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1. Introduction 

During the process of braking the pad is pressed to the disc. As a result of friction on the 
contact surface the kinetic energy transforms into heat. Elements of brakes are heated and, 
hence, the conditions of operation of the friction pads become less favorable: their wear 
intensifies and the friction coefficient decreases, which may lead to emergency situations 
(Fasekas, 1953; Ho at al., 1974). Thus, the correct calculation of temperature is one of the 
most important challenges in the design of brakes (YBo at al., 2002; Chichinadze at al., 1979; 
Balakin and Sergienko, 1999). 
The heat conduction problems of friction are nowadays formulated in two variants. In the 
first one, the elements of friction couple are considered separately and the heat flow 
intensities are set on each of the contact surfaces in such a way that their sum equals the 
specific power of friction (Ling, 1973; Burton, 1975; Archard and Rowntree, 1988; Kannel 
and Barber, 1989; Yevtushenko at al., 1995). For this purpose, the heat participation factor is 
introduced which is found experimentally or by empirical formulas (Block, 1937; Jaeger, 
1932). It is the statement that gives the solution of the heat conduction problem of friction 
for the foundation with a composite strip (Matysiak at al., 2004; Yevtushenko at al., 2007a) 
and the heat conduction problem for the braking of a massive body coated with either a 
homogeneous (Evtushenko at al., 2005) or a composite (Matysiak at al., 2007) strip. The 
thermoelastic state resulted from the heating of the piecewise-homogeneous body consisting 
of a semi-infinite foundation and a strip by the heat pulse of a finite duration is studied in 
article (Yevtushenko at al., 2005). 
Another variant of the statement of heat conduction problems of friction is based on the 
simultaneous solution of the heat conduction equations for both friction elements followed 
by the determination of the heat flows intensities on their heating (Cameron at al., 1965; 
Barber and Comminou, 1989; Olesiak at al., 1997; Evtushenko and Pyr'ev, 2000; Bauzin and 
Laraqi, 2004). In such statement the problems of transient frictional heating in cold rolling of 
metals (Matysiak at al., 1998), the heat transfer in friction welding of cylindrical rods with 
different diameters (Kahveci at al., 2005) and the fast-moving heating on the external surface 
of the ring due to friction of two rotating pins (Yevtushenko and Tolstoj-Sienkiewicz, 2006) 
were analyzed. The analytical solution of a boundary-value problem of heat conduction for 
tribosystem, consisting of the homogeneous semi-space, sliding uniformly on a surface of 
the strip deposited on a semi-infinite substrate, was obtained in paper (Yevtushenko and 
Kuciej, 2009a). 
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Heat conditions on the friction surface of two elastic bodies were formulated in the 
contemporary form for the first time by F. Ling (1959). He thought that in every point on the 
contact surfaces, the temperature of bodies being in contact is equal. Whereas the sum of 
heat flow intensities directed from friction surface to interior of each elements equals the 
power of friction (the perfect thermal contact is assumed). Such approach to statement of the 
contact problem with heat generation due to friction taken under consideration, assumes 
temperature dependence only on thermo-physical properties of friction pair materials, on 
cooling conditions and on power of friction. 
It is well known that on friction processes, wear and heat generation, the significant 
influence have topographical parameters of surfaces being in contact and characteristics of 
so called “third body” – thin subsurface strips having properties partly physical and 
mechanical which differ from friction pair materials properties (Johnson, 1987; Godet, 1990; 
Iordanoff at al., 2002). Thermal contact of bodies, when temperature on the friction surface 
has jumped, is called imperfect (Barber and Comminou, 1989). The theoretical model of 
calculation of the contact characteristics (the temperature, the wear and the speed of sliding) 
during braking is based usually on the assumption that the friction elements can be treated 
as semi-spaces. The solution to the problem of heat generation during braking with a 
uniform retardation for two semi-spaces in perfect contact was obtained in articles 
(Grylytskyy, 1996; Yevtushenko at al., 1999), and in imperfect contact – in articles (Levitskij 
and Оnyshkievich, 1999; Nosko and Nosko, 2006). The contact temperature, the value of 
wear, and the speed of sliding during braking, for general experimental dependences of the 
coefficients of friction and wear on the temperature were studied in article (Olesiak at al., 
1997). 
Solutions to the transient heat conduction problems for a massive body (the semi-space) 
coated with either a homogeneous, or a composite strip were suggested in articles 
(Yevtushenko at al., 2007a; Matysiak at al., 2007; Evtushenko at al., 2005). The thermal 
stresses resulted from the heating of the piecewise-homogeneous body, consisting of a semi-
infinite foundation and a strip, by the heat pulse of a finite duration was studied in article 
(Yevtushenko at al., 2007b).  

2. Evolution of the contact pressure and sliding speed during braking 

The nature of change in time of the specific load on the nominal contact depends on a 
loading system (pneumatic, hydraulic, mechanical, electromagnetic), and a change of 
loading during braking (pulse braking, anti-lock braking system, automatic stability control 
system, etc.). Generally, the evolution of the pressure and movement during braking can be 
described by the equations (Chichinadze at al., 1979; Ginsburg and Chichinadze, 1978; 
Chichinadze, 1967) 

 0( ) ( )p p pτ τ∗= , /( ) (1 )[1 sin( )]m
pp e aτ ττ ω τ−∗ = − + , 0 sτ τ≤ ≤ , 0a ≥ , 0pω > , (2.1) 

 0
2

0

2 ( )
( ) k

W dV
fp A

dV

τ τ
τ

= − , 0 sτ τ≤ ≤ , 0(0)V V= . (2.2) 

 
2
sk t

d
τ = , 

2
s s

s

k t

d
τ =  (2.3) 
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where t - time; ts - braking time; p - pressure; p0 - nominal pressure; f - coefficient of friction; 
ks - thermal diffusivity of a strip; Ak - nominal contact area; d - strip thickness; W0 - the initial 
kinetic energy; V - sliding speed; V0 - initial sliding speed; a - amplitude of pressure 
oscillations; ωp - frequency of pressure oscillations. 
Substituting the pressure of (2.1) to the right side of the equation (2.2), after integration we 
obtain  

 1 20
( ) ( ) ( )

s

a
V V Vτ τ τ

τ
∗ ∗ ∗= − , 0 sτ τ≤ ≤  (2.4) 

where 

 /
1 0 0

( ) 1 (1 )mm

s s

V e τ ττττ
τ τ

−∗ = − + − , (2.5) 

 /1
2 2 2

1 1
( ) [1 cos( )] {[ sin( ) cos( )] }m

p m p p p p
p m p

V e τ ττ ω τ τ ω τ ω ω τ ω
ω τ ω

−∗ −
−= − + + −
+

, (2.6) 

 
0

0
2

s s
s

k t

d
τ = , 

2
s m

m

k t

d
τ = , (2.7) 

tm - duration of the increase of the loading from zero to maximum value p0, 0
st  - duration of 

braking in the case of constant pressure. 
At the stop time moment τ = τs from equations (2.4)–(2.7) we find the non-linear equation of 
the dimensionless time of braking τs in the form 

 0
1 2( ) ( )s s sV aVτ τ τ∗ ∗= . (2.8) 

If the increase in pressure is monotonically without oscillations (a = 0), then the equations 
(2.1), (2.4) and (2.8) take the form  

 /( ) 1 mp e τ ττ −∗ = − , /
0 0

( ) 1 (1 )mm

s s

V e τ ττττ
τ τ

−∗ = − + − , 0 sτ τ≤ ≤ . (2.9) 

If pressure reaches its maximal value p0 immediately (τm → 0), then from equations (2.9) it 
follows that  

 ( ) 1p τ∗ = , 
0

( ) 1
s

V
ττ
τ

∗ = − , 00 s sτ τ τ≤ ≤ = , (2.10) 

i.e. parameter 0
sτ  (2.7) may be treated as the dimensionless duration of braking at the 

constant deceleration. 
The thermal behavior of a brake system, that consist of a shoe and a drum, for three 
specified braking actions: the impulse, unit step and trigonometric stopping actions was 
investigated in article (Naji and Al-Nimr, 2001). Most often for an analytical determination 
of average temperature in the pad/disc system three calculation schemes are used: two 
semi-spaces, a plane-parallel strip/the semi-space (the foundation), and two plane-parallel 
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strips. The corresponding thermal problems of friction can be formulated as one-
dimensional boundary-value problems of heat conductivity of parabolic type. The 
temperature analysis for two homogeneous semi-spaces with the pressure increasing 
monotonically during braking, in accordance with equation (2.10), has been performed in 
the articles (Yevtushenko at al., 1999; Olesiak at al., 1997). The corresponding solution for 
two plane-parallel strips has been obtained in article (Pyryev and Yevtushenko, 2000). 

3. Statement of the problem 

In the general case, the problem of contact interaction of a pad (a plane-parallel strip) and a 
disc (a semi-infinite foundation) can be formulated as: the time-dependent normal pressure 
p(τ), 0 ≤ τ ≤ τs (2.1) in the direction of the z-axis of the Cartesian system of coordinates Oxyz is 
applied to the upper surface of the strip and to the infinity in semi-space (Fig. 1). The strip 
slides with the speed V(τ), 0 ≤ τ ≤ τs (2.4)–(2.7) in the direction of the y-axis on the surface of 
the semi-space. Due to friction, the heat is generated on a surface of contact z = 0, and the 
elements are heated. The sum of heat fluxes, directed from a surface of contact inside each 
bodies, is equal to specific friction power (Barber and Comminou, 1989) 

 0( ) ( ), ( ) ( ) ( )q q q q p Vτ τ τ τ τ∗ ∗ ∗ ∗= = , 0 0q fVp= , (3.1) 

where f is a coefficient of friction, and the functions p*(τ) and V*(τ) have the form (2.1) and 
(2.4), respectively. Between contact surfaces of the strip and the foundation the heat transfer 
takes place with a coefficient of thermal conductivity of contact h. The strip surface z = d is 
under condition of convective heat exchange with a coefficient of heat exchange hs. 
 

 
Fig. 1. Scheme of the problem 

All values and the parameters concerning the strip and foundation will have bottom indexes 
“s” and “f ”, respectively.  
In accordance with the above-mentioned assumptions, the heat conductivity problem at 
friction takes form: 

 
2

2

( , ) ( , )
, 0 1, 0 s

T Tζ τ ζ τ
ζ τ τ

τζ

∗ ∗∂ ∂
= < < ≤ ≤

∂∂
, (3.2) 
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2

2

( , ) ( , )1
, 0, 0 s

T T

k

ζ τ ζ τ
ζ τ τ

τζ

∗ ∗

∗
∂ ∂

= −∞ < < ≤ ≤
∂∂

, (3.3) 

 

0 0

( ), 0 ,s

T T
K q

ζ ζ

τ τ τ
ζ ζ

∗ ∗
∗ ∗

= − = +

∂ ∂
− = ≤ ≤

∂ ∂
 (3.4) 

 

0 0

Bi [ (0 , ) (0 , )]
T T

K T T

ζ ζ

τ τ
ζ ζ

∗ ∗
∗ ∗ ∗

= − = +

∂ ∂
+ = + − −

∂ ∂
, 0 sτ τ≤ ≤ , (3.5) 

 
s

1

Bi (1, ) 0,
T

T

ζ

τ
ζ

∗
∗

=

∂
+ =

∂
 0 sτ τ≤ ≤ , (3.6) 

 ( , ) 0, ,T ζ τ ζ∗ → →−∞  0 sτ τ≤ ≤ , (3.7) 

 ( ,0) 0, 1T ζ ζ∗ = −∞ < ≤ , (3.8) 

where 

 ,
z

d
ζ =  Bi s

s
s

h d

K
= , ,

f

s

K
K

K
∗ =  ,

f

s

k
k

k
∗=  0

0 ,
s

q d
T

K
=  

,
,

0

s f
s f

T
T

T
∗ = , (3.9) 

K - coefficient of thermal conductivity; k - coefficient of thermal diffusivity; T - temperature;  
Z - spatial coordinate, q - has the form (3.1). 

4. Heat generation at constant friction power. Perfect contact. 

In this Chapter we consider the heat conduction problem of friction (3.2)-(3.8) of the plane-
parallel strip and the semi-space on the following assumptions: the elements are 
compressed with the constant pressure p(τ) (2.1) (p*(τ)=1), the strip slides with the constant 
velocity V = V0 (V* = 1), and in the boundary condition (3.5) Bi→∞ (perfect thermal contact – 
i.e. Tf (0,τ)=TS(0,τ). From the assumptions above it follows that the intensity of the frictional 
heat fluxes directed into each component of friction pair is equal to the specific friction 
power q0 = fVp0 (3.1) (q*(τ)=1). 

4.1 Solution to the problem 
By applying the Laplace integral transform to the equations (3.2)–(3.8) with respect to the 
dimensionless time τ (Sneddon, 1972) 

 
, , ,

0

[ ( , ); ] ( , ) ( , ) p
s f s f s fL T p T p T e dτζ τ ζ ζ τ τ

∞
−∗ ∗≡ = ∫ , (4.1) 

we obtain 

 
2

2

( , )
( , ) 0, 0 1,s

s

d T p
pT p

d

ζ
ζ ζ

ζ

∗
∗− = < <  (4.2) 
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2

2

( , )
( , ) 0, 0,

f
f

d T p p
T p

d k

ζ
ζ ζ

ζ

∗
∗

∗− = −∞ < <  (4.3) 

 
00

1
,

f s
dT dT

K
d d pζζ
ζ ζ

∗

= += −

− =  (4.4) 

 (0, ) (0, ),f sT p T p∗ ∗=  (4.5) 

 
s

1

( , )
Bi (1, ) 0,s

s

dT p
T p

d
ζ

ζ
ζ

∗
∗

=

+ =  (4.6) 

 ( , ) 0,fT pζ ζ∗ → →−∞ . (4.7) 

The solutions of the ordinary differential equations (4.2) and (4.3) at boundary conditions 
(4.4)–(4.7) have the form: 

 
( , )

( , ) , 0 1
( )

s
s

p
T p

p p p

ζ
ζ ζ∗ Δ

= ≤ ≤
Δ

, (4.8) 

 
( , )

( , ) , 0
( )

f
f

p
T p

p p p

ζ
ζ ζ∗ Δ

= −∞ < ≤
Δ

, (4.9) 

where 

 s( , ) ch[(1 ) ] Bi sh[(1 ) ]s p p p pζ ζ ζΔ = − + − , (4.10) 

 
s( , ) [ ch( ) Bi sh( )]

p

k
f p p p p e

ζ
ζ

∗
Δ = + , (4.11) 

 s s( ) ( Bi ) sh( ) ( Bi ) ch( )p p p p pε εΔ = + + + , (4.12) 

 
f s

s f

K k

K k
ε = , (4.13) 

where ε is a coefficient of thermal activity of foundation’s material against strip’s material. 
Applying the inverse Laplace transform to equations (4.8)–(4.12), we obtain the 
dimensionless temperatures in the strip and in the foundation: 

 ,,
1

( , ) ( , ) , 0
2

i
p

s fs f

i

T T p e dp
i

ω
τ

ω

ζ τ ζ τ
π

+ ∞
∗∗

− ∞

= ≥∫ . (4.14) 

The integrals in equation (4.14) converge in semi-space Re p ≡ ω > 0. Presence p  in 

exponents of equations (4.10)–(4.12) testifies that integrands (4.8) and (4.9) in solutions (4.14)  
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Fig. 2. Contour of integration. 

and (4.15) have a branch point at the origin 0p = . Therefore, a contour Γ  of integration in 
formulas (4.14) and (4.15) shall be chosen as it is shown in Fig. 2. It consists of the straight line 
AB  which is passing on distance ω  parallel to imaginary axis Imp, the circles RΓ  and δΓ  

with centre O and radiuses R  and δ  respectively, and boundaries CD  and EF  a cut of a 
complex p -plane along negative real axis Rep . Since the integrands (4.8) and (4.9) in solution 
(4.14) within the contour Γ  have no singularities, by Cauchy’s theorem (Sneddon, 1972): 

 ,
1 1 1 1 1 1 1

( , ) 0
2 2 2 2 2 2 2

p
s f

AB BC CD EF FA

T p e dp
i i i i i i i

δ

τζ
π π π π π π πΓ Γ

≡ + + + + + =∫ ∫ ∫ ∫ ∫ ∫ ∫v . (4.15) 

On arcs BC and FA we have  

 
, ( ) .

( )

s f p const

p p p p p

Δ
≤

Δ
, (4.16) 

and the conditions of a Jordan’s lemma are carried out. Therefore, as ∞→R  the 
corresponding integrals in equation (4.15) tend to zero and we obtain: 

 0
, , , ,( , ) ( , ) ( , ) ( , )s f s f s f s fT T T Tζ τ ζ τ ζ τ ζ τ∗ ∗+ ∗− ∗= − − , (4.17) 

where  

 ,,
1

( , ) ( , )
2

p
s fs f

CD

T T p e dp
i

τζ τ ζ
π

∗∗+ = ∫ , ,,
1

( , ) ( , )
2

p
s fs f

EF

T T p e dp
i

τζ τ ζ
π

∗∗− = ∫ , (4.18) 

 0
,,

1
( , ) ( , )

2
p

s fs fT T p e dp
i

δ

τζ τ ζ
π

∗∗

Γ

= ∫ . (4.19) 

In polar coordinate system ip e ϕρ=  we have ip e ϕρ= , ϕ π= , p ρ= − , p i ρ=  on upper 
boundary CD  and ϕ π= − , p ρ= − , p i ρ= −  on bottom boundary EF of a cut. Therefore, 
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taking into account the equations (4.10)–(4.12) and the relations ch( ) cos( )ix x= , 
sh( ) sin( )ix i x= (Abramovits and Stegun, 1979), we can write the integrals (4.18) in the form: 

 ,,
0

1
( , ) ( , )

2
s fs fT T e d

i
ρτζ τ ζ ρ ρ

π

∞
∗±∗± −= ± ∫ , (4.20) 

where 

 ,
,

( , )
( , )

( )

s f
s fT

ζ ρ
ζ ρ

ρ ρ ρ

±
∗±

±

Δ
= −

Δ
, (4.21) 

 s( , ) ( , ) cos[(1 ) ] Bi sin[(1 ) ], 0 1s sζ ρ ζ ρ ρ ζ ρ ζ ρ ζ+ −Δ = Δ = − + − ≤ ≤ , (4.22) 

 s( , ) [ cos( ) Bi sin( )] , 0
i

k
f e

ρζ
ζ ρ ρ ρ ρ ζ

∗
±

±Δ = + −∞ < ≤ , (4.23) 

 s s( ) ( Bi ) sin( ) (Bi )cos( )i iρ ε ρ ρ ε ρ ρ±Δ = ± − + ± . (4.24) 

Adding equations (4.21)–(4.24) at x ρ=  we obtain:  

 
2

, , ,
0

2
( , ) ( , ) ( ) ( , ) ,x

s f s f s fT T F x G x e dxτζ τ ζ τ ζ
π

∞
∗+ ∗− −+ = ∫  (4.25) 

where 

 
1

s
2 2 2

s s

cos( ) Bi sin( )
( )

[Bi cos( ) sin( )] [Bi sin( ) cos( )]

x x x
F x

x x x x x xε

−+
=

− + +
, (4.26) 

 1
s( , ) {cos[(1 ) ] Bi sin[(1 ) ]}sG x x x xζ ε ζ ζ−= − + − , 0 1ζ≤ ≤ , (4.27) 

 

1
s

1
s

( , ) cos [Bi sin( ) cos( )]

sin [Bi cos( ) sin( )], 0.

f

x
G x x x x

k

x
x x x x

k

ζ ε ζ

ζ ζ

−
∗

−
∗

⎛ ⎞
= + −⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

− − −∞ < ≤⎜ ⎟⎜ ⎟
⎝ ⎠

 (4.28) 

Taking the formulae (4.8)–(4.12) into account, the integrals (4.19) round the small circle δΓ  

enclosing the origin for ip e ϕδ= , π ϕ π− ≤ ≤  and 0δ →  tends to values: 

 0 s

s

1 (1 )Bi
( , )

BisT
ζζ τ∗ + −

= − , 0 1ζ≤ ≤ , 0 s

s

1 Bi
( , )

BifT ζ τ∗ +
= − , 0ζ−∞ < ≤ . (4.29) 

Substituting the results (4.25) and (4.29) into equations (4.17), we obtain the dimensionless 
temperatures in the strip and the foundation: 
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2

0

1 (1 )Bi 2
( , ) ( ) ( , ) , 0 1

Bi
xs

s s
s

T F x G x e dxτζζ τ ζ ζ
π

∞
∗ −+ −

= − ≤ ≤∫ , (4.30) 

 
2

0

1 Bi 2
( , ) ( ) ( , ) , 0

Bi
xs

f f
s

T F x G x e dxτζ τ ζ ζ
π

∞
∗ −+

= − −∞ < ≤∫ , (4.31) 

where the integrands ( )F x  and , ( , )s fG xζ  have the form (4.26)–(4.28). 

4.2 Two particular values of the heat transfer coefficient 

The boundary of the strip z d=  ( 1ζ = ) for sh →∞  ( sBi →∞ ) is kept at zero temperature, 

i.e. (1, ) 0, 0sT τ τ∗ = > . In this case, the Laplace transformed solution of the boundary-value 

heat conductivity problem (3.2)–(3.8), has also the form (4.8) and (4.9), where  

 ( , ) sh[(1 ) ], 0 1,s p pζ ζ ζΔ = − ≤ ≤  (4.32) 

 ( , ) sh( ) , 0

p

k
f p p e

ζ
ζ ζ

∗
Δ = −∞ < ≤ , (4.33) 

 21
( ) (1 ) (1 )

2
p p

p e eε λ −Δ = + + , (4.34) 

 
1

1 1
1

ελ
ε

−
− < = <

+
. (4.35) 

Taking the below relations into account 

 2

2
0

1
,

1

n pn

p
n

e
eλ

∞
−

−
=

= Λ
+

∑  (4.36) 

where 

 
( 1) , 0 1

,
, 1 0

n n
n

n

λ λ

λ λ

⎧ − ≤ <⎪Λ = ⎨
− < ≤⎪⎩

 (4.37) 

from the equation (4.34) it can be find 

 2

0

1 2

( ) (1 )

p
n pn

n

e
e

p ε

− ∞
−

=

= Λ
Δ + ∑ . (4.38) 

Substituting equations (4.32), (4.33) and (4.38) into the solutions (4.8) and (4.9), we find the 
transforms for temperatures in the following form: 

 ,
0

1
( , ) ( , ), 0 1

(1 )
n

s s n
n

T p T pζ ζ ζ
ε

∞
∗ ∗

=

= Λ ≤ ≤
+ ∑ , (4.39) 
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 (2 ) (2 2 )
,

1
( , ) [ ]n p n p

s nT p e e
p p

ζ ζζ − + − + −∗ = − , 0,1,2,...,n =  (4.40) 

 
,

0

1
( , ) ( , ), 0

(1 )
n

f f n
n

T p T pζ ζ ζ
ε

∞
∗ ∗

=

= Λ −∞ < ≤
+ ∑ , (4.41) 

 
2 2 2

,
1

( , ) [ ]
n p n p

k k
f nT p e e

p p

ζ ζ

ζ
∗ ∗

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟− − − + −⎜ ⎟ ⎜ ⎟∗ ⎝ ⎠ ⎝ ⎠= − , 0,1,2,...n = . (4.42) 

Applying the inversion formula (Bateman and Erdelyi, 1954) 

 1 ; 2 ierfc , 0
2

a p
e a

L a
p p

τ τ
τ

−
−
⎡ ⎤ ⎛ ⎞⎢ ⎥ = >⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦

, (4.43) 

to equation (4.39)–(4.42), we obtain the temperatures in the strip and in the foundation: 

 ,
0

1
( , ) ( , ), 0 1,

(1 )
n

s s n
n

T Tζ τ ζ τ ζ
ε

∞
∗ ∗

=
= Λ ≤ ≤

+ ∑  0τ ≥ , (4.44) 

 ,
2 2 2

( , ) 2 ierfc ierfc , 0,1,2,...
2 2

s n

n n
T n

ζ ζζ τ τ
τ τ

∗ ⎡ ⎤+ + −⎛ ⎞ ⎛ ⎞= − =⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

, (4.45) 

 
,

0

1
( , ) ( , ), 0,

(1 )
n

f f n
n

T Tζ τ ζ τ ζ
ε

∞
∗ ∗

=
= Λ −∞ < ≤

+ ∑  0τ ≥ , (4.46) 

 
,

2 (2 2)
( , ) 2 ierfc ierfc , 0,1,2,...

2 2
f n

n k n k
T n

k k

ζ ζζ τ τ
τ τ

∗ ∗
∗

∗ ∗

⎡ ⎤⎛ ⎞ ⎛ ⎞− + −⎢ ⎥⎜ ⎟ ⎜ ⎟= − =
⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

. (4.47) 

From formulas (4.44)–(4.47) it can be easily proved, that boundary and initial conditions 
(3.4)–(3.8), at sBi →∞  are satisfied.  

At 0sh →  ( sBi 0→ ) the surface of the strip 1ζ =  is insulated:  

 

1

0, 0sT

ζ

τ
ζ

∗

=

∂
= >

∂
. (4.48) 

The solution of the heat conduction equations (3.2) and (3.3), satisfying boundary and initial 
conditions (3.4)–(3.8) and (4.48), also can be found in the form of (4.44) and (4.46), when 

 
,

2 2 2
( , ) 2 ierfc ierfc , 0,1,2,...

2 2
s n

n n
T n

ζ ζζ τ τ
τ τ

∗ ⎡ ⎤+ + −⎛ ⎞ ⎛ ⎞= + =⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

, (4.49) 

 ,
2 (2 2)

( , ) 2 ierfc ierfc , 0,1,2,...
2 2

f n

n k n k
T n

k k

ζ ζζ τ τ
τ τ

∗ ∗
∗

∗ ∗

⎡ ⎤⎛ ⎞ ⎛ ⎞− + −⎢ ⎥⎜ ⎟ ⎜ ⎟= + =
⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (4.50) 
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If the properties of materials of the strip and the foundation are the same, then from 
formulae (4.13), (4.25) and (4.37), that ε=1, λ=0, 0Λ = . Hence, for n=0 from solutions (4.44)–
(4.47), (4.50) and (4.50) are obtained 

 2
( , ) ierfc ierfc , 0 1

2 2
sT

ζ ζζ τ τ ζ
τ τ

∗ ⎡ ⎤−⎛ ⎞ ⎛ ⎞= ≤ ≤⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

∓ , 0τ ≥ , (4.51) 

 2
( , ) ierfc ierfc , 0,

2 2
fT

ζ ζζ τ τ ζ
τ τ

∗ ⎡ ⎤− −⎛ ⎞ ⎛ ⎞= − ∞ < ≤⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

∓  0τ ≥ , (4.52) 

where the upper sign should be taken when the surface of the strip z d=  ( 1ζ = ) is kept at 
zero temperature, and bottom – when this surface is insulated. 
Finally, we note that the solution of the corresponding thermal problem of friction for two 
homogeneous semi-spaces was found in the monograph (Grylytskyy, 1996)  

 

ierfc , 0 , 0,
22

( , )
(1 )

ierfc , 0, 0.
2

T

k

ζ ζ τ
ττζ τ

ε ζ ζ τ
τ

∗

∗

⎧ ⎛ ⎞ ≤ < ∞ ≥⎪ ⎜ ⎟
⎝ ⎠⎪= ⎨ ⎛ ⎞+ −⎪ − ∞ < ≤ ≥⎜ ⎟⎜ ⎟⎪
⎝ ⎠⎩

 (4.53) 

The distribution of dimensionless temperature in the semi-space, which is heated up on a 
surface 0ζ =  with a uniform heat flux of intensity 0q  has the well-known form (Carslaw 

and Jaeger, 1959): 

 ( , ) 2 ierfc , 0
2

T
ζζ τ τ ζ
τ

∗ ⎛ ⎞= ≤ < ∞⎜ ⎟
⎝ ⎠

, 0τ ≥ . (4.54) 

5. Heat generation at constant friction power. Imperfect contact. 

In this Chapter the impact of thermal resistance on the contact surface on the temperature 
distribution in strip-foundation system is investigated. For this purpose, we consider the 
heat conduction problem of friction (3.2)-(3.8) on the following assumptions: constant 
pressure ( )p τ  (2.1) ( ( ) 1p τ∗ = ), constant velocity 0V V=  ( 1V∗ = ) and zero temperature on 
the upper surface of the strip, i.e. in the boundary condition (3.6)  sBi →∞ .  

5.1 Solution to the problem 
Solution of a boundary-value problem of heat conduction in friction (3.2)–(3.8) by applying 
the Laplace integral transforms (4.1) has form 

 ,
,

( , )
( , )

( )
s f

s f

p
T p

p p

ζ
ζ∗ Δ

=
Δ

, (5.1) 

where 

 Bi
( , ) sh[(1 ) ]s p p

p
ζ ε ζ

⎛ ⎞
Δ = + −⎜ ⎟⎜ ⎟

⎝ ⎠
,  0 1ζ≤ ≤ , (5.2) 
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Bi

( , ) ch p sh

p

k
f p p e

p

ζ
ζ

∗⎡ ⎤
Δ = +⎢ ⎥

⎢ ⎥⎣ ⎦
,  0ζ−∞ < ≤ , (5.3) 

 ( ) Bi sh (2 Bi) chp p p pε εΔ = + + . (5.4) 

Applying the inverse Laplace transform to Eqs. (5.1)–(5.4) with integration along the same 
contour as in Fig. 2, we obtain the dimensionless temperatures in the strip and in the 
foundation: 

 
20

, ,
0

2
( , ) ( ) ( ) ( , ) x

s f s f sT T F x G x e dxτζ τ ζ ζ
π

∞
∗ ∗ −= − ∫ , 0τ ≥ , (5.5) 

where 

 0( ) 1sT ζ ζ∗ = − , 0 1ζ≤ ≤ , 0 1 Bi
( )

BifT ζ∗ +
= , 0ζ−∞ < ≤ , (5.6) 

 
1

2 2 2

cos Bi sin
( )

(Bi cos ) (Bi sin 2 cos )

x x x
F x

x x x xε

−+
=

+ +
, (5.7) 

 1( , ) Bi sin[(1 ) ]sG x x xζ ε ζ−= − , 0 1ζ≤ ≤ , (5.8) 

 
Bi Bi

( , ) ( sin 2 cos )cos( / ) cos sin( / )fG x x x x k x x k
x x

ζ ε ζ ζ∗ ∗= + − , 0ζ−∞ < ≤ . (5.9) 

The maximum temperature is reached on the friction surface 0ζ = . In order to determine 
the maximum temperature, we use the solutions (5.5) at 0( ) 1sT ζ∗ =  and the integrands (5.7) 
as well as  

 1(0, ) Bi sinsG x x xε −= , 1(0, ) (Bi sin 2 cos ) .fG x x x xε −= +  (5.10) 

Let us define the heat flux intensities in the strip and in semi-space as following: 

 
( , )( , )

( , ) , 0 , 0, ( , ) , 0fs
s s f f

T z tT z t
q z t K z d t q z t K z

z z

∂∂
≡ − ≤ ≤ ≥ ≡ −∞ < ≤

∂ ∂
, 0t ≥ , (5.11) 

or with taking (3.9) under consideration in the dimensionless form: 

 ( , ) ( , )
( , ) , 0 1,s s

s

q z t T
q

q

ζ τ
ξ τ ζ

ζ

∗
∗ ∂

≡ = − ≤ ≤
∂

0τ ≥ , (5.12) 

 
( , ) ( , )

( , )
f f

f

q z t T
q K

q

ζ τ
ζ τ

ζ

∗
∗ ∗ ∂≡ =

∂
, 0ζ−∞ < ≤ , 0τ ≥ . (5.13) 

With taking solutions for dimensionless temperatures (5.5)–(5.9) under consideration, from 
the formulae (5.12) and (5.13) we found: 
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2

0

2
( , ) 1 ( ) ( , ) , 0 1x

s sq F x Q x e dxτεζ τ ζ ζ
π

∞
∗ −= − ≤ ≤∫ , 0τ ≥ , (5.14) 

 
2

0

2
( , ) ( ) ( , ) , 0x

f fq F x Q x e dxτεζ τ ζ ζ
π

∞
∗ −= −∞ < ≤∫ , 0τ ≥ , (5.15) 

 ( , ) Bi cos[(1 ) ]sQ x xζ ζ= − , 0 1ζ≤ ≤ , (5.16) 

 ( , ) (Bi sin 2 cos )sin( / ) Bi cos cos( / )fQ x x x x x k x x kζ ε ζ ζ∗ ∗= + + , 0ζ−∞ < ≤ . (5.17) 

On the friction surface 0ζ =  from the formulae (5.16) and (5.17) leads 
(0 , ) (0 , ) Bi cosf sQ x Q x x= =  and from (5.14), (5.15) we found (0 , ) (0 , ) 1f sq qτ τ∗ ∗+ = , 0τ ≥ , 

which means that boundary condition (3.4) is satisfied ( ( ) 1q τ∗ = ). Spikes of temperature 
and heat flux intensities both on the contact surface 0ζ =  we found from solutions of (5.5)–
(5.9) and (5.14)–(5.17) in the form: 

 
2

0

1 4
(0 , ) (0 , ) ( ) cos

Bi
x

s fT T F x e x dxτετ τ
π

∞
∗ ∗ −− = − + ∫ , 0τ ≥ , (5.18) 

 
2

0

4 Bi
(0 , ) (0 , ) 1 ( ) cosx

f sq q F x e x dxτε
τ τ

π

∞
∗ ∗ −− = − + ∫ , 0τ ≥ , (5.19) 

whence follows, that the boundary condition (3.5) is satisfied. 
Dimensionless temperatures and heat flux intensities in case of perfect contact between strip 
and foundation ( h →∞  or Bi →∞ ) can be found from the Eqs. (5.5), (5.14) and (5.15) at 

0( ) 1fT ζ∗ =  and the integrands in the forms:  

 
1

2 2 2

sin( )
( )

cos ( ) sin ( )

x x
F x

x xε

−

=
+

, (5.20) 

 1( , ) sin[(1 ) ]sG x x xζ ε ζ−= − , ( , ) cos[(1 ) ]sQ x xζ ζ= − , 0 1ζ≤ ≤ , (5.21) 

 1 1( , ) sin( )cos( / ) cos( )sin( / )fG x x x x k x x x kζ ε ζ ζ− ∗ − ∗= − , 0ζ−∞ < ≤ , (5.22) 

 ( , ) sin( )sin( / ) cos( )cos( / )fQ x x x k x x kζ ε ζ ζ∗ ∗= + , 0ζ−∞ < ≤ . (5.23) 

On the contact surface 0ζ =  from Eqs. (5.20)–(5.23) result as following 

 1(0, ) (0, ) sins fG x G x x xε −= = , (0, ) (0, ) coss fQ x Q x x= = . (5.24) 

The formulae (5.20)–(5.24) from the solution of the contact problem with heat generation 
due to friction at perfect thermal contact between strip and foundation, were obtained in 
Chapter four. 
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5.2 Asymptotic solutions 
For large values of the parameter p of Laplace integral transform (4.1) the solutions (5.1)–
(5.4) will take form: 

 
( Bi / )

( , )
2 ( )

p
s

p
T p e

p p

ζε
ζ

ε α
−∗ +

≅
+

, 
( Bi)

( , ) , 0 1
2 ( )

p
s

p
q p e

p p

ζε
ζ ζ

ε α
−∗ +

≅ ≤ ≤
+

, (5.25) 

 
(1 Bi / )

( , )
2 ( )

p

k
f

p
T p e

p p

ζ
ζ

ε α
∗∗ +

≅
+

, 
( Bi)

( , ) , 0
2 ( )

p

k
f

p
q p e

p p

ζ
ζ ζ

α
∗∗ +

≅ −∞ < ≤
+

, (5.26) 

where 

 
(1 )

Bi
2

εα
ε
+

= . (5.27) 

By using the relations (Bateman and Erdelyi, 1954) 

 
21 ; erfc

( ) 2

p
e

L e
p p
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α ζ α τ ζ

τ α τ
α τ

−
+−

⎡ ⎤ ⎛ ⎞
⎢ ⎥ = +⎜ ⎟

+⎢ ⎥ ⎝ ⎠⎣ ⎦
, (5.28) 

 
21 ; erfc erfc

( ) 2 2

p
e

L e
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ζ
α ζ α τζ ζα

τ α τ
α τ τ

−
+−
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⎢ ⎥ = − +⎜ ⎟ ⎜ ⎟

+⎢ ⎥ ⎝ ⎠ ⎝ ⎠⎣ ⎦
, (5.29) 
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;
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2 1 1
 erfc erfc ,

2 2

p
e

L
p p p

e e

ζ

ζ
α ζ α ττ

τ
α

ζ ζ ζτ α τ
α π α α τ α τ

−
−

+

⎡ ⎤
⎢ ⎥ =

+⎢ ⎥⎣ ⎦

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (5.30) 

we have obtained from Eqs. (5.25), (5.26) the asymptotic formulae for dimensionless 
temperature and heat flux intensities both for the strip and foundation at small values of the 
dimensionless time 0 1τ≤ << : 

22
( , ) ierfc erfc erfc

(1 ) 22 2 2
sT e

α ζ α ττ ζ λ ζ ζζ τ α τ
ε ατ τ τ

+∗ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞≅ − − +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
, 0 1ζ≤ ≤ , (5.31) 

2

2
( , ) ierfc erfc erfc

(1 ) 22 2 2

0

k
fT e

k k k

ζ
α α τζ ζ ζτ λζ τ α τ

ε αετ τ τ

ζ

∗
+

∗

∗ ∗ ∗

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥≅ + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
− ∞ < ≤

, (5.32) 

 
21

( , ) erfc erfc
(1 ) 22 2

sq e
α ζ α τζ λ ζζ τ α τ

ε τ τ
+∗ ⎛ ⎞ ⎛ ⎞≅ − +⎜ ⎟ ⎜ ⎟+ ⎝ ⎠ ⎝ ⎠

, 0 1ζ≤ ≤ , (5.33) 
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2

( , ) erfc erfc
(1 ) 22 2

k
fq e

k k

ζ
α α τζ ζε λζ τ α τ

ε τ τ

∗
+

∗
∗ ∗

⎛ ⎞ ⎛ ⎞
≅ + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ ⎝ ⎠ ⎝ ⎠

, 0ζ−∞ < ≤ , (5.34) 

where 

 
1

1

ελ
ε

−
=

+
. (5.35) 

The dimensionless temperatures (5.31) and (5.32) tends to zero as 0τ → , which  means that 
initial conditions (3.8) are satisfied. 
On the contact surface of the strip and foundation 0ζ =  we find from the solutions of 
(5.31)–(5.34) that: 

 

2

2

2
(0, ) [1 erfc( )],

(1 ) 2

2
(0, ) [1 erfc( )],

(1 ) 2

s

f

T e

T e

α τ

α τ

τ λτ α τ
ε π α

τ λτ α τ
ε π αε

∗

∗

≅ − −
+

≅ + −
+

 0 1τ≤ << , (5.36) 

21
(0, ) erfc( )

(1 ) 2sq eα τλτ α τ
ε

∗ ≅ −
+

, 
2

(0, ) erfc( )
(1 ) 2fq eα τε λτ α τ

ε
∗ ≅ +

+
, 0 1τ< << . (5.37) 

By taking (5.27) and (5.35) into account, from the Eqs. (5.36) and (5.37) we find: 

 
2

(0, ) (0, ) [1 erfc( )]
Bis fT T eα τλτ τ α τ∗ ∗− = − − , 0 1τ≤ << , (5.38) 

 (0, ) (0, ) 1f sq qτ τ∗ ∗+ = , 
2

(0, ) (0, ) [1 erfc( )]f sq q eα ττ τ λ α τ∗ ∗− = − − , 0 1τ< << , (5.39) 

which also means that received asymptotic solution satisfies the boundary conditions (3.4) 

(where ( ) 1q τ∗ = ) and (3.5). 

As results from solutions (5.31) and (5.32), at small Fourier number values τ  the 
temperature of strip and foundation in case of perfect thermal contact ( Bi →∞ ), can be 
found with use of solution of the friction heat for two semi-spaces (Yevtushenko and Kuciej, 
2009a) 

 

2
( , ) ierfc , 0 ,

(1 ) 2

2
( , ) ierfc , 0, 0 1.

(1 ) 2
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f
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τ ζζ τ ζ
ε τ

τ ζζ τ ζ τ
ε τ
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⎛ ⎞≅ ≤ < ∞⎜ ⎟+ ⎝ ⎠
⎛ ⎞
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 (5.40) 

At small values of the parameter p from solutions (5.1)–(5.4) we obtain: 

 
(2 Bi)(1 )
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p p
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ε α
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, (5.41) 
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1 /(1 Bi)
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f

p k
T p

p p

ζβζ
β

∗
∗

⎡ ⎤++ ⎢ ⎥≅
⎢ ⎥+⎣ ⎦

,
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( , ) 1
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p
q p

p p k
ζ ζ

α
∗

∗

⎛ ⎞+
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, (5.42) 

0ζ−∞ < ≤ , 

where 

 
Bi

(2 Bi)
β

ε
=

+
. (5.43) 

By applying the Laplace inversion formulae (4.43) we obtain from Eqs. (5.41), (5.42) 
dimensionless temperatures and heat flux intensities in the strip and in the foundation at 
large values ( 1τ >> ) of the dimensionless time τ : 

 
2(1 Bi)

( , ) (1 ) 1 erfc( )
(2 Bi)sT eβ τζ τ ζ β τ∗ ⎡ ⎤+
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, 0 1ζ≤ ≤ , (5.44) 
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, 0ζ−∞ < ≤ , (5.45) 

 
2(1 Bi)

( , ) 1 erfc( )
(2 Bi)sq eβ τζ τ β τ∗ +

≅ −
+

, 0 1ζ≤ ≤ , (5.46) 

 
2(1 Bi)

( , ) 1 erfc( )
(2 Bi)fq e

k k

β τζ ζζ τ β β τ
π τ

∗
∗ ∗

⎡ ⎤⎛ ⎞+ ⎢ ⎥≅ + −⎜ ⎟⎜ ⎟+ ⎢ ⎥⎝ ⎠⎣ ⎦
, 0ζ−∞ < ≤ . (5.47) 

From the formulae (5.44)–(5.47) the temperatures and heat flux intensities on the contact 
surface are found in the form: 

 
2(1 Bi)

(0, ) 1 erfc( )
(2 Bi)sT eβ ττ β τ∗ +

≅ −
+

, 
2(1 Bi)

(0, ) 1 erfc( )
BifT eβ ττ β τ∗ + ⎡ ⎤≅ −⎢ ⎥⎣ ⎦

, 1τ >> , (5.48) 

 

 
2(1 Bi)

(0, ) 1 erfc( )
(2 Bi)sq eβ ττ β τ∗ +

≅ −
+

, 
2(1 Bi)

(0, ) erfc( )
(2 Bi)fq eβ ττ β τ∗ +

≅
+

, 1τ >> . (5.49) 

 

From the formulae (5.48) and (5.49), is easy to find that boundary conditions (3.4) (where 

( ) 1q τ∗ = )  and (3.5) are satisfied. 

In addition, from (5.46) and (5.47) follows, that at fixed enough big value of Fourier number 
τ , the heat flux is constant along strip thickness and in foundation its value decreases 
linearly with distance from contact surface. 
The dimensionless temperatures in the strip and in the foundation with assumption of theirs 
perfect thermal contact ( Bi →∞ ) can be found from solutions (5.44) and (5.45) in the form:  
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2

( , ) (1 ) 1 erfcsT e
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ε
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⎣ ⎦

, 0 1ζ≤ ≤ , 1τ >> , (5.50) 

 

2

( , ) 1 1 erfcfT e
k

τ
εζ τζ τ

εε

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠∗

∗

⎛ ⎞ ⎛ ⎞
≅ − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

, 0ζ−∞ < ≤ , 1τ >> .
2

1 erfc( )eα τ α τ− . (5.51) 

Setting in the above equations 0ζ = , we received the equality of strip and foundation 

temperatures on the contact surface: 

 

2

(0, ) (0, ) 1 erfcs fT T e

τ
ε ττ τ

ε

⎛ ⎞
⎜ ⎟⎜ ⎟∗ ∗ ⎝ ⎠

⎛ ⎞
= ≅ − ⎜ ⎟⎜ ⎟

⎝ ⎠
, 1τ >> . (5.52) 

6. Heat generation of braking with constant deceleration 

In this Chapter we investigate the influence of the thermal resistance on the contact surface, 
and of the convective cooling on the upper surface of the strip (pad), with the constant 

pressure ( ( ) 1p τ∗ = ) and linear decreasing speed of sliding (breaking with constant 

deceleration) (2.10) taken into account. To solve a boundary problem of heat conductivity, 
we shall use the solutions achieved in Chapters four and five in case of constant power of 

friction ( ( ) 1, 0q τ τ∗ = ≥ ). 

The corresponding solution to a case of braking with constant deceleration (2.10) is received 
by Duhamel’s theorem in the form of (Luikov, 1968): 

 
0

ˆ ( , ) ( ) ( , )T q s T s ds
s

τ

ζ τ ζ τ∗ ∗ ∗∂
= −

∂∫ , 1ζ−∞ < ≤ , 0 sτ τ≤ ≤ . (6.1) 

Substituting the dimensionless intensity of a heat flux ( )q τ∗  (3.1), (2.10) and the temperature 

obtained ( , )T ζ τ∗  in the fourth Chapter (4.30), (4.31) to the right parts of formulae (6.1), after 

integration we obtain a formulae for braking with constant deceleration in case of the 
perfect thermal contact (between the strip and foundation), and the convective cooling on 
the upper surface of the strip: 

 
0

2ˆ ( , ) ( ) ( , ) ( , ) , 1T F x G x P x dxζ τ ζ τ ζ
π

∞
∗ = −∞ < ≤∫ , 0 sτ τ≤ ≤ , (6.2) 

where 
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1
( , ) 1

x
x

s s

e
P x e

x

τ
τττ

τ τ

−
− −

= − − + , ( ,0) 0P τ = , (6.3) 

functions ( )F x  and ( )G x  has the form (4.26)–(4.28) accordingly. 

www.intechopen.com



 Heat Transfer - Mathematical Modelling, Numerical Methods and Information Technology 

 

596 

To determine the solution to a case of braking with constant deceleration when the thermal 
resistance occurs on a surface of contact ( Bi 0≥ ), and the zero temperature on the upper 
surface of the strip is maintained ( sBi →∞ ), we have used the solutions obtained in Chapter 
five (5.5). For this case we obtain the solution in the form of (6.2), where functions ( )F x  and 

( )G x  have the form (5.20)–(5.22) and function ( , )P xτ  has the form (6.3). 

7. Heat generation of braking with the time-dependent and fluctuations of the 
pressure 

In this Chapter we consider the general case of braking (3.2)-(3.8), having taken into account 
the time-dependent normal pressure ( )p τ  (2.1), the velocity ( )V τ , 0 sτ τ≤ ≤  (2.4)-(2.8) and 
the boundary condition of the zero temperature on the upper surface of the strip i.e. 

sBi →∞  (3.6).  
The solution ( , )T ζ τ∗  to a boundary-value problem of heat conductivity (3.2)-(3.8) in the 
case when the bodies are compressed with constant pressure 0p , and the strip is sliding 
with a constant speed 0V  on a surface of foundation ( ( ) 1, 0)q τ τ∗ = ≥ , has been obtained in 
Chapter six in the form (5.5)–(5.9). 

Substituting the temperature ( , )T ζ τ∗  (5.5) to the right part of equation (6.1) and changing 

the order of the integration, we obtain 

 
0

2ˆ ( , ) ( ) ( , ) ( , ) , 1T F x G x P x dxζ τ ζ τ ζ
π

∞
∗ = −∞ < ≤∫ , 0 sτ τ≤ ≤ , (7.1) 

where 

 
2 ( )2

0

( , ) ( ) x sP x x q s e ds
τ

ττ − −∗= ∫ , 0 ,0 sx τ τ≤ < ∞ ≤ ≤ , (7.2) 

 

functions ( )F x  and ( , )G xζ  take the form (5.7) and (5.8), accordingly. Taking the form of the 
dimensionless intensity of a heat flux ( )q τ∗  (3.1) into account, the function ( , )P xτ  (7.2) can 
be written as 

 1 20
( , ) ( , ) ( , )

s

a
P x P x P xτ τ τ

τ
= − , (7.3) 

where 

 
2 ( )2

0

( , ) ( ) ( ) x s
i iP x x p s V s e ds

τ
ττ − −∗ ∗= ∫ , 0 ,0 sx τ τ≤ < ∞ ≤ ≤ , 1,2i = . (7.4) 

Substituting in equation (7.4) the functions ( )p τ∗  (2.1) and ( )iV s∗ , 1,2i =  (2.4), (2.5), after 
integration we find 
 

 ( , ) ( , ) ( , )i i iP x Q x a R xτ τ τ= + , 0 ,0 sx τ τ≤ < ∞ ≤ ≤ , 1, 2i = , (7.5) 
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where 

 
[ ] [ ]

[ ]

1 0 0 1 10 2 0

0 00 2

1 1
( , ) 1 ( , ,0) ( , , ) ( , ,0) ( , , )

1
( , , ) ( , , ) ,

m m
s m s

m m
s m

Q x J x J x J x J x

J x J x

τ τ τ α τ τ α
τ α τ

τ α τ β
τ α

⎛ ⎞
= + − − − −⎜ ⎟⎜ ⎟
⎝ ⎠

− −

 (7.6) 

[ ] [ ]

[ ]

1 2 2 4 40 2 0

2 20 2

1 1
( , ) 1 ( , , ,0) ( , , , ) ( , , ,0) ( , , , )

1
( , , , ) ( , , , ) ,

m m
s m s

m m
s m

R x J x J x J x J x

J x J x

τ τ ω τ ω α τ ω τ ω α
τ α τ

τ ω α τ ω β
τ α

⎛ ⎞
= + − − − −⎜ ⎟⎜ ⎟
⎝ ⎠

− −

 (7.7) 
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 (7.9) 
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2
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β
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= . (7.10) 

The functions ( )kJ ⋅ , 0,1,2,3,4k =  in the formulae (7.6)–(7.9) have the form (Prudnikov at al., 

1989) 

 
2 22 2 2
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0 2 2
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 (7.15) 

where the parameter 0.α ≥   
If the pressure ( )p τ∗  (2.1) during braking increases monotonically, without oscillations 
( 0a = ), then from formulae (7.3) and (7.5) it follows that 1( , ) ( , )P x Q xτ τ= . Taking the form 
of functions 1( , )Q xτ  (7.6) and ( , , )kJ xτ α , 0,1k =  (7.11), (7.12) into account, we obtain  
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 (7.16) 

In the limiting case of braking with a constant deceleration at 0mτ →  from formula (7.16) 

we find the results of the Chapter six. 

8. Numerical analysis and conclusion 

Calculations are made for a ceramic-metal pad FMC-11 (the strip) of thickness 5d = mm 
( 1 134.3Wm KsK − −= , 6 2 115.2 10 m ssk − −= ⋅ ), and a disc (the foundation) from cast iron 
CHNMKh ( 1 151Wm KfK − −= , 6 2 114 10 m sfk − −= ⋅ ) (Chichinadze at al., 1979). Such a friction 
pair is used in frictional units of brakes of planes. Time of braking is equal to 3.42sst =  
( 2.08sτ = ) (Balakin and Sergienko, 1999). Integrals are found by the procedure QAGI from a 
package of numerical integration QUADPACK (Piessens at al., 1983). 

From Chapter six, the results of calculations of dimensionless temperature T̂∗  (6.2) for the 
first above considered variants of boundary conditions are presented in Fig. 3а–5а, and for 
the second – in Fig. 3b–5b. The occurrence of thermal resistance on a surface of contact leads 
to the occurrence of a jump of temperature on the friction surfaces of the strip and the 
foundation. 
With the beginning of braking, the temperature on a surface of contact ( 0)ζ =  sharply 
raises, reaches the maximal value maxT̂∗  during the moment of time maxτ , then starts to 
decrease to a minimum level, and finally stops sτ  (Fig. 3а). The heat exchange with an  
 

www.intechopen.com



Frictional Heating in the Strip-Foundation Tribosystem   

 

599 

 
(a) (b) 

Fig. 3. Evolution of dimensionless temperature T̂∗  on a surface of contact 0ζ =  for several 

values of Biоt numbers: a) sBi ; b) Bi , (Yevtushenko and Kuciej, 2010). 

environment on an upper surface of a strip does not influence the temperature significantly 
at an initial stage of braking max0 τ τ≤ ≤  when the temperature increases rapidly. This 
influence is the most appreciable during cooling the surface of contact max sτ τ τ≤ ≤ . 
When the factor of thermal resistance is small ( Bi 0.1= ) the strip is warmed up faster than 
the foundation, and it reaches the much greater maximal temperature than the maximal 
temperature on a working surface of the foundation (Fig. 3b). The increase in thermal 
conductivity of contact area results in alignment of contact temperatures on the friction 
surface of the bodies. For Biоt number Bi 100=  the evolutions of temperatures on contact 
surfaces of the strip and the foundation are identical. 
The highest temperature on the surface of contact is reached in case of thermal isolation of 
the upper surface of the strip ( sBi 0→ ) (Fig. 4а). While Biot number increases on the upper 
surface of the strip, the maximal temperature on surfaces contact decreases. From the data 
presented in Fig. 4а follows, that for values of Biоt number sBi 20≥  to calculate the 
maximal temperature in considered tribosystem, it is possible to use an analytical solution to 
a problem, which is more convenient in practice ( sBi →∞ at the set zero temperature on the 
upper surface of the strip) (Yevtushenko and Kuciej, 2009b). 
The effect of alignment of the maximal temperature with increase in thermal conductivity of 
contact surfaces is especially visible in Fig. 4b. To calculate the maximal temperature at 
Bi 10≥ , we may use formulas (6.2)-(6.5), which present the solutions to the thermal problem 
of friction at braking in case of an ideal thermal contact of the strip and the foundation, and 
of maintenance of zero temperature on the upper surface of the strip. 
Change of dimensionless temperature in the strip and the foundation on a normal to a 
friction surface for Fourier’s number τs = 2.08 is shown in Fig. 5. The temperature reaches the 
maximal value on the friction surface 0ζ = , and decreases while the distance from it grows. 
The drop of temperature in the strip for small values of Biоt number (Bis = 0.1) has nonlinear 
character (Fig. 5а). If the zero temperature is maintained (Bis = 100) during 
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(a) (b) 

Fig. 4. Dependence of dimensionless maximal temperature maxT̂∗  on Biot numbers: a) Bis ; 

b) Bi  for dimensionless time of braking 2.08sτ = , (Yevtushenko and Kuciej, 2010). 

braking on the upper surface of the strip, then the reduction of temperature in the strip, and 
while the distance from the friction surface grows, can be described by a linear function of 
dimensionless spatial variable ζ . The effective depth of heating up the foundation decreases 
with the increase in Biоt number and for values sBi 0.1; 100=  is equal 2.4 and 2.15 of the 
strip’s thickness accordingly. Irrespective of size of thermal resistance, the temperature in the 
strip linearly decreases from the maximal value for surfaces of contact up to zero on the upper 
surface of the strip (Fig. 5b). The effective depth of heating up the foundation increases with 
the increase of thermal resistance (reduction of thermal conductivity) – for values Bi 0.1; 100=  
it is equal 2.15 and 2.7 of thickness of the strip accordingly. 
From Chapter seven, the results of calculations of dimensionless temperature T̂∗  (7.1) are 
presented in Figs. 5–7. First, for fixed values of the input parameters mτ , 0

sτ , a  and ω  we 
find numerically the dimensionless time of stop sτ  as the root of functional equation (2.9). 
Knowing the time of braking sτ , we can construct the dependencies of output parameters 
on the ratio / sτ τ . Such dependencies for the dimensionless pressure p∗  (2.1) and sliding 
speed V∗  (2.4) are shown in Fig. 6. We see in Fig. 6a four curves for two values of the 
dimensionless time of pressure rise, which corresponds to instantaneous ( 0mτ = ) and 
monotonic ( 0.2mτ = ) increase in pressure to the nominal value, at two values of the 
amplitude 0a =  and 0.1a = . In Fig. 6b we see only two curves constructed at the same 
values of parameters τm and a. This is explained by the fact that the amplitude of fluctuations 
of pressure a practically does not influence the evolution of speed of sliding. 

The evolution of the dimensionless contact temperature ˆ (0, )T τ∗  (7.2) in the pad and in the 

disc, for the same distributions of dimensionless pressure p* (2.1) and velocity V* (2.4), 
which are shown in Figs. 6a,b is presented in Fig. 7. Due to heat transfer through the surface 
of contact the temperatures of the pad (Fig. 7a) and the disk (Fig. 7b) on this surface are 
various. The largest value of the contact temperature is reached during braking with the 
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(a) (b) 

Fig. 5. Distribution of dimensionless temperature T̂∗  in the strip ( 0 1ζ≤ ≤ ) and the 
foundation ( 0ζ−∞ ≤ ≤ ) during the dimensionless moment of time maxτ τ=  of reaching the 
temperature of the maximal value maxT∗  for two values of Biot numbers: a) sBi ; b) Bi , 
(Yevtushenko and Kuciej, 2010). 
 

 
(a) (b) 

Fig. 6. Evolution of the dimensionless pressure p∗  (a) and sliding speed V∗  (b) during 
braking for several values of the Fourier number mτ  and dimensionless amplitude a , 
(Yevtushenko at al. 2010). 

constant deceleration (τm=0). The increase in duration of achieving the nominal value of 
pressure leads to a decrease in contact temperature. The maximum contact temperature in 
the case of braking with the constant deceleration (τm=0) is always larger than at the non-
uniform braking. It is interesting, that the temperature at the moment of a stop is practically 
independent of the value of the parameter τm. Pressure oscillations (see Fig. 6) lead to the 
fact that the temperature on the contact surface also oscillates, but with a considerably lower 
amplitude (Fig. 7). 
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(a) (b) 

Fig. 7. Evolution of dimensionless temperature ˆ (0, )T τ∗  (7.2) on the contact surface of the 
pad (a) and the disc (b) for two values of the Fourier number 0;0.2mτ =  and dimensionless 
amplitude 0;0.1a =  at fixed values of the dimensionless input parameters 0 1sτ = , Bi 5= , 
(Yevtushenko at al. 2010). 

Evolution of dimensionless temperature ˆ ( , )T ζ τ∗  not only on a surface of contact, but also 
inside the pad and the disc is shown in Fig. 8. Regardless of the value of the time of pressure 
increase, the temperature oscillations take place in a thin subsurface layer. The thickness of 
this layer is about 0.2 of the thickness of the pad. Also, in these figures we see “the effect of 
delay” – the moment of time of achieving the temperature of the maximal value increases 
with the increase in distance from a surface of friction. In the pad the maximum temperature 
is reached before stopping at a given distance from the friction surface (Figs. 8a,c). In the 
disc we observe a different picture – for a depth ≥0.6d the temperature reaches a maximum 
value at the stop time moment (Figs. 8b,d). 

9. Conclusions 

The analytical solutions to a thermal problem of friction during braking are obtained for a 
plane-parallel strip/semi-space tribosystem with a constant or time-dependence friction 
power. In the solutions we take into account the heat transfer through a contact surface, and 
convective exchange on the upper surface of the pad. To solve the thermal problem of 
friction with time-dependent friction power we use solution to thermal problem with 
constant friction power and Duhamel formula (6.1). 
The investigation is conducted for ceramic-metal pad (FMC-11) and cast iron disc 
(CHNMKh). The results of our investigation of the frictional heat generation of the pad 
sliding on the surface of the disc in the process of braking allow us to make the main 
conclusions, i.e. the temperature on the contact surface rises sharply with the beginning of 
braking, and at about half braking time it reaches the maximal value. Then, till the moment 
of stopping, the fall of temperature occurs (Fig. 3); the increase of convective exchange (Bis) 
on the outer surface of the pad, leads to the decrease of the maximal temperature on the 
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(a) (b) 

 
(c) (d) 

Fig. 8. Evolution of dimensionless temperature ˆ ( , )T ζ τ∗  (7.2) in the pad (a), (c) and in the 
disc (b), (d) for two values of the of the Fourier number 0mτ =  (a), (b) and 0.2mτ =  (c), (d) 
at fixed values of the dimensionless input parameters 0.1a = , 0 1sτ = , Bi 5= , (Yevtushenko 
at al. 2010). 

contact surface, while the time of reaching it gets shorter (Fig. 4a); the reduction of the 
thermal resistance on the contact surface (the increase of Biot’s number Bi) causes the 
equalization of the maximal temperatures of the pad and disc’s surfaces and of the time of 
reaching it (Fig. 4b); that the contact temperature decreases with the increase in 
dimensionless input parameter mτ  (duration increase in pressure from zero to the nominal 
value) (Figs. 7); the amplitude of the oscillations of temperature is much less than the 
amplitude of corresponding fluctuations of pressure (“the leveling effect”) (Figs. 7, 8). 
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