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1. Introduction 

FGM components are generally constructed to sustain elevated temperatures and severe 

temperature gradients. Low thermal conductivity, low coefficient of thermal expansion 

and core ductility have enabled the FGM material to withstand higher temperature 

gradients for a given heat flux. Examples of structures undergo extremely high 

temperature gradients are plasma facing materials, propulsion system of planes, cutting 

tools, engine exhaust liners, aerospace skin structures, incinerator linings, thermal barrier 

coatings of turbine blades, thermal resistant tiles, and directional heat flux materials. 

Continuously varying the volume fraction of the mixture in the FGM materials eliminates 

the interface problems and mitigating thermal stress concentrations and causes a more 

smooth stress distribution.  

Extensive thermal stress studies made by Noda reveal that the weakness of the fiber rein-

forced laminated composite materials, such as delamination, huge residual stress, and 

locally large plastic deformations, may be avoided or reduced in FGM materials (Noda, 

1991). Tanigawa presented an extensive review that covered a wide range of topics from 

thermo-elastic to thermo-inelastic problems. He compiled a comprehensive list of papers on 

the analytical models of thermo-elastic behavior of FGM (Tanigawa, 1995). The analytical 

solution for the stresses of FGM in the one-dimensional case for spheres and cylinders are 

given by Lutz and Zimmerman (Lutz & Zimmerman, 1996 & 1999). These authors consider 

the non-homogeneous material properties as linear functions of radius. Obata presented the 

solution for thermal stresses of a thick hollow cylinder, under a two-dimensional transient 

temperature distribution, made of FGM (Obata et al., 1999). Sutradhar presented a Laplace 

transform Galerkin BEM for 3-D transient heat conduction analysis by using the Green's 

function approach where an exponential law for the FGMs was used (Sutradhar et al., 2002). 

Kim and Noda studied the unsteady-state thermal stress of FGM circular hollow cylinders 

by using of Green's function method (Kim & Noda, 2002). Reddy and co-workers carried out 

theoretical as well as finite element analyses of the thermo-mechanical behavior of FGM 

cylinders, plates and shells. Geometric non-linearity and effect of coupling item was 

considered for different thermal loading conditions (Praveen & Reddy, 1998, Reddy & Chin, 

1998, Paraveen et al., 1999, Reddy, 2000, Reddy & Cheng, 2001). Shao and Wang studied the 

thermo-mechanical stresses of FGM hollow cylinders and cylindrical panels with the 

assumption that the material properties of FGM followed simple laws, e.g., exponential law, 
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power law or mixture law in thickness direction. An approximate static solution of FGM 

hollow cylinders with finite length was obtained by using of multi-layered method; 

analytical solution of FGM cylindrical panel was carried out by using the Frobinus method; 

and analytical solution of transient thermo-mechanical stresses of FGM hollow cylinders 

were derived by using the Laplace transform technique and the power series method, in 

which effects of material gradient and heat transfer coefficient on time-dependent thermal 

mechanical stresses were discussed in detail (Shao, 2005, Shao & Wang, 2006, Shao & Wang, 

2007). Similarly, Ootao and Tanigawa obtained the analytical solutions of unsteady-state 

thermal stress of FGM plate and cylindrical panel due to non-uniform heat supply (Ootao & 

Tanigawa, 1999, 2004, 2005). Using the multi-layered method and through a novel limiting 

process, Liew obtained the analytical solutions of steady-state thermal stress in FGM hollow 

circular cylinder (Liew & et al., 2003). Using finite difference method, Awaji and Sivakuman 

studied the transient thermal stresses of a FGM hollow circular cylinder, which is cooled by 

surrounding medium (Awaji & Sivakuman, 2001). Ching and Yen evaluated the transient 

thermoelastic deformations of 2-D functionally graded beams under non-uniformly 

convective heat supply (Ching & Yen, 2006). 

In this paper, by using the Hermitian transfinite element method, nonlinear transient heat 

transfer and thermoelastic stress analyses is performed for thick-walled FGM cylinder 

which materials are temperature-dependent. Time variations of the temperature, 

displacements, and stresses are obtained through a numerical Laplace inversion. Finally, 

results obtained considering the temperature-dependency of the material properties. Those 

results are the temperature distribution and the radial and circumferential stresses are 

investigated versus time, geometrical parameters and index of power law (N) and then they 

are compared with those derived based on temperature independency assumption.  

Two main novelties of this research are incorporating the temperature-dependency of the 

material properties and proposing a numerical transfinite element procedure that may be 

used in Picard iterative algorithm to update the material properties in a highly nonlinear 

formulation. In contrast to before researches, second order elements are employed. 

Therefore, proposed transfinite element method may be adequately used in problems where 

time integration method is not recommended because of truncation errors (e.g. coupled 

thermo-elasticity problems with very small relaxation times) or where improper choice of 

time integration step may lead to loss of the higher frequencies in the dynamic response. 

Also, accumulated errors that are common in the time integration method and in many 

cases lead to remarkable errors, numerical oscillations, or instability, do not happen in this 

technique. 

2. The governing equations 

Geometric parameters of the thick-walled FGM cylinder are shown in Figure (1). The FGM 

cylinder is assumed to be made of a mixture of two constituent materials so that the inner 

layer (r ൌ r୧) of the cylinder is ceramic-rich, whereas the external surface (r ൌ r୭) is metal-rich. 

The properties can be expressed as follows: 
 

 ܲ ൌ ଴ܲሺܲି ଵܶିଵ ൅ ͳ ൅ ଵܲܶ ൅ ଶܲܶଶ൅ ଷܲܶଷሻ  (1) 
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Fig. 1. FG Thick-walled Cylinder 

Where P଴ , Pି ଵ , Pଵ , Pଶ and Pଷ are constants in the cubic fit of the materials property. The 
materials properties are expressed in this way so that higher order effects of the temperature 
on the material properties can be readily discernible. Volume fraction is a spatial function 
whereas the properties of the constituents are functions of temperature. The combination of 
these functions gives rise to the effective material properties of FGM and can be expressed by 

 ௘ܲ௙௙ሺܶ, ሻݎ ൌ ௠ܲሺܶሻ ௠ܸሺݎሻ ൅ ௖ܲሺܶሻ ௖ܸሺݎሻ (2) 

Where Pୣ୤୤ is the effective material property of FGM, and P୫ and Pୡ are the temperature 
dependent properties metal and ceramic, respectively. Vୡ is the volume fraction of the 
ceramic constituent of the FGM can be written by 

 ௖ܸ ൌ ቀ ௥೚ି௥௥೚ି௥೔ቁே        , ௠ܸ ൌ ͳ െ ௖ܸ (3) 

Where volume fraction index N dictates the material variation profile through the beam 
thickness and may be varied to obtain the optimum distribution of component materials 
(Ͳ ൑ N ൑ ∞). From above equation, the effective Young’s modulus E, Poisson ratio v, 
thermal expansion coefficient α and mass density ρ of an FGM cylinder can be written by 

 ௘ܲ௙௙ ൌ ሺ ௖ܲ െ ௠ܲሻ ቀ ௥೚ି௥௥೚ି௥೔ቁே ൅ ௠ܲ (4) 

In this paper, only the effective Young's modulus and thermal expansion coefficient are 
dependent of temperature. The related equation is ܲ ൌ ଴ܲ௖ሺܲି ଵ௖ܶିଵ ൅ ͳ ൅ ଵܲ௖ܶ ൅ ଶܲ௖ܶଶ ൅ ଷܲ௖ܶଷሻ ௖ܸ 

 ൅ ଴ܲ௠ሺܲି ଵ௠ܶିଵ ൅ ͳ ൅ ଵܲ௠ܶ ൅ ଶܲ௠ܶଶ ൅ ଷܲ௠ܶଷሻ ௠ܸ (5) 

3. Finite element method 

The equation of heat transfer is 

െ ͳݎ ቈ߲߲ܶݎ ߲ ቀݎߢቁ߲ݎ ൅ ݎߢ ߲ଶ߲ܶݎଶ ቉ ൅ ߩ ௩ܥ ݐ߲߲ܶ ൌ Ͳ 
(6)

The boundary conditions are a heat flux in the internal layer and convection condition for 
external layer of FGM cylinder 
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൞ʹߨ ߢ ݎ ݎ߲߲ܶ ൅ ߨʹ ݎ ݄ ሺܶ െ ∞ܶሻ ൌ Ͳ ݐܽ ݎ ൌ ௢െݎ ߢ ݎ߲߲ܶ ൌ ଴ݍ ݐܽ  ݎ ൌ ௜ݎ  (7)

The initial condition is Tሺt ൌ Ͳሻ ൌ T∞. Kantorovich approximation is ሼܶሺݎ, ሻሽݐ ൌ ൣ ෩ܰሺݎሻ൧ ሼܶሺ௘ሻሺݐሻሽ (8)

[N෩] is the shape function matrix. For second order elements (with 3 nodes) which used in 
temperature field is 

ൣ ෩ܰ൧ ൌ ൤ ͳʹ ߦሺߦ െ ͳሻ ሺͳ െ ଶሻߦ ͳʹ ߦሺߦ ൅ ͳሻ ൨ (9)Ɍ, natural coordinate which changes between -1 and 1 is used because of Gauss-Legendre 
numerical integration method. The relation between global and natural coordinate is 

ൣ ෩ܰ൧,௥ ൌ ൣ ෩ܰ൧,క ௥,ߦ ൌ ൣ ෩ܰ൧,క ݎ∆ߦ∆ ൌ ൣ ෩ܰ൧,క ௢ݎ݊ʹ െ  ௜ (10)ݎ

n is number of elements. Residual integration form in Galerkin method is 

න ൣ ෩ܰ൧்ܴ ݀ఆ ߗ ൌ Ͳ (11) 

For heat transfer problem, R is 

ܴ ൌ ߩ ܿ ሾ ෩ܰሿ൛ ሶܶ ሺ௘ሻൟ െ ͳݎ ൤ൣ ෩ܰ൧,௥ ߲൫ߢ ݎ൯߲ݎ ൅ ൣݎߢ ෩ܰ൧,௥௥൨ ൛ܶሺ௘ሻൟ (12) 

Then the heat transfer problem can be written by ൣܥሺ௘ሻ൧൛ ሶܶ ሺ௘ሻൟ ൅ ሺ௘ሻ൧൛ܶሺ௘ሻൟܣൣ ൌ ൛ݍሺ௘ሻൟ (13) 

Matrices C, A and q are damping and stiffness matrices and force vector, regularly. 

ሺ௘ሻ൧ܥൣ ൌ න ൣ ෩ܰ൧் ߩ ܿ ൣ ෩ܰ൧ ఆߗ݀  (14a) 

ሺ௘ሻ൧ܣൣ ൌ െ න ൣ ෩ܰ൧் ͳݎ ߲൫ߢ ݎ൯߲ݎ ൣ ෩ܰ൧,௥ ఆߗ݀ ൅ න ቂ ൣ ෩ܰ൧்,௥ߢ ൅ ൣ ෩ܰ൧் ௥ቃ,ߢ ൣ ෩ܰ൧,௥ ఆ൅ߗ݀ න ൣ ෩ܰ൧் ݄ ൣ ෩ܰ൧ ݀௰మ
 ଶ߁

(14b) 

൛ݍሺ௘ሻൟ ൌ න ൣ ෩ܰ൧்ߢ ݎ߲߲ܶ . ݊௥ ݀௰ ߁ ൌ න ൣ ෩ܰ൧்ݍ଴݀௰భ
ଵ߁ ൅ න ൣ ෩ܰ൧்݄ ∞ܶ݀௰మ

 ଶ (14c)߁
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Strain can be written like below ሼߝሽ ൌ ሾ݀ሿሼݑሽ (15) ሼߝሽ் ൌ ௥ߝۃ ۄఏߝ , ሾ݀ሿ் ൌ ൤ ݎ߲߲ ͳݎ൨ (16) 

Energy function is 

ߨ ൌ ͳʹ න ሼߝሽ்ሼߪሽ݀ߗఆ ൅ න ఆߩ ሼݑሽ்ሼݑሷ ሽ݀ߗ െ න ሼݑሽ்ሼ̂݌ሽ௰  (17) ߁݀

And so 

ߨߜ ൌ න .ሽ்ሻߝሺሼߜ ሼߪሽ݀ߗఆ ൅ න ఆߩ . .ሽ்ሻݑሺሼߜ ሼݑሷ ሽ݀ߗ െ න .ሽ்ሻݑሺሼߜ ሼ̂݌ሽ௰ ߁݀ ൌ Ͳ (18) 

Differential of strain is ߜሺሼߝሽ்ሻ ൌ .ሽ்ሻݑሺሼߜ ሾ݀ሿ் (19) 

Displacements in order to shape functions are ሼݑሽ ൌ ሾܰሿ൛ܷሺ௘ሻൟ (20) 

[N] for displacement is a Hermitian shape function. ሾܰሿ ൌ ሾ ଵܰ ഥܰଵ ଶܰ ഥܰଶሿ (21a) 

ଵܰ ൌ ͳͶ ሺߦ െ ͳሻଶሺʹ ൅  ሻ (21b)ߦ

ഥܰଵ ൌ ͳͶ ሺͳ െ ߦሻଶሺߦ ൅ ͳሻ (21c) 

ଶܰ ൌ ͳͶ ሺߦ ൅ ͳሻଶሺʹ െ  ሻ (21d)ߦ

ഥܰଶ ൌ ͳͶ ሺͳ ൅ ߦሻଶሺߦ െ ͳሻ (21e) 

And displacement vector is ൛ܷሺ௘ሻൟ் ൌ ଴ሺଵሻݑۃ ଴́ሺଵሻݑ ଴ሺଶሻݑ  (22) ۄ଴́ሺଶሻݑ

By defining of ሾܤሿ ൌ ሾ݀ሿሾܰሿ (23) 

In which 
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ሾܤሿ ൌ ൦ ଵܰ,௥ ഥܰଵ,௥ ଶܰ,௥ ഥܰଶ,௥ଵܰݎ ഥܰଵݎ ଶܰݎ ഥܰଶݎ ൪ (24) 

And then, equation (18) is changed to 

ߨߜ ൌ න ߜ ቀ൛ܷሺ௘ሻൟ்ቁ ሾܤሿ் . ሼߪሽ݀ߗఆ ൅ න ఆߩ . ߜ ቀ൛ܷሺ௘ሻൟ்ቁ ሾܰሿ். ሼݑሷ ሽ݀ߗെ න ߜ ቀ൛ܷሺ௘ሻൟ்ቁ ሾܰሿ். ሼ̂݌ሽ௰  ߁݀

(25) 

And it's simplified to 

න ሾܤሿ். ሼߪሽ݀ߗఆ ൅ න ఆߩ ሾܰሿ்ሼݑሷ ሽ݀ߗ െ න ሾܰሿ். ሼ̂݌ሽ௰ ߁݀ ൌ Ͳ (26) 

The relation between stress and strain is ሼߪሽ ൌ ሾܦሿሺሼߝሽ െ ሼ்ߝሽሻ (27) 

In which ሼ்ߝሽ் ൌ ۄܶ߂ߙ ܶ߂ߙۃ (28a) 

ሾܦሿ ൌ ሻͳݎሺܧ െ ሻଶݎሺߥ ൤ ͳ ሻݎሺߥሻݎሺߥ ͳ ൨ (28a) 

Then equation (26) becomes 

න ቀሾܤሿ்ሾܦሿ൫ሾܤሿ൛ܷሺ௘ሻൟ െ ሼ்ߝሽ൯ቁ ஺ܣ݀ ൅ න ஺ߩ ሾܰሿ்ሾܰሿ൛ ሷܷ ሺ௘ሻൟ݀ܣ െ න ሾܰሿ். ሼ̂݌ሽ௦ ݏ݀ ൌ Ͳ (29) 

Thermo-elastic stress problem can be written like below ൣܯሺ௘ሻ൧൛ߔሷ ሺ௘ሻൟ ൅ ሺ௘ሻൟߔሺ௘ሻ൧൛ܭൣ ൌ ൛݂ሺ௘ሻൟ (30) 

Matrices M, K and f are mass and stiffness matrices and force vector, regularly. 

ሺ௘ሻ൧ܯൣ ൌ න ஺ߩ ሾܰሿ்ሾܰሿ݀ܣ (31a) 

ሺ௘ሻ൧ܭൣ ൌ න ሾܤሿ்ሾܦሿሾܤሿ݀ܣ஺  (31b) 

൛݂ሺ௘ሻൟ ൌ න ሾܰሿ். ሼ̂݌ሽ஺ ܣ݀ ൅ න ሾܤሿ்ሾܦሿሼ்ߝሽ݀ܣ஺  (31c) 

The general integral is 
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න ,ݎሺܮ ሻ݀ఆߦ ߗ ൌ න ߨʹ ݎ ,ݎሺܮ ݎሻ݀ߦ ൌ ߨʹ න ݎ ,ݎሺܮ ሻߦ ଵߦ∆ݎ∆
ିଵ ݖ݀ ൌ ߨ න ݎ ,ݎሺܮ ሻߦ ௢ݎ െ ௜݊ଵݎ

ିଵ  (32) ݖ݀ 

To solve the above equations, a program which writes in MATLAB is used.  
The geometrical characteristics and coefficients of properties of FGM cylinder are listed in Tables 
(1) and (2), regularly. 
 

Amount Characteristic 

1000 (
୩W୫మ ) Heat Flux (q଴) 

8 (
W୫మ°K) Coefficient of Conduction (h) 

12.7 (mm) Internal Radius (r୧) 
25.4 (mm) External Radius (r୭) 

Table 1. Geometrical Characteristics 

 

Ceramic (ܑ܁૜ۼ૝)Metal (Ti-6Al-4V)Characteristics

4429 2370 ρ ሺ kgm͵ሻ 
555.110 625.297 C୴ ൬ jkg°K൰ 

1.209 13.723 κ ሺ Wm°Kሻ 

348.430122.557E ሺGPaሻ 

0.240.29ɋ
5.872 e -6 7.579 e -6 α ሺ ͳ°Kሻ 

00Pି ଵ ሺE, αሻ
3.700 e-4-4.586 e -4 Pଵ ሺEሻ
2.160 e -7 0Pଶ ሺEሻ
-8.948 e -11 0Pଷ ሺEሻ
9.095 e -4 6.500 e-4 Pଵ ሺαሻ
0 0.313 e -6 Pଶ ሺαሻ
0 0 Pଷ ሺαሻ 

Table 2. Coefficients of Properties of FG Material 

4. Laplace transform 

Making application of the Laplace transform, defined by ߗሺݏሻ ൌ ሻሿݐሾ߱ሺܮ ൌ න ݁ି௦௧߱ሺݐሻ݀ݐ∞

଴  (33) 
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The governing equations become ൫ܥൣݏሺ௘ሻ൧ ൅ ሺ௘ሻ൧൯ܣൣ ൛ܶሺݏሻሺ௘ሻൟ ൌ ൛ܳሺݏሻሺ௘ሻൟ (34) ൫ݏଶൣܯሺ௘ሻ൧ ൅ ሺ௘ሻ൧൯ܭൣ ൛ܷሺݏሻሺ௘ሻൟ ൌ ൛ܨሺݏሻሺ௘ሻൟ (35) 

5. Numerical Laplace inversion 

To obtain the distributions of the displacement and temperature in the physical domain, it is 

necessary to perform Laplace inversion for the transformed displacement and temperature 

obtained when a sequence of values of s is specified. In this paper an accurate and efficient 

numerical method is used to obtain the inversion of the Laplace transform.  

The inversion of the Laplace transform is defined as 

߱ሺݐሻ ൌ ሻሿݏሺߗଵሾିܮ ൌ ͳʹ݅ߨ න ݁௦௧ߗሺݏሻ݀ݏ௩ା௜∞
௩ି௜∞  (36) 

 

The numerical inversion of the Laplace transform can be written 

߱ேሺݐሻ ൌ ͳʹ ଴ߣ ൅ ෍ ௞௣ߣ
௞ୀଵ  (37) 

௞ߣ ൌ ݁ି௩௧ܶ ൜ܴ݁ ൤ߗ ൬ݒ ൅ ݅ ൰൨ߨܶ݇ ݏ݋ܿ ߨܶ݇ ൠݐ െ ݁ି௩௧ܶ ൜݉ܫ ൤ߗ ൬ݒ ൅ ݅ ൰൨ߨܶ݇ ݊݅ݏ ߨܶ݇  ൠ (38)ݐ

 

It should be noted that a good choice of the free parameters p and vT is not only important 

for the accuracy of the results but also for the application of the Korrektur method and the 

methods for the acceleration of convergence. The values of v and T are chosen according to 

the criteria outlined by Honig and Hirdes (Honig & Hirdes, 1984). 

After choosing the optimal v, any nodal variables in physical domain can be calculated at 

any specific instant by using the Korrektur method and e-algorithm simultaneously to 

perform the numerical Laplace inversion (Honig & Hirdes, 1984). 

6. Numerical results 

6.1 Results for temperature distribution 

Here are the dimensionless parameters which are used in numerical results ܴ ൌ ݎ െ ௢ݎ௜ݎ െ ௜ݎ , തܴ ൌ ௜ݎ௢ݎ , ҧݐ ൌ ݐܶ
 (39) 

 

Results obtained in Figure (2) for different number of elements (n) shows that the results are 

convergent in tҧ ൌ Ͳ.ͷ. Hence, seven second order elements are chosen to perform the next 

analyses.  

The distribution of temperature is drawn for N=1 in Figure (3). As it's expected, results of the 

consecutive times are convergent to each other and then the transient response vanishes and the 

steady-state response becomes the dominant.  
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Fig. 2. Effect of element number on response of temperature for N=1 and tҧ ൌ Ͳ.ͷ 

 

 

Fig. 3. Temperature distribution vs. dimensionless time for N=1 

Effect of index of power law for tҧ ൌ Ͳ.ͷ is conducted in Figure (4). As the volume fraction index 
increases, the volume fraction of the ceramic material increases in the vicinity of the hot 
boundary surface (the inner surface). Therefore, higher temperatures, and subsequently higher 
temperature gradients are achieved in the neighborhood of the inner surface of the FGM 
cylinder. Furthermore, in this case, the temperature has converged asymptotically to the ambient 
temperature, in a higher rate.  
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Fig. 4. N effect on temperature distribution for tҧ ൌ Ͳ.ͷ 
 
 
 

 
 

Fig. 5. Geometry effect on temperature distribution for N=1 and tҧ ൌ Ͳ.ͷ 
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Fig. 6. Temperature distribution for N=1 and tҧ ൌ Ͳ.ͷ 

Then, Figure (5) shows the effect of change in geometry (Rഥ ൌ r୭/r୧) such as changing in 
internal and external radius, for tҧ ൌ Ͳ.ͷ and N=1. Temperatures of the thinner cylinders are 
generally higher. Therefore, temperature distribution with lower temperature gradient is 
constructed. In other words, for thinner cylinders, the response is more convergent to the 
steady-state one. 
Influence of temperature-dependency on temperature distribution of FGM cylinder is 
drawn in Figure (6) for N=1, tҧ ൌ Ͳ.ʹ and Rഥ ൌ ʹ. This result shows that higher temperatures 
and temperature gradients are resulted when the temperature-dependency of the material 
properties is ignored. A difference up to 15 percent in temperature is observed. Since 
according to Figure (3), temperature values increase with the time, this difference is more 
remarkable for greater values of the dimensionless time (tҧ).  
6.2 Results for thermo-elastic stresses 

In Figures (7) and (8), radial and hoop stresses versus R and time for N=1. This result shows 
that radial and hoop stresses are increasing by time. In the inner layers of cylinder, stresses 
are higher because of higher temperature gradient. At both ends of cylinder (inner and outer 
layers) radial stress is to some extent zero (according to the numerical errors in FEM) due to 
free surface and having no pressure.  
For various index of power law (N), radial and hoop stresses are drawn in Figures (9) and 
(10) for tҧ ൌ Ͳ.Ͷ. By increasing of N, as FGM material is become softer, both radial and hoop 
stresses reduced. 
Figures (11) and (12) are shown for differences between dependency and independency of 
properties in temperature and then the changes in radial and hoop stresses for tҧ ൌ Ͳ.Ͷ and 
N=1. This result shows that higher stresses are resulted when the temperature-dependency 
of material properties is ignored. A difference up to 15 percent in stresses is observed. Since 
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temperature values increase with the time (Figure 3), stresses increase too (Figure 7) and 
therefore this difference will be more remarkable for greater values of the dimensionless 
time (tҧ), consequently.  
Geometry effect is shown in Figures (13) and (14) for both radial and hoop stress. By increasing of 
thickness, stresses decrease due to decreasing of temperature gradient. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Radial stress for N=1 versus R and dimensionless time 
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Fig. 8. Hoop stress for N=1 versus R and dimensionless time 

 
 

 
 

Fig. 9. Radial stress for tҧ ൌ Ͳ.Ͷ versus R and N 
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Fig. 10. Hoop Stress for tҧ ൌ Ͳ.Ͷ versus R and N 

 
 

 
 

Fig. 11. Radial stress versus R in tҧ ൌ Ͳ.Ͷ and N=1 
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Fig. 12. Hoop stress versus R in ݐҧ ൌ Ͳ.Ͷ and N=1 

 
 

 
 

Fig. 13. Geometry effect on radial stress for N=1 and ݐҧ ൌ Ͳ.Ͷ 
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Fig. 14. Geometry effect on hoop stress for N=1 and tҧ ൌ Ͳ.Ͷ 

7. Conclusion 

In this paper, nonlinear transient heat transfer and thermo-elastic analysis of a thick-walled FGM 

cylinder is analyzed by using a transfinite element method that can be used in an updating and 

iterative solution scheme. Results also show that the temperature-dependency of the material 

properties may has significant influence (up to 15 percent) on the temperature distribution and 

gradient and also radial and hoop stresses that have remarkable effect on some critical behaviors 

such as thermal buckling or dynamic response, crack and wave propagation. Some other 

parameters such as index of power law (N) and geometrical parameter have also important 

affects on those mentioned results. 
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