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1. Introduction

Development of numerical techniques for simulation of fluid flow and heat transfer has a long
standing tradition. Computational fluid dynamics has evolved to a point where new methods
are needed only for special cases. In this chapter we introduce a Fast Boundary Element
Method (BEM), which enables accurate prediction of vorticity fields. Vorticity field is defined
as a curl of the velocity field and is an important quantity in wall bounded flows. Vorticity
is generated on the walls and diffused and advected into the flow field. Using BEM, we are
able to accurately predict boundary values of vorticity as a part of the nonlinear system of
equations, without the use of finite difference approximations of derivatives of the velocity
field. The generation of vorticity on the walls is important for the development of the flow
field, shear strain, shear velocity and heat transfer.
The developed method will be used to simulate natural convection of pure fluids and
nanofluids. Over the last few decades buoyancy driven flows have been widely investigated.
Cavities under different inclination angles with respect to gravity, heated either differentially
on two opposite sides or via a hotstrip in the centre, are usually the target of research. Natural
convection is used in many industrial applications, such as cooling of electronic circuitry,
nuclear reactor insulation and ventilation of rooms.
Research of the natural convection phenomena started with the two-dimensional approach
and has been recently extended to three dimensions. A benchmark solution for
two-dimensional flow and heat transfer of an incompressible fluid in a square differentially
heated cavity was presented by Davies (1983). Stream function-vorticity formulation was
used. Vierendeels et al. (2001; 2004) and Škerget & Samec (2005) simulated compressible
fluid in a square differentially heated cavity using multigrid and BEM methods. Rayleigh
numbers between Ra = 102 and Ra = 107 were considered. Weisman et al. (2001) studied
the transition from steady to unsteady flow for compressible fluid in a 1 : 4 cavity. They
found that the transition occurs at Ra ≈ 2 × 105. Ingber (2003) used the vorticity formulation
to simulate flow in both square and 1 : 8 differentially heated cavities. Tric et al. (2000)
studied natural convection in a 3D cubic cavity using a pseudo-spectra Chebyshev algorithm
based on the projection-diffusion method with spatial resolution supplied by polynomial
expansions. Lo et al. (2007) also studied a 3D cubic cavity under five different inclinations ϑ =
0o,15o,30o,45o,60o. They used a differential quadrature method to solve the velocity-vorticity
formulation of Navier-Stokes equations employing higher order polynomials to approximate
differential operators. Ravnik et al. (2008) used a combination of single domain and sub
domain BEM to solve the velocity-vorticity formulation of Navier-Stokes equations for fluid
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2 Heat Transfer

flow and heat transfer.
Simulations as well as experiments of turbulent flow were also extensively investigated. Hsieh
& Lien (2004) considered numerical modelling of buoyancy-driven turbulent flows in cavities
using RANS approach. 2D DNS was performed by Xin & Quéré (1995) for an cavity with
aspect ratio 4 up to Rayleigh number, based on the cavity height, 1010 using expansions in
series of Chebyshev polynomials. Ravnik et al. (2006) confirmed these results using a 2D LES
model based on combination of BEM and FEM using the classical Smagorinsky model with
Van Driest damping. Peng & Davidson (2001) performed a LES study of turbulent buoyant
flow in a 1 : 1 cavity at Ra = 1.59 · 109 using a dynamic Smagorinsky model as well as the
classical Smagorinsky model with Van Driest damping.
Low thermal conductivity of working fluids such as water, oil or ethylene glycol led to the
introduction of nanofluids. Nanofluid is a suspension consisting of uniformly dispersed and
suspended nanometre-sized (10–50 nm) particles in base fluid, pioneered by Choi (1995).
Nanofluids have very high thermal conductivities at very low nanoparticle concentrations
and exhibit considerable enhancement of convection (Yang et al., 2005). Intensive research in
the field of nanofluids started only recently. A wide variety of experimental and theoretical
investigations have been performed, as well as several nanofluid preparation techniques have
been proposed (Wang & Mujumdar, 2007).
Several researchers have been focusing on buoyant flow of nanofluids. Oztop & Abu-Nada
(2008) performed a 2D study of natural convection of various nanofluids in partially heated
rectangular cavities, reporting that the type of nanofluid is a key factor for heat transfer
enhancement. They obtained best results with Cu nanoparticles. The same researchers
(Abu-Nada & Oztop, 2009) examined the effects of inclination angle on natural convection
in cavities filled with Cu–water nanofluid. They reported that the effect of nanofluid on heat
enhancement is more pronounced at low Rayleigh numbers. Hwang et al. (2007) studied
natural convection of a water based Al2O3 nanofluid in a rectangular cavity heated from
below. They investigated convective instability of the flow and heat transfer and reported
that the natural convection of a nanofluid becomes more stable when the volume fraction
of nanoparticles increases. Ho et al. (2008) studied effects on nanofluid heat transfer due to
uncertainties of viscosity and thermal conductivity in a buoyant cavity. They demonstrated
that usage of different models for viscosity and thermal conductivity does indeed have
a significant impact on heat transfer. Natural convection of nanofluids in an inclined
differentially heated square cavity was studied by Ögüt (2009), using polynomial differential
quadrature method. Stream function-vorticity formulation was used for simulation of
nanofluids in two dimensions by Gümgüm & Tezer-Sezgin (2010).
Forced and mixed convection studies were also performed. Abu-Nada (2008) studied the
application of nanofluids for heat transfer enhancement of separated flows encountered in
a backward facing step. He found that the high heat transfer inside the recirculation zone
depends mainly on thermophysical properties of nanoparticles and that it is independent
of Reynolds number. Mirmasoumi & Behzadmehr (2008) numerically studied the effect of
nanoparticle mean diameter on mixed convection heat transfer of a nanofluid in a horizontal
tube using a two-phase mixture model. They showed that the convective heat transfer
could be significantly increased by using particles with smaller mean diameter. Akbarinia
& Behzadmehr (2007) numerically studied laminar mixed convection of a nanofluid in
horizontal curved tubes. Tiwari & Das (2007) studied heat transfer in a lid-driven differentially
heated square cavity. They reported that the relationship between heat transfer and the
volume fraction of solid particles in a nanofluid is nonlinear. Torii (2010) experimentally
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studied turbulent heat transfer behaviour of nanofluid in a circular tube, heated under
constant heat flux. He reported that the relative viscosity of nanofluids increases with
concentration of nanoparticles, pressure loss of nanofluids is slightly larger than that of pure
fluid and that heat transfer enhancement is affected by occurrence of particle aggregation.
Development of numerical algorithms capable of simulating fluid flow and heat transfer has
a long standing tradition. A vast variety of methods was developed and their characteristics
were examined. In this work we are presenting an algorithm, which is able to simulate 3D
laminar viscous flow coupled with heat transfer by solving the velocity-vorticity formulation
of Navier-Stokes equations using fast BEM. The velocity-vorticity formulation is an alternative
form of the Navier-Stokes equation, which does not include pressure. The unknown field
functions are the velocity and vorticity. In an incompressible flow, both are divergence free.
Daube (1992) pointed out that the correct evaluation of boundary vorticity values is essential
for conservation of mass. Thus, the main challenge of velocity-vorticity formulation lies
in the determination of boundary vorticity values. Several different approaches have been
proposed for the determination of vorticity on the boundary. Wong & Baker (2002) used
a second-order Taylor series to determine the boundary vorticity values explicitly. Daube
(1992) used an influence matrix technique to enforce both the continuity equation and the
definition of the vorticity in the treatment of the 2D incompressible Navier-Stokes equations.
Liu (2001) recognised that the problem is even more severe when he extended it to three
dimensions. Lo et al. (2007) used the differential quadrature method. Sellountos & Sequeira
(2008) proposed a hybrid multi BEM scheme in combination with local boundary integral
equations and radial basis functions for 2D fluid flow. Škerget et al. (2003) proposed the usage
of single domain BEM to obtain a solution of the kinematics equation in tangential form for the
unknown boundary vorticity values and used it in 2D. This work was extended into 3D using
a linear interpolation in combination with FEM by Žunič et al. (2007) and using quadratic
interpolation by Ravnik et al. (2009a) for uncoupled flow problems.
The BEM uses the fundamental solution of the differential operator and the Green’s theorem
to rewrite a partial differential equation into an equivalent boundary integral equation. After
discretization of only the boundary of the problem domain, a fully populated system of
equations emerges. The number of degrees of freedom is equal to the number of boundary
nodes. This reduction of the dimensionality of the problem is a major advantage over the
volume based methods. Fundamental solutions are known for a wide variety of differential
operators (Wrobel, 2002), making BEM applicable for solving a wide range of problems.
Unfortunately, integral equations of nonhomogeneous and nonlinear problems, such as heat
transfer in fluid flow, include a domain term. In this work, we solve the velocity-vorticity
formulation of incompressible Navier-Stokes equations. The formulation joins the Poisson
type kinematics equation with diffusion advection type equations of vorticity and heat
transport. These equations are nonhomogenous and nonlinear. In order to write discrete
systems of linear equations for such equations, matrices of domain integrals must be
evaluated. Such domain matrices, since they are full and unsymmetrical, require a lot of
storage space and algebraic operations with them require a lot of CPU time. Thus the domain
matrices present a bottleneck for any BEM based algorithm effectively limiting the maximal
usable mesh size through their cost in storage and CPU time.
The dual reciprocity BEM (Partridge et al. (1992), Jumarhon et al. (1997)) is one of the
most popular techniques to eliminate the domain integrals. It uses expansion of the
nonhomogenous term in terms of radial basis functions. Several other approaches that
enable construction of data sparse approximations of fully populated matrices are also
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known. Hackbusch & Nowak (1989) developed a panel clustering method, which also enables
approximate matrix vector multiplications with decreased amount of arithmetical work. A
class of hierarchical matrices was introduced by Hackbusch (1999) with the aim of reducing
the complexity of matrix-vector multiplications. Bebendorf & Rjasanow (2003) developed
an algebraic approach for solving integral equations using collocation methods with almost
linear complexity. Methods based on the expansion of the integral kernel (Bebendorf, 2000)
have been proposed as well. Fata (2010) proposed treatment of domain integrals by rewriting
them as a combination of surface integrals whose kernels are line integrals. Ravnik et al. (2004)
developed a wavelet compression method and used it for compression of single domain BEM
in 2D. Compression of single domain full matrices has also been the subject of research of
Eppler & Harbrecht (2005).
The algorithm proposed in this chapter tackles the domain integral problem using two
techniques: a kernel expansion method based single domain BEM is employed for fast
solution of the kinematics equation and subdomain BEM is used for diffusion-advection type
equations.
In the subdomain BEM (Popov et al., 2007), integral equations are written for each subdomain
(mesh element) separately. We use continuous quadratic boundary elements for the
discretization of function and discontinuous linear boundary element for the discretization
of flux. By the use of discontinuous discretization of flux, all flux nodes are within boundary
elements where the normal and the flux are unambiguously defined. The corners and edges,
where the normal is not well defined, are avoided. The singularities of corners and edges were
dealt with special singular shape functions by Ong & Lim (2005) and by the use of additional
nodes by Gao & Davies (2000). By the use of a collocation scheme, a single linear equation is
written for every function and flux node in every boundary element. By using compatibility
conditions between subdomains, we obtain an over-determined system of linear equations,
which may be solved in a least squares manner. The governing matrices are sparse and have
similar storage requirements as the finite element method. Subdomain BEM was applied on
the Laplace equation by Ramšak & Škerget (2007) and on the velocity-vorticity formulation of
Navier-Stokes equations by Ravnik et al. (2008; 2009a).
The second part of the algorithm uses fast kernel expansion based single domain BEM. The
method is used to provide a sparse approximation of the fully populated BEM domain
matrices. The storage requirements of the sparse approximations scale linearly with the
number of nodes in the domain, which is a major improvement over the quadratic complexity
of the full BEM matrices. The technique eliminates the storage and CPU time problems
associated with application of BEM on nonhomogenous partial differential equations.
The origins of the method can be found in a fast multipole algorithm (FMM) for particle
simulations developed by Greengard & Rokhlin (1987). The algorithm decreases the amount
of work required to evaluate mutual interaction of particles by reducing the complexity of
the problem from quadratic to linear. Ever since, the method was used by many authors for
a wide variety of problems using different expansion strategies. Recently, Bui et al. (2006)
combined FMM with the Fourier transform to study multiple bubbles dynamics. Gumerov
& Duraiswami (2006) applied the FMM for the biharmonic equation in three dimensions.
The boundary integral Laplace equation was accelerated with FMM by Popov et al. (2003).
In contrast to the contribution of this paper, where the subject of study is the application
of FMM to obtain a sparse approximation of the domain matrix, the majority of work done
by other authors dealt with coupling BEM with FMM for the boundary matrices. Ravnik
et al. (2009b) compared wavelet and fast data sparse approximations for boundary - domain
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integral equations of Poisson type.

2. Governing equations

In this work, we will present a numerical algorithm and simulation results for heat transfer in
pure fluids and in nanofluids. We present the governing equations for nanofluids, since they
can be, by choosing the correct parameter values, used for pure fluids as well. We assume the
pure fluid and nanofluid to be incompressible. Flow in our simulations is laminar and steady.
Effective properties of the nanofluid are: density ρn f , dynamic viscosity μn f , heat capacitance
(cp)n f , thermal expansion coefficient βn f and thermal conductivity kn f , where subscript nf is
used to denote effective i.e. nanofluid properties. The properties are all assumed constant
throughout the flow domain. The mass conservation law for an incompressible fluid may be
stated as

�∇ ·�v = 0. (1)

Considering constant nanofluid material properties and taking density variation into account
within the Boussinesq approximation we write the momentum equation as

∂�v

∂t
+ (�v · �∇)�v = −βn f (T − T0)�g −

1

ρn f

�∇p +
μn f

ρn f
∇2

�v. (2)

We assume that no internal energy sources are present in the fluid. We will not deal with high
velocity flow of highly viscous fluid, hence we will neglect irreversible viscous dissipation.
With this, the internal energy conservation law, written with temperature as the unknown
variable, reads as:

∂T

∂t
+ (�v · �∇)T =

kn f

(ρcp)n f
∇2T. (3)

Relationships between properties of nanofluid to those of pure fluid and pure solid are
provided with the models. Density of the nanofluid is calculated using particle volume
fraction ϕ and densities of pure fluid ρ f and of solid nanoparticles ρs as:

ρn f = (1 − ϕ)ρ f + ϕρs (4)

The effective dynamic viscosity of a fluid of dynamic viscosity μ f containing a dilute
suspension of small rigid spherical particles, is given by Brinkman (1952) as

μn f =
μ f

(1 − ϕ)2.5
. (5)

The effective viscosity is independent of nanoparticle type, thus the differences in heat transfer
between different nanofluids will be caused by heat related physical parameters only. The heat
capacitance of the nanofluid can be expressed as (Khanafer et al., 2003):

(ρcp)n f = (1 − ϕ)(ρcp) f + ϕ(ρcp)s. (6)

Similarly, the nanofluid thermal expansion coefficient can be written as (ρβ)n f = (1 −
ϕ)(ρβ) f + ϕ(ρβ)s, which may be, by taking into account the definition of ρn f in equation
(4), written as:

βn f = β f

⎡

⎣

1

1 +
(1−ϕ)ρ f

ϕρs

βs

β f
+

1

1 +
ϕ

1−ϕ
ρs

ρ f

⎤

⎦ . (7)

213Fast BEM Based Methods for Heat Transfer Simulation

www.intechopen.com
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The effective thermal conductivity of the nanofluid is approximated by the Maxwell-Garnett
formula

kn f = k f

ks + 2k f − 2ϕ(k f − ks)

ks + 2k f + ϕ(k f − ks)
. (8)

This formula is valid only for spherical particles (Shukla & Dhir, 2005), since it does not take
into account the shape of particles. Our macroscopic modelling of nanofluids is restricted to
spherical nanoparticles and it is suitable for small temperature gradients.

2.1 Nondimensional equations in velocity-vorticity form

Vorticity, �ω, is defined as a curl of velocity. By taking the curl of the mass conservation law
(1) and of the momentum transport equation (2) and taking into account that by definition

vorticity is solenodial, �∇ · �ω = 0, we derive the velocity-vorticity formulation of Navier-Stokes
equations. The equations are rewritten into nondimensional form using

�v →
�v

v0
,�r →

�r

L
,ω →

ωL

v0
, t →

v0t

L
, T →

T − T0

∆T
,�g →

�g

g0
,v0 =

k f

(ρcp) f L
, (9)

where T0 and L are characteristic temperature and length scale. Characteristic temperature
difference is ∆T, while g0 = 9.81m/s2. We define pure fluid Rayleigh and Prandtl number
values as

Ra =
g0β f ∆TL3ρ f (ρcp) f

μ f k f
, Pr =

μ f cp

k f
. (10)

The choice for characteristic velocity v0 in (9) is common for buoyant flow simulations. It
ensures that the Reynolds number is eliminated for the governing equations, since its value
multiplied by Prandtl number equals one. With this the nondimensional velocity-vorticity
formulation of Navier-Stokes equations for simulation of nanofluids consists of the kinematics
equation, the vorticity transport equation and the energy equation:

∇2
�v + �∇× �ω = 0, (11)

∂�ω

∂t
+ (�v · �∇)�ω = (�ω · �∇)�v + PrNa∇

2
�ω − PrRaNb

�∇× T�g, (12)

∂T

∂t
+ (�v · �∇)T = Nc∇

2T, (13)

Na =
μn f

μ f

ρ f

ρn f
, Nb =

βn f

β f
, Nc =

kn f

k f

(ρcp) f

(ρcp)n f
. (14)

The flow and heat transfer of a nanofluid is thus defined by specifying the pure fluid Rayleigh
and Prandtl number values. The nanofluid properties are evaluated using the following
models: ρn f /ρ f from (4), μn f /μ f from (5), (ρcp)n f /(ρcp) f from (6), βn f /β f from (7) and
kn f /k f from (8). The system of equations (11)-(13) can be used to simulate pure fluids by
taking Na = Nb = Nc = 1.

3. Numerical method

We will apply a combination of subdomain BEM and fast single domain BEM for the solution
of the governing equations. The Dirichlet and/or Neumann boundary conditions for velocity
and temperature are given. They are used to obtain solutions of the kinematics equation (11)
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for domain velocity values and energy equation (13) for domain temperature values. The
boundary conditions for vorticity, which are needed to solve the vorticity transport equation
(12), are unknown. We will use the single domain BEM on the kinematics equation to obtain
the unknown boundary vorticity values. The outline of the algorithm is as follows:

– initialization, calculate integrals

– begin nonlinear loop

a) calculate boundary vorticity values by solving the kinematics equation (11) by fast single
domain BEM (see section 3.4)

a) calculate domain velocity values by solving the kinematics equation (11) by subdomain
BEM (see section 3.3)

a) solve the energy equation (3) using the new velocity field for domain temperature values
by subdomain BEM (see section 3.2)

a) solve vorticity transport equation (12) by subdomain BEM for domain vorticity values
using the boundary values from the solution of the kinematics equation and new
velocity and temperature fields (see section 3.1)

a) check convergence - repeat steps in the nonlinear loop until convergence of all field
functions is achieved

– end nonlinear loop

3.1 Subdomain BEM solution of the vorticity transport equation

Let us consider a domain Ω with a position vector�r ∈ R
3. The boundary of the domain is

Γ = ∂Ω. In this work we are simulating steady flow fields, thus we may write ∂�ω/∂t = 0. The
integral form of the steady vorticity transport equation (12) is (Wrobel, 2002):

c(�θ)�ω(�θ) +
∫

Γ
�ω�∇u⋆ ·�ndΓ =

∫

Γ
u⋆
�qdΓ

+
1

PrNa

∫

Ω
u⋆

{

(�v · �∇)�ω − (�ω · �∇)�v
}

dΩ + Ra
Nb

Na

∫

Ω
u⋆�∇× T�gdΩ, (15)

where �θ is the source or collocation point, �n is a vector normal to the boundary, pointing out
of the domain and u⋆ is the fundamental solution for the diffusion operator:

u⋆ =
1

4π|�θ −�r|
. (16)

c(�θ) is the geometric factor defined as c(�θ) = α/4π, where α is the inner angle with origin in�θ.

If�θ lies inside of the domain then c(�θ) = 1; c(�θ) = 1/2, if�θ lies on a smooth boundary. Vorticity

on the boundary �ω(�r) or vorticity flux on the boundary�q(�r) = �∇�ω(�r) ·�n can be prescribed as
boundary conditions.
Both domain integrals on the right hand side of equation (15) include derivatives of the
unknown field functions. In the following we will use algebraic relations to move the
derivative from the unknown field function to the fundamental solution. Let us first write
the first domain integral alone for jth component of vorticity only:

1

PrNa

∫

Ω

{

(�v · �∇)ωj − (�ω · �∇)vj

}

u⋆Ω. (17)
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Due to the solenoidality of the velocity and vorticity fields, we may use (�ω · �∇)vj = �∇ · (�ωvj)

and (�v · �∇)ωj = �∇ · (�vωj) to transform eqaution (17) into

1

PrNa

∫

Ω

{

�∇ · (�vωj − �ωvj)
}

u⋆dΩ. (18)

In order to move the derivative towards the fundamental solution, the following algebraic

relation �∇ ·
{

u∗(�vωj − �ωvj)
}

= u∗�∇ · (�vωj − �ωvj) + (�vωj − �ωvj) · �∇u∗ is used to obtain two

integrals

1

PrNa

∫

Ω

�∇ ·
{

u∗(�vωj − �ωvj)
}

dΩ −
1

PrNa

∫

Ω
(�vωj − �ωvj) · �∇u⋆dΩ. (19)

The first integral may be converted to a boundary integral using a Gauss divergence clause.
Thus, the final form of the first domain integral of equation (15) for jth vorticity component
without derivatives of field functions may be stated as:

1

PrNa

∫

Γ
�n ·

{

u∗(�vωj − �ωvj)
}

dΓ −
1

PrNa

∫

Ω
(�vωj − �ωvj) · �∇u∗dΩ. (20)

In order to remove the derivative of temperature from the second domain integral of equation

(15), we make use of the following algebraic relation: �∇× (u⋆T�g) = u⋆�∇× T�g + T�∇× u⋆�g,
which gives

+ Ra
Nb

Na

∫

Ω

�∇× (u⋆T�g)dΩ − Ra
Nb

Na

∫

Ω
T�∇× u⋆

�gdΩ. (21)

With the aid of the Gauss clause we are able to transform the first domain integral of equation
(21) into a boundary integral:

− Ra
Nb

Na

∫

Γ
u⋆T�g ×�ndΓ − Ra

Nb

Na

∫

Ω
T�∇× u⋆

�gdΩ, (22)

yielding an expression without derivatives of the temperature field. Using expressions (20)
and (22) instead of the domain integrals in equation (15), we may write the final integral form
of the vorticity transport equation as:

c(�θ)ωj(�θ) +
∫

Γ
ωj

�∇u∗ ·�ndΓ =
∫

Γ
u∗qjdΓ

+
1

PrNa

∫

Γ
�n ·

{

u∗(�vωj − �ωvj)
}

dΓ −
1

PrNa

∫

Ω
(�vωj − �ωvj) · �∇u∗dΩ

−Ra
Nb

Na

∫

Γ
(u⋆T�g ×�n)jdΓ − Ra

Nb

Na

∫

Ω
(T�∇× u⋆

�g)jdΩ. (23)

In the subdomain BEM method we make a mesh of the entire domain Ω and name each mesh
element a subdomain. Equation (23) is written for each of the subdomains. In order to obtain
a discrete version of (23) we use shape functions to interpolate field functions and flux. We
used hexahedral subdomains with 27 nodes, which enable continuous quadratic interpolation
of field functions. On each boundary element we interpolate the flux using discontinuous
linear interpolation scheme with 4 nodes. By using discontinuous interpolation we avoid
flux definition problems in corners and edges. A subdomain and one boundary element are
sketched in Figure 1. A function, e.g. temperature, is interpolated over a boundary elements
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Fig. 1. A boundary element with function (circles) and flux (squares) nodes is shown on the
left. A hexahedral subdomain with function nodes is shown on the right.

as T = ∑ ϕiTi, inside each subdomain as T = ∑ ΦiTi, while flux is interpolated over boundary
elements as q = ∑ φiqi.
The following integrals must be calculated:

[H] =
∫

Γ
ϕi
�∇u⋆ ·�ndΓ, [G] =

∫

Γ
φiu

⋆dΓ, [�A] =
∫

Γ
ϕi�nu⋆dΓ, [�D] =

∫

Ω
Φi

�∇u⋆dΩ. (24)

The square brackets denote integral matrices. Each source point location yields one row in
these matrices. In order to calculate the integrals, a Gaussian quadrature algorithm is used.

Calculation of the free coefficient c(�θ) is preformed indirectly using a rigid body movement

solution. The calculated c(�θ) are added to the diagonal terms of the [H] matrix.
The source point is set to all function and flux nodes in each subdomain. That makes the
number of rows of each matrix 51 times the number of subdomains. By letting curly brackets
denote vectors of nodal values of field functions, we may write the discrete vorticity transport
equation in component form as:

[H]{ωx} = [G]{qx}+
1

PrNa
[Ay]{vyωx − ωyvx}+

1

PrNa
[Az]{vzωx − ωzvx}

−
1

PrNa
[Dy]{vyωx − ωyvx} −

1

PrNa
[Dz]{vzωx − ωzvx}

+Ra
Nb

Na

(

gz[Ay]{T} − gy[Az]{T} − gz[Dy]{T}+ gy[Dz]{T}
)

, (25)

[H]{ωy} = [G]{qy}+
1

PrNa
[Ax]{vxωy − ωxvy}+

1

PrNa
[Az]{vzωy − ωzvy}

−
1

PrNa
[Dx]{vxωy − ωxvy} −

1

PrNa
[Dz]{vzωy − ωzvy}

+Ra
Nb

Na
(gx[Az]{T} − gz[Ax]{T}+ gz[Dx]{T} − gx[Dz]{T}) , (26)
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[H]{ωz} = [G]{qz}+
1

PrNa
[Ax]{vxωz − ωxvz}+

1

PrNa
[Ay]{vyωz − ωyvz}

−
1

PrNa
[Dx]{vxωz − ωxvz} −

1

PrNa
[Dy]{vyωz − ωyvz}

+Ra
Nb

Na

(

gy[Ax]{T} − gx[Ay]{T} − gy[Dx]{T}+ gx[Dy]{T}
)

. (27)

Since neighbouring subdomains share nodes, the systems of linear equations (25), (26) and
(27) are over-determined. After taking into account the boundary conditions, we solve them
using a least squares solver (Paige & Saunders, 1982).

3.2 Subdomain BEM solution of the energy equation

The energy equation (13) is also of a diffusion convection type. The solution of (13) is thus
obtained in the same manner than the solution of the vorticity transfer equation. The discrete
counterpart of the energy equation (13) is:

[H]{T} = [G]{qT}+

+
1

Nc

(

[Ax]{vxT}+ [Ay]{vyT}+ [Az]{vzT} − [Dx]{vxT} − [Dy]{vyT} − [Dz]{vzT}
)

, (28)

where {qT} is a nodal vector of temperature flux. Boundary conditions are either known
temperature or temperature flux on the boundary. The system matrix is sparse and as such
it is stored efficiently in a compressed row storage format. The system is solved in a least
squares manner (Paige & Saunders, 1982).

3.3 Subdomain BEM solution of the kinematics equation

The kinematics equation (11) is an elliptic Poisson type equation. Its integral form (Wrobel,
2002) is

c(ξ)�v(ξ) +
∫

Γ
�v(�n · �∇)u⋆dΓ =

∫

Γ
u⋆(�n · �∇)�vdΓ +

∫

Ω
(�∇× �ω)u⋆dΩ, ξ ∈ Γ (29)

The domain integral on the right hand side of equation (29) includes derivatives of vorticity.
The equation is reformulated to transfer the derivative from the vorticity to the fundamental

solution. We use the the definition of a curl of a product, i.e. �∇× (�ωu⋆) = (�∇× �ω)u⋆ − �ω ×
�∇u⋆ and obtain

∫

Ω
(�∇× �ω)u⋆dΩ =

∫

Ω
(�∇× (�ωu⋆))dΩ +

∫

Ω
(�ω × �∇u⋆)dΩ. (30)

Using a derived form of the Gauss divergence clause,
∫

Ω
�∇× �FdΩ = −

∫

Γ
�F ×�ndΓ, to change

the first domain integral on the right hand side of (30) into a boundary integral, yields

∫

Ω
(�∇× �ω)u⋆dΩ = −

∫

Γ
(�ωu⋆)×�ndΓ +

∫

Ω
(�ω × �∇u⋆)dΩ. (31)

Equation (31) is inserted into (29) and a new integral form of kinematics equation is obtained

c(ξ)�v(ξ) +
∫

Γ
�v(�n · �∇)u⋆dΓ =

∫

Γ
u⋆

{

(�n · �∇)�v − �ω ×�n
}

dΓ +
∫

Ω
(�ω × �∇u⋆)dΩ. (32)
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The term in curly brackets in the boundary integral on the right hand side of equation (32)

is for solenoidal fluid equal to (�n · �∇)�v − �ω ×�n = (�n × �∇) × �v. Using this relationship in
equation (32) one can further rewrite the boundary integral as

∫

Γ
u⋆(�n × �∇)×�vdΓ =

∫

Γ
(�n × �∇)× (�vu⋆)dΓ +

∫

Γ
�v × (�n × �∇)u⋆dΓ (33)

The first integral on the right hand side of the above equation represents an integral over
a closed surface of a tangential derivative of a vector function. For a continuous function,
such integral is always equal to zero. Inserting equation (33) into (32) we obtain an integral
kinematics equation without derivatives of the velocity or vorticity fields:

c(ξ)�v(ξ) +
∫

Γ
�v(�n · �∇)u⋆dΓ =

∫

Γ
�v × (�n × �∇)u⋆dΓ +

∫

Ω
(�ω × �∇u⋆)dΩ. (34)

The boundary integrals on the left hand side are stored in the [H] matrix, the domain integrals

on the right hand side are the [�D] matrices. We define the boundary integral on the right hand

side as [�Ht] integrals in the following manner:

[�Ht] =
∫

Γ
ϕi(�n × �∇)u⋆dΓ. (35)

Since there are no fluxes in the equation, the source point is set to function nodes only. The
discrete kinematics equation written in component wise form is:

[H]{vx} = [Ht
z]{vy} − [Ht

y]{vz}+ [Dz]{ωy} − [Dy]{ωz}, (36)

[H]{vy} = [Ht
x]{vz} − [Ht

z]{vx} − [Dz]{ωx}+ [Dx]{ωz}, (37)

[H]{vz} = [Ht
y]{vx} − [Ht

x]{vy}+ [Dy]{ωx} − [Dx]{ωy}. (38)

The kinematics equation takes the same form for fluid flow problems and for coupled fluid
flow - heat transfer problems. This form is used on every subdomain of the mesh to evaluate
velocity flow field.

3.4 Fast Single domain BEM solution of the kinematics equation

In order to use the kinematics equation to obtain boundary vorticity values, we must rewrite
the equation (34) in a tangential form by multiplying the system with a normal in the source

point�n(�θ):

c(�θ)�n(�θ)×�v(�θ) +�n(�θ)×
∫

Γ
�v�∇u⋆ ·�ndΓ

=�n(�θ)×
∫

Γ
�v × (�n × �∇)u⋆dΓ +�n(�θ)×

∫

Ω
(�ω × �∇u⋆)dΩ. (39)

This approach has been proposed by Škerget and used in 2D by Škerget et al. (2003) and in 3D
by Žunič et al. (2007) and Ravnik et al. (2009a). The discrete form of the equations is

{ny}[H]{vz} − {nz}[H]{vy} = {ny}([H
t
y]{vx} − [Ht

x]{vy}+ [Dy]{ωx} − [Dx]{ωy})−

−{nz}([H
t
x]{vz} − [Ht

z]{vx} − [Dz]{ωx}+ [Dx]{ωz}), (40)
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{nz}[H]{vx} − {nx}[H]{vz} = {nz}([H
t
z]{vy} − [Ht

y]{vz}+ [Dz]{ωy} − [Dy]{ωz})−

−{nx}([H
t
y]{vx} − [Ht

x]{vy}+ [Dy]{ωx} − [Dx]{ωy}), (41)

{nx}[H]{vy} − {ny}[H]{vx} = {nx}([H
t
x]{vz} − [Ht

z]{vx} − [Dz]{ωx}+ [Dx]{ωz})−

−{ny}([H
t
z]{vy} − [Ht

y]{vz}+ [Dz]{ωy} − [Dy]{ωz}). (42)

In order to write a system of equations for boundary vorticity, we decompose the vorticity
nodal vectors in two parts. In the boundary part {ωΓ

i } only boundary nodes are included,

in the domain part {ω
Ω\Γ

i } the domain nodes are listed. The corresponding columns of the

domain integral matrices are also separated into boudnary [DΓ
i ] and domain [D

Ω\Γ

i ] parts.

With this, the final form of the system of equation for the unknown boundary vorticity {ωΓ
x},

{ωΓ
y}, {ωΓ

z } is

({nx}[D
Γ
x ] + {ny}[D

Γ
y ] + {nz}[D

Γ
z ]){ωΓ

x} =

{nx}[D
Γ
x ]{ωΓ

x} − {ny}[D
Ω\Γ
y ]{ω

Ω\Γ
x } − {nz}[D

Ω\Γ
z ]){ω

Ω\Γ
x }+

{ny}[H]{vz} − {nz}[H]{vy} − {ny}([H
t
y]{vx} − [Ht

x]{vy} − [Dx]{ωy}) +

{nz}([H
t
x]{vz} − [Ht

z]{vx}+ [Dx]{ωz}), (43)

({nx}[D
Γ
x ] + {ny}[D

Γ
y ] + {nz}[D

Γ
z ]){ωΓ

y} =

{ny}[D
Γ
y ]{ωΓ

y} − {nz}[D
Ω\Γ
z ]{ω

Ω\Γ
y } − {nx}[D

Ω\Γ
x ]){ω

Ω\Γ
y }+

{nz}[H]{vx} − {nx}[H]{vz} − {nz}([H
t
z]{vy} − [Ht

y]{vz} − [Dy]{ωz}) +

{nx}([H
t
y]{vx} − [Ht

x]{vy}+ [Dy]{ωx}), (44)

({nx}[D
Γ
x ] + {ny}[D

Γ
y ] + {nz}[D

Γ
z ]){ωΓ

z } =

{nz}[D
Γ
z ]{ωΓ

z } − {nx}[D
Ω\Γ
x ]{ω

Ω\Γ
z } − {ny}[D

Ω\Γ
y ]){ω

Ω\Γ
z }+

{nx}[H]{vy} − {ny}[H]{vx} − {nx}([H
t
x]{vz} − [Ht

z]{vx} − [Dz]{ωx}) +

{ny}([H
t
z]{vy} − [Ht

y]{vz}+ [Dz]{ωy}). (45)

We set the source point into every boundary node of the whole computational domain. This
yields a full system matrix with number of boundary nodes rows and columns. It is solved
using a LU decomposition method. The domain matrices have the number of columns
equal to the number of domain nodes. In order to reduce storage requirements and to
make algebraic operation with domain matrices fast, we introduce a kernel expansion based
approximation technique (Ravnik et al., 2009c).

3.4.1 Series expansion

The approximation method is based on the fact that it is possible to separate the variables (i.e.

the collocation point �θ and the domain integration point�r) of the integral kernel of equation
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(24) by series expansion. The gradient of the Laplace fundamental solution is expanded into
a spherical harmonics series in the following manner:

�∇u⋆ =
∞

∑
l=0

l

∑
m=−l

(−1)m

2l + 1

1

ξ l+1
Y−m

l (θξ , ϕξ)
{

lYm
l (θr, ϕr)r

l−2
�r + rl�∇Ym

l (θr, ϕr)
}

, (46)

where Ym
l are spherical harmonics in polar coordinate system;�r = (r, ϕr,θr) and�θ = (ξ, ϕξ ,θξ).

The gradient of spherical harmonics is expressed using associated Legendre polynomials Pm
l

as

�∇Ym
l (θ, ϕ) =

√

2l + 1

4π

(l − m)!

(l + m)!
�∇

{

Pm
l (cosθ)

∂eimϕ

∂ϕ
�∇ϕ − sin(θ)

∂Pm
l (cosθ)

∂cosθ
�∇θ

}

. (47)

The associated Legendre polynomials are evaluated using recurrence relations as described in
Press et al. (1997). The derivatives of associated Legendre polynomials are obtained using the
following recurrence relation:

∂Pm
l (x)

∂x
=

lxPm
l (x)− (l + m)Pm

l−1(x)

x2 − 1
. (48)

The derivatives of the polar angles written in Cartesian coordinate system are

�∇θ =

√

x2 + y2

x2 + y2 + z2

(

zx

x2 + y2
,

zy

x2 + y2
,−1

)

, �∇ϕ =
1

x2 + y2
(−y, x,0) . (49)

The origin of the coordinate system is set in such locations that the series convergence is
improved. Using the above expansion, the domain integrals of equation (24) may now be
written with separate variables. We are able to approximately calculate each entry in the
domain matrices with the above sum. The number of expansion terms nexp = (L + 1)2 in
the series controls the accuracy of the approximation. Using the series instead of the direct
evaluation of the integral kernel does not by itself bring a reduction of memory. Only when
the expansion is used on a cluster of collocation points and domain cells it is possible to form
a data sparse approximation of a part of the domain matrix. The clusters are formed and
organized in a hierarchical tree-like structure, which is described below.

3.4.2 Cluster trees

Let us consider a cluster of nr nearby collocation points and a cluster of nc nearby domain
cells, as illustrated in Figure 2.
These correspond to a nr × nc matrix block, which is a part of the domain matrix. Since
the variables in the series are separated, it is possible to evaluate two lower order matrix
blocks (nr × nexp) and (nexp × nc) instead of the full matrix block (nr × nc). In the first lower
order matrix block expansion terms that depend on source point location are evaluated for
all collocation points. In the second one integrals of expansion terms that depend on domain
location are evaluated for all domain cells. Multiplication of the two lower order matrix blocks
gives the full nr × nc matrix block up to an expansion error. This technique saves memory
if the amount of data, that must be stored in the two lower order matrices, is smaller than
the amount of data in the full matrix block. As long as the collocation node cluster and the
domain cells cluster are far apart this technique can be used. When the clusters coincide,
i.e. the collocation nodes are a part of the integration cells, the kernels are singular. Such
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�r −�ξ

Ω

Γ

Fig. 2. A problem domain shown with a cluster of collocation points�θ and a cluster of
domain cells.

cluster pairs are called inadmissible and the corresponding matrix block is evaluated in full,
not approximated with two lower order matrices.
We constructed a tree of collocation point clusters and a tree of clusters of domain cells. The
trees were constructed in a recursive hierarchical manner. The problem domain was enclosed
by a parallelepiped. The parallelepiped is cut in half by a plane, breaking the root clusters into
two. The cutting process is repeated recursively, so the clusters on each level have less and
less collocation points and domain cells. The cutting sequence is stopped, when memory can
no longer be saved.
Each branch of the collocation tree is paired with each branch of the domain cells tree on
the same level and with each branch of the domain cells tree on the next level thus forming
branches on the tree of pairs of clusters. For each pair a decision is taken based on the
admissibility criterion whether a sparse approximation for this cluster pair is possible or not.
If the pair is admissible, the branch on the tree becomes an admissible leaf, where the two low
order matrices will be calculated. If admissibility criterion is not reached until the last level
of the tree, such cluster pairs are inadmissible and will be calculated in full and not with the
sparse approximation.
To illustrate the algorithm, a cubic domain is considered meshed by 123 domain cells having
in total 253 nodes. Admissible and inadmissible blocks are shown in Figure 3.

4. Test cases

The developed numerical scheme was used to simulate fluid flow and heat transfer of pure
fluids and nanofluids. Two configurations were considered: the hotstrip and the differentially
heated cavity. Sketches and boundary conditions for both cases are shown in Figure 4.
Applying a temperature difference on two opposite walls of an otherwise insulated cavity
starts up natural convection producing a large vortex in the main part of the cavity. At
low Rayleigh number values the vortex is weak and the heat is transferred predominately
with conduction. Convection dominates at Ra = 106 where temperature stratification may be
observed. The flow becomes unsteady for higher Ra values with vortices forming along the
hot and cold walls. Natural convection of air and other pure fluids in a differentially heated
cavity has been under intense investigation in the past. Recently several authors simulated
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Fig. 3. Matrix structure of a cubic mesh (123 cells, 253 nodes). Filled areas show inadmissible
matrix blocks, white areas are admissible matrix blocks obtained using an admissibility
criteria of ǫ = 10−4.

nanofluids in this case (Abu-Nada & Oztop, 2009; Hwang et al., 2007; Ho et al., 2008; Tiwari
& Das, 2007; Ravnik et al., 2010).
The hotstrip heats the surrounding fluid inducing two large main vortices. When the hotstrip
is located in the centre of the cavity, the flow field is symmetric and the fluid rises from the
centre of the hotstrip. If the hotstrip is placed off-centre, the flow symmetry is lost. Corvaro
& Paroncini (2009; 2008) performed a 2D PIV experiment on a hotstrip problem, using air as
the working fluid. Simulations of natural convection around the hotstrip were presented by
Ravnik & Škerget (2009) and Ravnik et al. (2010).

L

1
2 L

adiabatic wall

heated wall

T = + 1
2

�∇T ·�n = 0

T = − 1
2

cooled wall

L

L

d 1
5 L

hot wallcold wall

ϑL

H

adiabatic walls

�g

L

Fig. 4. Setup and boundary conditions of the hotstrip problem (left) and differentially heated
cavity problem (right). Hotstrip of height 0.5L and width 0.2L is located at distance d from
the left cold wall. The hotstrip is heated to T = +0.5, while the walls at x = 0 and x = L are
cooled to T = −0.5. There is no temperature flux through all other walls. In differentially
heated cavity we keep two opposite vertical walls cold and hot, while all other walls are
adiabatic. The height of the cavity is H, while its width and length are L. No-slip velocity
boundary conditions are applied on all walls.
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Both cases were investigated for air (Pr = 0.71), water (Pr = 6.2) and water based nanofluids
(Table 1) for several Rayleigh number values. The hotstrip was positioned in the centre of the
cavity (d = 0.4H) and off-centre (d = 0.5H). Aspect ratio of the differentially heated cavity was
H/L = 1 and H/L = 2.
Normally, the heat flux Q̇ is expressed in terms of pure fluid thermal conductivity,
characteristic flow scales and a nondimensional Nusselt number, i.e. Q̇ = k f L∆T · Nu. The
Nusselt number, Nu, is defined as the integral of the temperature flux through a wall. For a
nanofluid, it is written as

Nu =
kn f

k f

1

Γ0

∫

Γ

�∇T ·�ndΓ, (50)

where Γ is the surface through which we calculate the heat flux and �n is a unit normal to this
surface. The area of the surface is Γ0. The same definition may be used to pure fluids, since
there kn f /k f = 1.

4.1 Natural convection in a differentially heated cavity

The domain was discretizised using 413 nodes. Nodes were concentrated towards the hot and
cold walls in such a way that the ratio between the largest and the smallest element length
was 7. First, we examine the flow structure with air as the working fluid. Figure 5 shows
temperature contour plots on the y = 0.5 plane for Rayleigh number Ra = 105 and different
inclination angles for cubic and H/L = 2 cavity. We observe temperature stratification in all
cases. When the cavity is inclined, the thermal boundary layers widen and the heat transfer
decreases. Tables 2 and 3 provide the Nusselt number values. We observe a decrease of
the values with increasing inclination angle and an increase of heat transfer with increasing
Rayleigh number. Present values compare well with the solution provided by Lo et al. (2007)
and Tric et al. (2000). Nusselt number values for H/L = 2 cavity are given in Table 4.
Comparison of pure fluids and nanofluids is given in Figure 6, where temperature contours
for water and water based nanofluids on the central y = 0.5L plane are shown. Two solid
volume fractions are compared. We observe that the change in nano particle volume fraction
changes the temperature field considerably, thus changing the heat transfer. Nusselt number
values for the natural convection of nanofluids in a cubical cavity are given in Table 5.
Using water based nanofluids instead of pure water increases heat transfer in all cases. For
low Rayleigh number, where conduction is the predominant heat transfer mechanism, the
enhancement is the largest. For Cu nanofluid at Ra = 103 we observe an 27.2% increase in
heat transfer for ϕ = 0.1 and 64.1% for ϕ = 0.2. TiO2 nanofluid exhibits lower heat transfer
enhancement, since its thermal conductivity is lower than that of Cu and Al2O3 nanofluids.
Al2O3 and Cu nanofluid exhibit approximately the same heat transfer enhancement. As the
Rayleigh number increases, convection becomes the dominant heat transfer mechanism, while
conduction is negligible. Thus, the increased thermal conductivity of nanofluids plays a
less important role in the overall heat balance. All nanofluids exhibit smaller heat transfer

pure water Cu Al2O3 TiO2

cp[J/kgK] 4179 385 765 686.2
ρ[kg/m3] 997.1 8933 3970 4250
k[W/mK] 0.613 400 40 8.9538

β[·10−5K−1] 21 1.67 0.85 0.9
α[·10−7m2/s] 1.47 1163 131.7 30.7

Table 1. Thermophysical properties of water based nanofluids (Oztop & Abu-Nada, 2008).
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Fig. 5. Natural convection of air in a differentaily heat cavity. Temperature contour plots on
the y = 0.5 plane for Rayleigh number Ra = 105; ϑ = 0o (left), ϑ = 15o (middle) and ϑ = 30o

(right). Top row: cubic cavity, bottom row H/L = 2 cavity. Gravity points downward in all
cases.

enhancement as compared to the low Rayleigh number case. At Ra = 106 Cu nanofluid
increases heat transfer at ϕ = 0.1 for 11.6% and at ϕ = 0.2 for 21.6%.

4.2 Natural convection around a hotstrip

Natural convection of air, water and water based nanofluids was simulated around the
hotstrip. Two position of the hotstrip were considered - in the centre of the cavity (d = 0.4L)
and off-centre (d = 0.5L). The mesh used for simulation had 61 × 49 × 19 nodes in hexahedral
cells. The nodes were concentrated towards the hot and cold walls.
Looking at the flow field of air in Figures 7 and 8 we observe that the hotstrip heats the
surrounding fluid inducing two main vortices - one on each side. Hot fluid from the sides
of the hotstrip is transported upwards by convection making the thermal boundary layer thin

Air Water

Ra Lo et al. (2007) Tric et al. (2000) present present

103 1.0710 1.0700 1.0712 1.071

104 2.0537 2.0542 2.0564 2.078
105 4.3329 4.3371 4.3432 4.510
106 8.6678 8.6407 8.6792 9.032

Table 2. Natural convection of air and water in a cubic cavity without inclination, ϑ = 0.
Present Nusselt number values are compared with the benchmark results of Lo et al. (2007)
and Tric et al. (2000).
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ϑ Lo et al. (2007) present

Ra = 103 Ra = 104 Ra = 105 Ra = 103 Ra = 104 Ra = 105

15o 1.0590 1.8425 3.7731 1.0592 1.8464 3.7881
30o 1.0432 1.5894 2.9014 1.0433 1.5916 2.9071
45o 1.0268 1.3434 1.9791 1.0268 1.3443 1.9782
60o 1.0127 1.1524 1.3623 1.0127 1.1526 1.3600

Table 3. Natural convection of air in a cubic cavity under inclination ϑ. Present Nusselt
number values are compared with the benchmark results of Lo et al. (2007).

and thus resulting in high heat transfer. Upon reaching the top of the hotstrip the fluid flows
over the top ultimately colliding with the fluid from the other side and rising upwards. When
the hotstrip is located in the centre of the cavity, the flow field is symmetric and the fluid rises
from the centre of the hotstrip. If the hotstrip is placed off-centre, the flow symmetry is lost.
The sizes of large vortices on each side of the hotstrip are different. The flow does not rise
above the centre of the hotstrip. Mixing of the fluid from both sides of the hotstrip occurs,
which does not happen in the symmetric case.
We measured heat transfer in terms of the Nusselt number values over the whole surface
of the hostrip (two vertical wall and a top wall). The values are shown in Table 6 for
Rayleigh number values ranging from Ra = 103 to Ra = 105. We observe that the addition
of nanoparticles increases heat transfer in all cases. The increase is the largest in the low
Rayleigh number case and the smallest in the case of high Rayleigh values. This is expected,
since at low Rayleigh number values conduction is the dominating heat transfer mechanism

ϑ Ra = 103 Ra = 104 Ra = 105

0o 1.111 2.163 4.177
15o 1.096 2.029 3.892
30o 1.073 1.839 3.430
45o 1.047 1.594 2.774
60o 1.023 1.317 1.915

Table 4. Natural convection of air in a H/L = 2 cavity. The Nusselt number values
representing the heat flux through walls are shown for different inclination angles and
Rayleigh numbers.
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Cu Al2O3 TiO2

Fig. 6. Temperature contours on the central y = 0.5H plane for natural convection in a
differentially heated cubic cavity. Contour values are -0.4(0.1)0.4; Ra = 106. Solid line denotes
pure water, dashed line ϕ = 0.1 nanofluid and dotted line ϕ = 0.2 nanofluid.
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Ra Water+Cu Water+Al2O3 Water+TiO2

ϕ = 0.1 ϕ = 0.2 ϕ = 0.1 ϕ = 0.2 ϕ = 0.1 ϕ = 0.2

103 1.363 1.758 1.345 1.718 1.297 1.598

104 2.237 2.381 2.168 2.244 2.115 2.132
105 4.946 5.278 4.806 4.968 4.684 4.732
106 10.08 10.98 9.817 10.39 9.556 9.871

Table 5. Nusselt number values for the natural convection of nanofluids in a cubical cavity.
Solid particle volume fraction is denoted by ϕ.

and the improved nanofluid properties play an important role. At high Rayleigh number
values convection dominates and improved thermal properties of nanofluids contribute at an
lesser extent.

Ra Air Water Water+Cu Water+Al2O3 Water+TiO2

ϕ = 0.1 ϕ = 0.2 ϕ = 0.1 ϕ = 0.2 ϕ = 0.1 ϕ = 0.2

d = 0.4L

103 3.781 3.781 5.030 6.591 4.974 6.451 4.788 5.997

104 4.233 4.251 5.232 6.667 5.153 6.511 4.974 6.060
105 8.331 8.542 9.434 10.05 9.157 9.435 8.926 8.983

d = 0.5L

103 3.985 3.982 5.296 6.941 5.237 6.793 5.042 6.313

104 4.542 4.538 5.571 7.051 5.481 6.877 5.294 6.403
105 7.597 8.336 9.255 10.21 9.001 9.673 8.762 9.162

Table 6. Nusselt number values for natural convection of nanofluids in a hotstrip. The values
were obtained by integrating over the whole hotstrip.

5. Conclusions

We presented a method for solving coupled laminar viscous flow and heat transfer problems.
The algorithm solves the velocity-vorticity formulation of Navier-Stokes equations. The
boundary vorticity values are obtained by the single domain BEM solution of the kinematics
equation, accelerated by kernel expansion based approximation technique. The solution of the
vorticity equation for domain vorticity values, the energy equation for domain temperature
values and the kinematics equation for domain velocity values are obtained by subdomain
BEM.
The method was used to simulate natural convection phenomena in inclined parallelepiped
shaped cavity as well as around a hotstrip. Working fluids were pure air, pure water and
water based nanofluids: Cu, Al2O3 and TiO2. The proposed numerical scheme was validated
by comparing Nusselt number values with benchmark solutions.
By studying the temperature field in the differentially heated enclosure we observed, that in
the central part the temperature field is stratified. The layers of constant temperature are set
perpendicularly to the gravity direction regardless of the inclination angle as long as the hot
wall lies above the cold wall. The velocity flow fields show that the flow is predominantly
moving in a single vortex, up along the hot wall and down along the cold wall. The 3D
nature of the flow may be observed in the corners of the enclosures. Comparing the cubic
and H/L = 2 cavities we established that the Nusselt number values are higher in the case of
H/L = 2 enclosure.
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Fig. 7. Temperature contours for natural convection of air around a hotstrip; d = 0.4L.
Contour values are -0.45(0.05)0.45.
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Fig. 8. Temperature contours for natural convection of air around a hotstrip; d = 0.5L.
Contour values are -0.45(0.05)0.45.
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Fig. 9. Temperature contours on the central y = 0.5H plane for natural convection around a
hotstrip. Contour values are -0.4(0.1)0.4; Solid line denotes pure water, dashed line Al2O3

nanofluid with solid volume fraction ϕ = 0.1 and dotted line Al2O3 nanofluid with solid
volume fraction ϕ = 0.2.
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A hotstrip in a cavity produces two vortices, one on each side. For Ra ≤ 105 the flow field is
symmetric in the case of central placement of the hotstrip. Symmetry is lost when hotstrip is
place off-centre. Most of the heat is transferred from the sides of the hotstrip and only a small
part from the top wall.
Introduction of nanofluids leads to enhanced heat transfer in all cases. The enhancement
is largest when conduction is the dominant heat transfer mechanism, since in this case the
increased heat conductivity of the nanofluid is important. On the other hand, in convection
dominated flows heat transfer enhancement is smaller. All considered nanofluids enhance
heat transfer for approximately the same order of magnitude, Cu nanofluid yielding the
highest values. Heat transfer enhancement grows with increasing solid particle volume
fraction in the nanofluid. The differences between temperature fields when using different
nanofluids with the same solid nanoparticle volume fraction are small.
In future the proposed method for simulating fluid flow and heat transfer will be expanded
for simulation of unsteady phenomena and turbulence.
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Popov, V., Power, H. & Škerget, L. (eds) (2007). Domain Decomposition Techniques for Boundary
Elements: Applications to fluid flow, WIT press.

230 Heat Transfer - Mathematical Modelling, Numerical Methods and Information Technology

www.intechopen.com



Fast BEM Based Methods for Heat Transfer Simulation 23

Popov, V., Power, H. & Walker, S. P. (2003). Numerical comparison between two possible
multipole alternatives for the BEM solution of 3D elasticity problems based upon
Taylor series expansions, Eng. Anal. Bound. Elem. 27: 521–531.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. (1997). Numerical Recipes - The
Art of Scientific computing, Second Edition, Cambridge University Press.
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Ravnik, J., Škerget, L. & Žunič, Z. (2009a). Combined single domain and subdomain BEM for
3D laminar viscous flow, Eng. Anal. Bound. Elem. 33: 420–424.
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