goal attitude also. The parameter β is referred to as the “radially
isometric orientation” in (Mukherjee & Kamon, 1999).
Fig. 10 shows an example of a “radially isometric orientation” where parameters of the robot
as listed in Table 1 are used.
For the controller that will be described later, the control input is determined using the value of
the radially isometric orientation, β. As shown in Equation 44, an integral is needed to obtain
the value of β. This implies that a controller using the value of β needs an integral calculation
every control cycle to obtain the value of β. This control scheme is thus undesirable for a
spacecraft equipped with limited on-board computational resources.
In order to reduce the effect of such limited on-board computation resources, we consider an
approximation of the “radially isometric orientation,” or simply, manifold.
Although it depends on the mass and the moment of inertia of the space robot, as shown in Fig.
10, the invariant manifold can be approximated by a plane surface around the goal link angles.

Any set of link angles around the goal link angles, �̂x =
[

φ̂1, φ̂2, θ̂
]T

, can be approximated by a
linear combination of h1(φ1d,φ2d) and h2(φ1d,φ2d)

⎡

⎣

φ̂1

φ̂2

h1(φ1d,φ2d) φ̂1 + h2(φ1d,φ2d) φ̂2

⎤

⎦ (46)

Fig. 11 shows a manifold approximated by a plane surface. It should be noted that if a set of
link angles is far away from the goal link angles, the difference between the approximating
manifold and the exact manifold, of course, becomes larger. Therefore, if a more accurate
approximate manifold is required, types of surfaces other than plane surfaces, such as spline
surfaces, should be used. However, we need a trade off between accuracy and computational
cost. In this chapter, taking into consideration experiments that will be discussed later, we use
an approximating manifold that is a plane surface.

2.3 Invariant manifold based control

2.3.1 Smooth time invariant feedback control

The control method proposed in (Mukherjee & Kamon, 1999) is given by

ṙ = αr
[

ρ2 tanh
(

n1β2
)

− r2
]

(47)

ϕ̇ = −n2sgn (h3(φ1d,φ2d)) tanh (n3β) (48)

where α,n1,n2,n3, and ρ are positive scalar constants, and the link angle velocities are driven
by Equations 42 and 43.
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This control method is asymptotically stable, because as the value of β approaches zero, the
radius r, and the phase argument ϕ driven by the above control method approach zero. This
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control method, however, suffers from slow convergence, and we now explain the reason for
this.
When β approaches zero, the control method (47) is equivalent to

ṙ = −αr3 (49)

This implies that the radius r does not converge to zero at a first-order convergence rate. In
addition, as β approaches zero, the change of phase argumentation, that is, the Lie bracket
motion, also becomes slower. As a result, the rate of convergence to approach the goal state
becomes very slow.
Furthermore, modeling errors were not considered in (Mukherjee & Kamon, 1999). The time
invariant feedback control method cannot stabilize the state to the goal state in the presence
of modeling errors, because the actual manifold is different from the manifold based on the
mathematical model.

2.3.2 Adaptive manifold based switching control

To overcome the disadvantages of the time invariant feedback controller, an adaptive
manifold based switching control is proposed here.(Kojima & Kasahara, 2010)
Firstly, the control method in the absence of modeling errors and time delay is explained as a
basic controller; then advanced functions are introduced. The basic control method consists
of two steps.
In the first step, in order to change the attitude of the main body as much as possible, Lie
bracket motion is actively utilized. For this purpose, until the state reaches the invariant
manifold, the radius r and the phase argument velocity ϕ̇ are controlled to be constant:

ṙ = 0, (50)

ϕ̇ = −n4sgn(h3(φ1d,φ2d))sgn(β). (51)

If a trajectory of the link angles crosses the zero holonomy curve under the condition of
constant radius, as presented in (Hokamoto & Funasako, 2007), virtual goal link angles,
which asymptotically reach the goal angles, are set for the link trajectory not to cross the zero
holonomy curve.
In the second step, the state variables slide along the manifold until they reach the goal states.
In this step, in order for the radius r to converge to zero at a first-order convergence rate, the
radius is controlled by

ṙ = −dr (52)

We can expect a fast convergence rate from Equations 50, 51 and 52, compared with the smooth
time invariant feedback control. This expectation will be verified experimentally.
The control input determined by the smooth invariant feedback control(Mukherjee & Kamon,
1999) is smooth, whereas the proposed control method is a switching control. This proposed
switching control, therefore, may induce undesirable oscillations on flexible appendages
attached to the main body or links.
Undesirable oscillations could be avoided by controlling the phase argument velocity ϕ̇ so
that the connection from Equation 51 to Equation 48 becomes smooth as β approaches the
manifold. In this study, a smooth connection has not yet been investigated, and thus it remains
a future topic for study.
Next, let us consider an adaptive law to estimate the modeling error in the absence of a time
delay. In this study, we assume that there exists only a difference between the mathematical
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moment of inertia of the main body and the correct one, which is treated as a modeling error.
If an angular acceleration sensor is installed on the main body, and the link angles are driven
by the torque motors, then the moment of inertia of the main body can be directly estimated
from the relation between the torques and the angular acceleration. However, the link angles
of the model treated in this study are controlled in terms of the angular velocity. This implies
that the moment of inertia of the main body cannot be directly estimated using the relation
between the torque and the angular acceleration.
We are assuming here that the attitude of the main body can be measured by an attitude sensor
such as a magnetometer. We consider an adaptive law to estimate the moment of inertia of
the main body from the difference between the predicted attitude change and the actual one.
Let the error of the moment of inertia of the main body be given by

∆J0 = J0 − Ĵ0, (53)

where J0 and Ĵ0 are the correct and estimated moments of inertia of the main body,
respectively. The attitude change of the main body per one period of δϕ = 2π is given by

∆θ =
∮

r=const

h1(r, ϕ, J0)dφ1(r, ϕ) + h2(r, ϕ, J0)dφ2(r, ϕ) (54)

The above path integral can be converted into a surface integral using Stokes’s theorem, Recall
that the modeling error given by Equation 53, Equation 54 can be approximated as follows:

∆θ =
∮

r=const

h3(r, ϕ, J0)dφ1 ∧ dφ2

≃
∮

r=const

h3(r, ϕ, Ĵ0)dφ1 ∧ dφ2

+
∮

r=const

∂h3(r, ϕ, J0)

∂J0

∣

∣

∣

∣

J0= Ĵ0

∆J0 dφ1 ∧ dφ2

(55)

The attitude change of the main body corresponding to the assumed moment of inertia of the
main body Ĵ0 is given by

∆θ̂ :=
∮

r=const

h3(r, ϕ, Ĵ0)dφ1 ∧ dφ2 (56)

By comparing Equation 55 with Equation 56, the difference between the predicted and actual
attitude changes can be approximately represented by

∆θ − ∆θ̂ ≃
∮

r=const

∂h3(r, ϕ, J0)

∂J0

∣

∣

∣

∣

J0= Ĵ0

∆J0dφ1 ∧ dφ2 (57)

Because the radius r is restricted to be constant during the first step in the proposed control
method, the surface area dφ1 ∧ dφ2 during one periodic motion of the phase argument δϕ = 2π
is always the same. Therefore, by solving Equation 57 with respect to the modeling error, we
have

∆ Ĵ0 ≃
∆θ − ∆θ̂

∮

r=const

∂h3(r,ϕ,J0)
∂J0

∣

∣

∣

J0= Ĵ0

dφ1 ∧ dφ2

(58)
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Using this relation, the actual moment of inertia of the main body can be estimated as

J0 = Ĵ0 + ∆ Ĵ0 (59)

The denominator of Equation 58 is, however, based on the estimated moment of inertia of the
main body, which is not yet equivalent to the actual one. Therefore, if the moment of inertia
of the main body is simply updated, based on Equation 59, the estimated moment of inertia
might become a meaningless (e.g., negative) value in a physical sense. In order to avoid such
a situation, Equation 59 is replaced with

J0 = Ĵ0 + γ∆ Ĵ0 (0 < γ < 1) (60)

to update the estimated moment of inertia.
We explain the value that is selected for γ in this study. In general, the smaller the value of
γ and the greater the number of estimations chosen, then the more accurate the estimation
could be, whereas a long time is required to obtain an accurate moment of inertia.
Suppose that the estimated moment of inertia approaches the actual moment after ten
estimations. In this case, it may be natural to set γ to 0.1(= 1/10). For greater safety, half
this value, i.e., 0.05, is chosen for γ.
In addition, a value, which is surely less than the actual one, is chosen as the initial guess
for the moment of inertia so that the estimated moment of inertia is unlikely to decrease or
become negative, but instead increases during updates.
Next, we consider a case where a time delay exists. In this study, we assume that a time delay
exists only for the output, but not in the control input, and that this time delay does not vary,
but instead, is always constant.
Because the control method tries to control the link angles so that the radius r and the phase
argument velocity ϕ̇ are kept constant during the first step, if no time delay exists in the
output, the vector of the link angle motion is always tangential to the vector from the goal
angles to the current link angles, and thus the radius r never changes.
On the other hand, if a time delay τ exists, a phase argument difference τϕ̇ occurs between the
measured link angles B(φ̂1(t − τ), φ̂2(t − τ)) and the actual link angles A(φ̂1(t), φ̂2(t)), which
corresponds to the time delay τ, as shown in Fig. 12. In this case, the vector of link angles

velocity is determined as �b, based on the measured link angles B. This vector differs from
the desired velocity vector �a which is determined in the absence of time delay. The phase
argument difference results in a radius increase ∆r. Taking this fact into consideration, we
introduce here a method for estimating the time delay from radius changes.
Suppose that the radius at link angles A is the same as that of B. In this case, both vectors�a and
�b have the same length rϕ̇, as shown in Fig. 12. Taking into account that the angle between
these two vectors corresponds to τϕ̇, the radius increase can be approximately expressed as

ṙ = rϕ̇ tan(τϕ̇) (61)

From this relation, using the radius increase ∆r during a specified time duration ∆t, the time
delay τ can be estimated as

τ =
(

1
/

ϕ̇
)

tan−1
(

∆r
/

rϕ̇∆t
)

(62)

Note that the radius r at the link angles A is not always the same as that at the measured link
angles B due to the effect of the past control input, thus, the estimation of the time delay should
be updated using Equation 62 several times. In this study, the time delay was estimated every
phase argument change of δϕ = π/4 during the first step.

514 Advances in Spacecraft Technologies

www.intechopen.com



Applications of Optimal Trajectory Planning and
Invariant Manifold Based Control for Robotic Systems in Space 19

r
.

ϕ

τϕ
.

φ1

(t))2
φ(φ(t),1

r

rϕ
.

τϕ

goal

.

φ
2

A

B(φ1(t-τ), φ2(t-τ))

a
b

b

Fig. 12. Schematic representation of relation between the time delay and the radius change.

Until the next estimation of the time delay, the current attitude of the main body, the link
angles (A in Fig. 12), and the radius r are predicted using the history of the past control input
corresponding to the estimated time delay.
Then the new value for the control input is determined using the predicted current state. At
the next estimation of the time delay, it is updated by inspecting the difference between the
predicted radius and the actual one.

2.4 Experimental verification

2.4.1 Experimental setup

Fig. 13 shows the experimental setup of a planar two-link space robot. This robot was
equipped with a magnetometer to sense the attitude of the main body, two stepper motors
to drive each link angle, and two encoders to sense each link angle. Note that operational
angle of each link was restricted within ±110 deg due to structural limitations.

Fig. 13. Experimental apparatus for the planar two-link robot.
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m0 2.280 kg
m1 0.922 kg
m2 0.493 kg

l01 0.125 m
l11 0.283 m
l12 0.017 m
l21 0.270 m

J0 0.03585 kgm2

J1 0.00410 kgm2

J2 0.00324 kgm2

Table 1. Robot parameters.

A large glass board, called a flight-bed, was horizontally placed. To imitate microgravity, the
surface of the board was paved with a number of ball bearings to decrease frictional drag.
Note that friction due to the ball bearings was about 0.019 G, which is much greater than that
of air bearings. The ball bearings, therefore, will have to be replaced with air bearings in the
near future.
Because noise was included in the attitude output from the magnetometer, a low-pass filter,
whose time-lag does not have an impact on the attitude measurement, was implemented, to
cut off the noise. A personal desktop computer (PC) equipped with a digital board was placed
next to the board. The PC measured the state of the robot via the board, determined the control
input (link angular velocities) based on the control law implemented in the C language, and
drove the stepper motors situated on the link joints. The sampling and control cycle is 100
msec.
The mass of each link was measured by an electro balance, and the moment of inertia of each
link was measured by a moment of inertia measurement device, MOI-005-104 from the Inertia
Dynamics and the LLC Co.
The moment of inertia of the main body was measured around the center of mass, while the
moment of inertia of each link was measured around the joint part, and then converted to one
around the mass center. The parameters of the experimental setup are as listed in Table 1.

2.4.2 Experimental results

Experiments were carried out on smooth invariant feedback control and the proposed
adaptive invariant manifold based switching control using the parameters listed in Table 2.
Then their convergence rates as they approached the goal state were compared in the presence
of both modeling error and time delay.

Gains α = 0.2,0.4,n1 = 1.0,n2 = 2.0,n3 = 1.0
n4 = π/5,d = 0.2,γ = 0.05

Initial state φ1 = φ2 = θ = 0.3 rad

Goal state φ1d = φ2d = 0.6 rad, θd = 0.2 rad

Initial estimated moment of inertia Ĵ0 = 0.015 kgm2

Table 2. Experimental conditions.

516 Advances in Spacecraft Technologies

www.intechopen.com



Applications of Optimal Trajectory Planning and
Invariant Manifold Based Control for Robotic Systems in Space 21

Taking into consideration that the magnetometric sensor output included noise of
approximately 2 deg, the tolerance of the judgment of attainment with regard to the invariant
manifold and the convergence criterion to the goal value were set to 2 deg in the mean square
root of the second power of angle errors. The time delay was set to 0.5 sec, and implemented
by feeding the controller the output measured five sampling cycles previously. The initial
guess for the moment of inertia was set to 0.015 kgm2, which is surely less than the actual
value. We explain the results below.
Two results for the smooth invariant feedback control are shown in Figs. 14(a) and 14(b).
These correspond to the results for control gains of α = 0.4, and α = 0.2, respectively. The
results of the proposed control method are shown in Figs. 15 to 17. Figs. 15, 16, and 17 show
the time responses of the state variables, the estimated time delay, and the estimated moment
of inertia of the main body, respectively.
The link angle φ1 controlled by the smooth invariant feedback control exceeded the link angle
limitation around 4 sec for the case of a control gain with α = 0.4. This is because the phase
argument velocity ϕ̇ was very large, and the phase argument error due to time delay was also
very large, thus leading to radius divergence, as explained in Fig. 12.
Contrary to the above case, for the case of the control gain α = 0.2, which is less than that of
the above case, the phase argument velocity ϕ̇ became smaller, the phase argument error due
to time delay became smaller, which led to a smaller divergence rate of the link angles. As the
result, the link angles did not exceed the angle limitation. Although the link angles reached
the goal link angles, the attitude of the main body did not converge to the goal attitude. This is
because β based on the mathematical model was incorrect, due to the error in the moment of
inertia, and after determining that β approached zero, the link angles, which were controlled
by the controller without any adaptive law to compensate for the error, moved to the goal
angles(φ1d,φ2d) directly, and finally converged to other state. In addition, it took a long time
for the link angles to move directly to the goal link angles (φ1d,φ2d) in the second step, because
the control law almost became ṙ =−αr3, for which the convergence rate was not of first order
as β approached zero.
On the other hand, the proposed control method succeeded in controlling so as to move the
states to the goal states, and the estimated time delay and moment of inertia converged to 0.77
sec, and 0.0244 kgm2, respectively.
The estimated moment of inertia of the main body was slightly less than the actual one. This
may be because additional torque was generated due to friction between the ball bearings and
the arms, which prevented the links from moving in the ideal motion, and in turn induced
greater than the ideal attitude reaction of the main body, which resulted in an interpretation
of the moment of inertia to be less than the actual one.
As shown in Fig. 16, the estimated time delay, 0.77 sec, was slightly greater than the actual
time delay, that is, 0.5 sec. However, from Fig. 15, we can justify the estimated time delay
because after the time delay was estimated, the magnitude of sinuous motion of the link angle
φ1 around the goal angle was the same as that of φ2 for the period between 8 and 14 sec.
In other words, it can be said that the radius r did not change; thus the states were almost
correctly predicted.
After the time delay was estimated, the link angles changed their sinuous motion to straight
line motion at a time of around 14 sec, in order to approach the goal angles at a first-order
convergence rate, as shown in Fig. 15. This implies that the state approached the invariant
manifold around the above time, and at that time the control logic changed from the first step
to the second step.
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Fig. 14. Time responses of the state variables resulting from smooth invariant feedback
control

In addition, Fig. 15 shows that the link motion returned to a sinuous motion at around 25
sec. This implies that even as the link angles were controlled to slide on the manifold, β left
the convergence tolerance due to the moment of inertia error of the main body, and then the
control logic returned to the first step.
We can observe in Fig. 17 that since the control logic returned to the first step, the adaptive
law to estimate the moment of inertia of the main body re-functioned, the moment of inertia
was updated towards the correct value at around 30 sec, and this update contributed to the
state convergence to the goal state.
Consequently, the effectiveness of the proposed control method was validated by comparing
the results of the smooth invariant feedback control method with those of the proposed control
method.
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3. Conclusion

This Chapter presents two main topics related to the space robotic systems: (1) Optimal
trajectory planning for two-link robotic arm manipulators in the presence of chaotic
wandering obstacles and (2) Invariant manifold based control methods for spacecraft attitude
control problems.
The first Section describes mathematical modeling of a two-link robotic manipulator in
three-dimensional space using Lagrange equations. The system includes three rotational
joints (RRR) and a point mass payload at the end effector. To ensure collision avoidance,
the path -12constraints are formulated based on the projected obstacle’s position along the
arms of the robot. The associated non-linear optimization problems were formulated and
solved using the Chebyshev-pseudospectral method. It should be stressed out that, the
method presented in the current work allows not only to minimize the specified arbitrary
non-linear cost function, but also allows to solve the optimization task in view of multiple
additional non-linear constraints that the user of the robotic systems may choose to impose
based on mission requirements or considerations. In the current work a procedure of optimal
path planning for rigid manipulators performing operations in presence of the wandering
obstacles, changing their positions and shapes, has been successfully implemented. The
optimal scenarios enable to perform deployment of the payloads avoiding their collision
with the non-statioary obstacles. It has been demonstrated that the actuator efforts required
to perform the task is higher than for the similar cases without the obstructing obstacles.
Examples of additional constraints may involve path constraints on the system, prohibiting
the members to enter a specified space area or, on the contrary, prescribing the system to
follow the desired trajectory or prescribing for the members of the robotic system not to leave
the allowed bandwidth corridors. The method is generic and is not restricted to the listed
examples of the cost functions and additional constraints.
In the second Section, an adaptive invariant manifold based switching control has been
proposed for controlling a planar two-link space robot. The proposed control method is a kind
of invariant manifold based control, and has two advanced functions: estimation of the time
delay in the system, and estimation of the moment of inertia of the main body. The proposed
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Fig. 15. Time responses of the state variables for the case of adaptive invariant manifold
switching control.
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Fig. 16. Time response of the estimated time delay.

control method consists of two steps. In the first step, link angles are controlled to carry out
Lie bracket motion so that the attitude of the main body approaches the invariant manifold
as much as possible. In addition, the time delay and the modeling error due to the moment
of inertia are estimated. During the first step, provided that a time delay does not exist, the
control method manages to control the link angles so that the distance between the current
link angles and goal link angles, that is, the radius, is kept constant. The radius does however
change, due to the time delay. Taking into consideration the relation between the change of
radius and the time delay, the time delay is estimated from the change in the radius. After
estimating the time delay, a modeling error, which is taken to be the difference between the
accurate and the estimated moments of inertia of the main body, is estimated by comparing
the predicted attitude change of the main body and the actual one, and then the mathematical
moment of inertia is updated. In the second step, the link angles are controlled to slide on the
invariant manifold until it converges to the goal state. The effectiveness of the functions of the
proposed control scheme method, the reduction in convergence time compared to the smooth
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Fig. 17. Time response of the estimated moment of inertia of the main body.
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invariant feedback control, and estimation of not only the time delay, but also the modeling
errors, were successfully verified experimentally.
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