We are IntechOpen, the world's leading publisher of Open Access books Built by scientists, for scientists

6,900

185,000

200M

154

Countries delivered to

Our authors are among the

TOP 1%

most cited scientists

12.2%

Contributors from top 500 universities

WEB OF SCIENCE

Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Lattice Boltzmann Numerical Approach to Predict Macroscale Thermal Fluid Flow Problem

Nor Azwadi Che Sidik and Syahrullail Samion Universiti Teknologi Malaysia Malaysia

1. Introduction

Flow in an enclosure driven by buoyancy force is a fundamental problem in fluid mechanics. This type of flow is encountered in certain engineering applications within electronic cooling technologies, in everyday situation such as roof ventilation or in academic research where it may be used as a benchmark problem for testing newly developed numerical methods. A classic example is the case where the flow is induced by differentially heated walls of the cavity boundaries. Two vertical walls with constant hot and cold temperature is the most well defined geometry and was studied extensively in the literature. A comprehensive review was presented by Davis (1983). Other examples are the work by Azwadi and Tanahashi (2006) and Tric (2000).

The analysis of flow and heat transfer in a differentially heated side walls was extended to the inclusion of the inclination of the enclosure to the direction of gravity by Rasoul and Prinos (1997). This study performed numerical investigations in two-dimensional thermal fluid flows which are induced by the buoyancy force when the two facing sides of the cavity are heated to different temperatures. The cavity was inclined at angles from 20° to 160°, Rayleigh numbers from 10³ to 106 and Prandtl numbers from 0.02 to 4000. Their results indicated that the mean and local heat flux at the hot wall were significantly depend on the inclination angle. They also found that this dependence becomes stronger for the inclination angle greater than 90°.

Hart (1971) performed a theoretical and experimental study of thermal fluid flow in a rectangular cavity at small aspect ratio and investigated the stability of the flow inside the system. Ozoe et al. (1974) conducted numerical analysis using finite different method of two-dimensional natural circulation in four types of rectangular cavity at inclination angles from 0° to 180° . Kuyper et al. (1993) provided a wide range of numerical predictions of flow in an inclined square cavity, covered from laminar to turbulent regions of the flow behavior. They applied k - ε turbulence model and performed detailed analysis for Rayleigh numbers of 10° to 10^{10} .

A thorough search of the literature has revealed that no work has been reported for free convection in an inclined square cavity with Neumann typed of boundary conditions. The type of boundary condition applied on the bottom and top boundaries of the cavity strongly affects the heat transfer mechanism in the system (Azwadi et al., 2010). Therefore, it is the purpose of present study to investigate the fluid flow behaviour and heat transfer mechanism in an inclined square cavity, differentially heated sidewalls and perfectly conducting boundary condition for top and bottom walls.

The current study is summarized as follow: two dimensional fluid flow and heat transfer in an inclined square cavity is investigated numerically. The two sidewalls are maintained at different temperatures while the top and bottom walls are set as a perfectly conducting wall. In current study, we fix the aspect ratio to unity. The flow structures and heat transfer mechanism are highly dependent upon the inclination angle of the cavity. By also adopting the Rayleigh number as a continuation parameter, the flow structure and heat transfers mechanism represented by the streamlines and isotherms lines can be identified as function of inclination angle. The computed average Nusselt number is also plotted to demonstrate the effect of inclination angle on the thermal behaviour in the system. Section two of this paper presents the governing equations for the case study in hand and introduces the numerical method which will be adopted for its solution. Meanwhile section three presents the computed results and provides a detailed discussion. The final section of this paper concludes the current study.

2. Numerical formulation

In present research, the incompressible viscous fluid flow and heat transfer are studied in a differentially heated side walls and perfectly conducting boundary conditions for top and bottom walls. Then the square enclosure is inclined from 20° to 160° to investigate the effect of inclination angles on thermal and fluid flow characteristics in the system. The governing equations are solved indirectly: i. e. using the lattice Boltzmann mesoscale method (LBM) with second order accuracy in space and time.

Our literature study found that there were several investigations have been conducted using the LBM to understand the phenomenon of free convection in an enclosure (Azwadi & Tanahashi, 2007; Azwadi & Tanahashi, 2008; Onishi et al., 2001). However, most of them considered an enclosure at 90° inclination angle and adiabatic boundary conditions at top and bottom walls. To the best of authors' knowledge, only Jami et al. (2006) predicted the natural convection in an inclined enclosure at two Rayleigh numbers and two aspect ratios. In their study, they investigated the fluid flow and heat transfer when an inclined partition is attached to the hot wall enclosure and assumed adiabatic boundary condition at the top and bottom walls. Due to lack of knowledge on the problem in hand, therefore, the objective of present paper is to gain better understanding for the current case study by using the lattice Boltzmann numerical method. To see this, we start with the evolution equations of the density and temperature distribution functions, given as (He et al., 1998)

$$f_i(\mathbf{x} + \mathbf{c}_i \Delta t, t + \Delta t) - f_i(\mathbf{x}, t) = -\frac{1}{\tau_f} \left(f_i(\mathbf{x}, t) - f_i^{eq}(\mathbf{x}, t) \right) + F_i$$
(1)

$$g_i(\mathbf{x} + \mathbf{c}_i \Delta t, t + \Delta t) - g_i(\mathbf{x}, t) = -\frac{1}{\tau_g} \left(g_i(\mathbf{x}, t) - g_i^{eq}(\mathbf{x}, t) \right)$$
(2)

where the density distribution function $f = f(\mathbf{x}, t)$ is used to calculate the density and velocity fields and the temperature distribution function $g = g(\mathbf{x}, t)$ is used to calculate the macroscopic temperature field. Note that Bhatnagar-Gross-Krook (BGK) collision model (Bhatnagar et al., 1954) with a single relaxation time is used for the collision term. For the D2Q9 model (two-dimension nine-lattice velocity model), the discrete lattice velocities are defined by

$$\mathbf{c}_{0} = (0,0)$$

$$\mathbf{c}_{i} = c \left(\cos((i-1)\pi/2), \sin((i-1)\pi/2) \right), i = 1,2,3,4$$

$$\mathbf{c}_{i} = \sqrt{2}c \left(\cos((i-5)\pi/2 + \pi/4), \sin((i-5)\pi/2 + \pi/4) \right), i = 5,6,7,8$$
(3)

Here, c is the lattice spacing. In LBM, the magnitude of \mathbf{c}_i is set up so that in each time step Δt , the distribution function propagates in a distance of lattice nodes spacing Δx . This will ensure that the distribution function arrives exactly at the lattice nodes after Δt . The equilibrium function for the density distribution function f_i^{eq} for the D2Q9 model is given by

$$f_i^{eq} = \rho \omega_i \left[1 + 3\mathbf{c}_i \cdot \mathbf{u} + \frac{9}{2} (\mathbf{c}_i \cdot \mathbf{u})^2 - \frac{3}{2} \mathbf{u}^2 \right]$$
(4)

where the weights are $\omega_0 = 4/9$, $\omega_i = 1/9$ for i = 1 - 4 and $\omega_i = 1/36$ for i = 5 - 8. According to Azwadi and Tanahashi (2006) and He et al. (1998), the expression for equilibrium function of temperature distribution can be written as

$$g^{eq} = \rho T \left(\frac{1}{2\pi RT}\right)^{D/2} \exp\left\{-\frac{\mathbf{c}^2}{2RT}\right\} \left[\frac{\mathbf{c}^2}{DRT} + \left(\frac{\mathbf{c}^2}{DRT} - \frac{2}{D}\right)\frac{\mathbf{c} \cdot \mathbf{u}}{RT}\right]$$

$$\left(\frac{\mathbf{c}^2}{DRT} - \frac{4}{D}\right) \frac{(\mathbf{c} \cdot \mathbf{u})^2}{2(RT)^2} - \left(\frac{\mathbf{c}^2}{DRT} - \frac{2}{D}\right) \frac{\mathbf{u}^2}{2RT}$$
(5)

Regroup Eq. (5) to avoid higher order quadrature gives

$$g^{eq} = \rho T \left(\frac{1}{2\pi RT} \right)^{D/2} \exp \left\{ -\frac{\mathbf{c}^2}{2RT} \right\} \left[1 + \frac{\mathbf{c} \cdot \mathbf{u}}{RT} + \frac{(\mathbf{c} \cdot \mathbf{u})^2}{2(RT)^2} - \frac{\mathbf{u}^2}{2RT} \right] +$$

$$\rho T \left(\frac{1}{2\pi RT} \right)^{D/2} \exp \left\{ -\frac{\mathbf{c}^2}{2RT} \right\} \left[\frac{\mathbf{c}^2}{DRT} - 1 \right] +$$

$$\rho T \left(\frac{1}{2\pi RT} \right)^{D/2} \exp \left\{ -\frac{\mathbf{c}^2}{2RT} \right\} \left[\left(\frac{\mathbf{c}^2}{DRT} - \frac{2+D}{D} \right) \frac{\mathbf{c} \cdot \mathbf{u}}{RT} +$$

$$\left(\frac{\mathbf{c}^2}{DRT} - \frac{4+D}{D} \right) \frac{(\mathbf{c}_i \cdot \mathbf{u})^2}{2(RT)^2} - \left(\frac{\mathbf{c}^2}{DRT} - \frac{2+D}{D} \right) \frac{\mathbf{u}^2}{2RT} \right]$$
(6)

It has been proved by Shi et al. (2004) that the zeroth through second order moments in the last square bracket and the zeroth and first order moments in the second square bracket in the right hand side of Eq. (6) vanish. The exclusion of the second order moments in the second square bracket in Eq. (6) only related to the constant parameter in the thermal conductivity which can be absorbed by manipulating the parameter τ_f in the computation. Therefore, by dropping the terms in the last two square brackets on the right hand side of Eq. (6) gives

$$g^{eq} = \rho T \left(\frac{1}{2\pi RT} \right)^{D/2} \exp \left\{ -\frac{\mathbf{c}^2}{2RT} \right\} \left[1 + \frac{\mathbf{c} \cdot \mathbf{u}}{RT} + \frac{\left(\mathbf{c} \cdot \mathbf{u} \right)^2}{2\left(RT \right)^2} - \frac{\mathbf{u}^2}{2RT} \right]$$
(7)

After some modifications in order to satisfy the macroscopic energy equation via the Chapmann-Enskog expansion procedure, the discretised equilibrium function for the temperature distribution can be expressed as

$$g_i^{eq} = T\omega_i \left[1 + 3\mathbf{c}_i \cdot \mathbf{u} + \frac{9}{2} (\mathbf{c}_i \cdot \mathbf{u})^2 - \frac{3}{2} \mathbf{u}^2 \right]$$
 (8)

where the weights are $\omega_0 = 4/9$, $\omega_i = 1/9$ for i = 1 - 4 and $\omega_i = 1/36$ for i = 5 - 8.

The macroscopic variables, density ρ , and temperature T can thus be evaluated as the moment to the equilibrium distribution functions as

$$\rho = \sum_{i} f_i^{eq}, T = \sum_{i} g_i^{eq} \tag{9}$$

Through a multiscaling expansion, the mass and momentum equations can be derived for D2Q9 model. The detail derivation of this is given by He and Luo (1997) and will not be shown here. The kinematic viscosity of fluid is given by

$$\upsilon = \frac{2\tau_f - 1}{6} \tag{10}$$

The energy equation at the macroscopic level can be expressed as follow

$$\frac{\partial}{\partial t} \rho T + \nabla \cdot \rho \mathbf{u} T = \chi \nabla^2 (\rho T) \tag{11}$$

where χ is the thermal diffusivity. Thermal diffusivity and the relaxation time of temperature distribution function is related as

$$\chi = \frac{2\tau_g - 1}{6} \tag{12}$$

3. Problem physics and numerical results

The physical domain of the problem is represented in Fig. 1. The conventional no-slip boundary conditions (Peng et al., 2003) are imposed on all the walls of the cavity. The thermal conditions applied on the left and right walls are $T(x = 0, y) = T_H$ and $T(x = L, y) = T_C$. The top and bottom walls being perfectly conducted, $T = T_H - (x/L)(T_H - T_C)$, where T_H and T_C are hot and cold temperature, and L is the width of the enclosure. The temperature difference between the left and right walls introduces a temperature gradient in a fluid, and the consequent density difference induces a fluid motion, that is, convection.

The Boussinesq approximation is applied to the buoyancy force term. With this approximation, it is assumed that all fluid properties can be considered as constant in the body force term except for the temperature dependence of the density in the gravity term. So the external force in Eq. (1) is

$$F_i = 3\mathbf{G}(\mathbf{c} - \mathbf{u}) f_i^{eq} \tag{13}$$

where **G** is the contribution from buoyancy force.

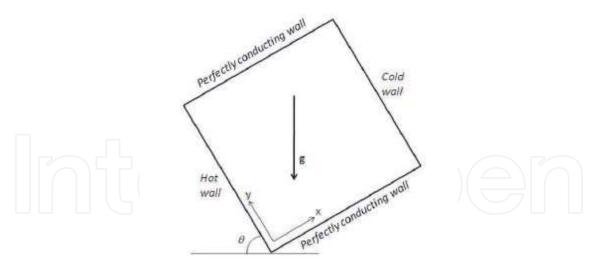


Fig. 1. Physical domain of the problem

The dynamical similarity depends on two dimensionless parameters: the Prandtl number Pr and the Rayleigh number Ra,

$$Pr = \frac{\upsilon}{\chi}, Ra = \frac{g_0 \beta \Delta T L^3}{\upsilon \chi}$$
 (14)

We carefully choose the characteristic speed $v_c = \sqrt{g_0 LT}$ so that the low-Mach-number approximation is hold. Nusselt number, Nu is one of the most important dimensionless numbers in describing the convective transport. The average Nusselt number in the system is defined by

$$Nu = \frac{H}{\chi \Delta T} \frac{1}{H^2} \int_0^H \int_0^H q_x(x, y) dxdy$$
 (15)

where $q_x(x,y) = uT(x,y) - \chi(\partial/\partial x)T(x,y)$ is the local heat flux in *x*-direction.

In all simulations, Pr is set to be 7.0 to represent the circulation of water in the system. Through the grid dependence study, the grid sizes of 251×251 is suitable for Rayleigh numbers from 10^5 to 10^6 . The convergence criterion for all the tested cases is

$$\operatorname{Max}\left| \left(\left(u^2 + v^2 \right)^{n+1} \right)^{\frac{1}{2}} - \left(\left(u^2 + v^2 \right)^n \right)^{\frac{1}{2}} \right| \le 10^{-7}$$
 (16)

$$\text{Max} \left| T^{n+1} - T^n \right| \le 10^{-7} \tag{17}$$

where the calculation is carried out over the entire system.

Streamlines and isotherms predicted for flows at Ra = 10^5 and different inclination angles are shown in Figures 2 and 3. As can be seen from the figures of streamline plots, the liquid near the hot wall is heated and goes up due to the buoyancy effect before it hits the corner with the perfectly conducting walls and spread to a wide top wall. Then as it is cooled by the cold wall, the liquid gets heavier and goes downwards to complete the cycle. At low value of inclination angle, θ = 20, two small vortices are formed at the upper corner and lower corner of the enclosure indicates high magnitude of flow velocity near these regions. The presence of

these two corner vortices compressed the central cell to form an elongated vortex. The isotherms show a good mixing occurring in the center and relatively small gradient indicating small value of the local Nusselt number along the differentially heated walls.

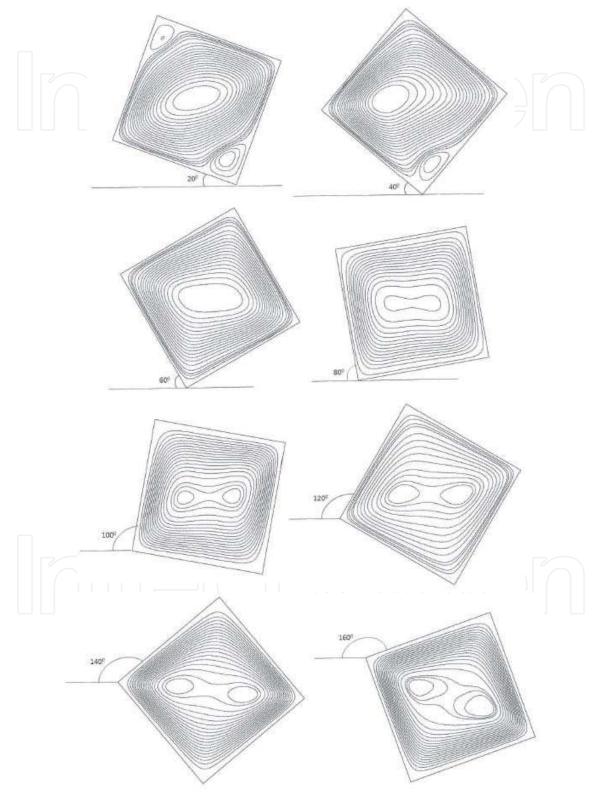


Fig. 2. Streamlines plots at $Ra = 10^5$

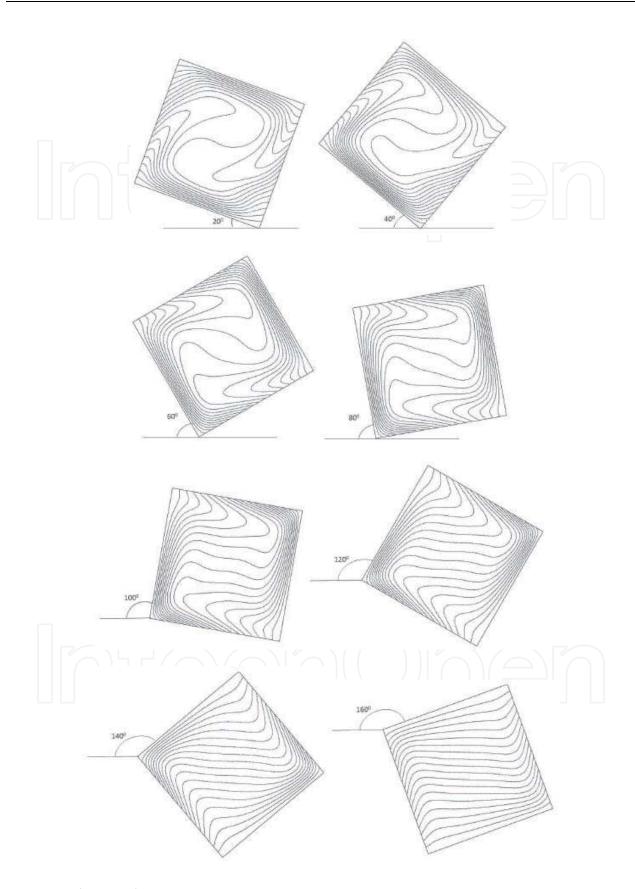


Fig. 3. Isotherms plots at $Ra = 10^5$.

Fig. 4. Streamlines plots at Ra = 5×10^5 .

Fig. 5. Isotherms plots at Ra = 5×10^5 .



Fig. 6. Streamlines plots at $Ra = 10^6$.

Fig. 7. Isotherms plots at Ra = 10⁶.

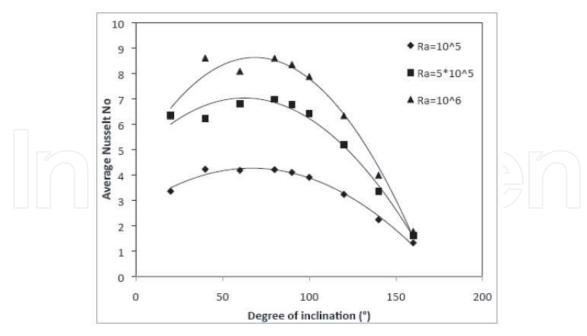


Fig. 8. Effect of inclination angles on averaged Nusselt number

Further increment of inclination angle θ = 40° leads to the size reduction of small corner vortices. At θ = 60°, the small corner vortices completely disappear and the central cell pointing towards the corners because high magnitude of gravity vector drag the outer vortex along the vertical walls of the enclosure. Denser isotherms lines can be seen from the figure indicate higher value of local and average Nusselt number compared to previous inclination angles. Further inclination of enclosure separates the main central vortex into two smaller vortices. As we increase the inclination angle, these two vortices grow in size indicates that some fluid from the hot or cold wall returns back to the same wall. For inclination angles of θ = 80° to θ = 120°, the isotherms line are parallel to the perfectly conducting walls indicates that the main heat transfer mechanism is by convection. Denser isotherms lines can be seen near the bottom left and top right corners demonstrate high local Nusselt number near these regions. However, at high inclination angles, θ ≥ 140°, the isotherms lines are equally spaced indicates low averages Nusselt number in the system.

For Rayleigh number equals to 5×10^5 and low inclination angles, the central vortex is more rounded indicates equal magnitude of flow velocity near all four enclosure walls. At angle equals to $\theta = 60^\circ$, the central cells splits into two before the corner vortices disappear. The velocity boundary layer can be clearly seen for inclination angles of $\theta = 60^\circ$ and above. The isotherm patterns are similar to those for Ra = 10^5 at all angles. However, the thermal boundary layers are thicker indicating higher local and average Nusselt number along the cold and hot walls.

For the simulation at the highest Rayleigh number in the present study Ra = 106, the formation of corner vortices can be clearly seen at low value of inclination angles. At angle equals to θ = 20°, the complex structure of upper corner vortices indicates the instability of the flow in the system. This flow instability is confirmed when we were unable to obtain a steady solution even for a very high iteration number. The isotherms plots also display a complex thermal behavior and good mixing of temperature in the system. The flow becomes steady again when we increase the inclination angle to θ = 60°. The central vortex is separated into two smaller vortices and vertically elongated shaped indicates relatively high

value of flow velocity near the differentially heated walls. Most of the isotherms lines becomes parallel to the perfectly conducting walls indicates the convection type dominates the heat transfer mechanism in the system.

For $\theta > 80^\circ$, the central vortex is stretched from corner to corner of the enclosure and perpendicular to the gravitational vector, developed denser streamlines near these corners, indicating the position of maximum flow velocity for the current condition. On the other hand, similar features of isotherms to those at lower Ra are observed.

The effect of the inclination angle on the average Nusselt number is shown in Figure 8 for all values of Rayleigh numbers. One common characteristic which can be drawn from the figure; the Nusselt number increases with increasing the Rayleigh number. However, the computed Nusselt numbers are lower than those for the case of adiabatic types of boundary condition (Peng et al., 2003) because the heat is allowed to pass through the top and bottom walls. Interestingly, the minimum value of average Nusselt number is found converging to the same value and when the inclination angle approaching $\theta = 180^{\circ}$ for every Rayleigh number. On the other hand, the maximum value of average Nusselt number is determined at inclination angle between $\theta = 60^{\circ}$ to $\theta = 80^{\circ}$. These can be explained by analyzing the isotherms plots which demonstrating relatively denser lines near hot and cold walls leading to high temperature gradient near these regions. Lower value of average Nusselt number at lower inclination angle was due to the presence of small corner vortices which contributes smaller local heat transfer along the hot and cold walls. For the computation at higher inclination angles, where the hot wall is close to the top position, the magnitude of the gravity vector is reduced results in low magnitude of flow velocity along the hot wall. Due to this reason, the heat transfer rates are small resulted from the reduction in the driving potential for free convection.

4. Conclusion

The free convection in an inclined cavity has been simulated using the mesoscale numerical scheme where the Navier Stokes equation was solved indirectly using the lattice Boltzmann method. The result of streamlines plots clearly depicting the flow pattern and vortex structure in the cavity. The primary vortex is transformed from a single cellular to a double cellular as the inclination angle increases. These demonstrate the lattice Boltzmann numerical scheme of passive-scalar thermal lattice Boltzmann model is a very efficient numerical method to study flow and heat transfer in a differentially heated inclined enclosure.

5. Acknowledgement

The authors would like to acknowledge Universiti Teknologi Malaysia and Malaysia Government for supporting these research activities. This research is supported by research grant No. 78604

6. References

Bhatnagar, P. L.; Gross, E. P. & Krook, M. (1954). A Model for Collision Process in Gases. 1. Small Amplitude Processes in Charged and Neutral One-Component System, *Physical Review*, Vol. 94, No. 3, 511-525.

- Davis, D. V. (1983). Natural Convection of Air in a Square Cavity; A Benchmark Numerical Solution, *International Journal for Numerical Methods in Fluids*, Vol. 3, No. 3, 249-264, ISSN 1097-0363.
- Hart, J. E. (1971). Stability of the Flow in a Differentially Heated Inclined Box, *Journal of Fluid Mechanics*, Vol. 47, No. 3, 547-576, ISSN 0022-1120.
- He, X. & Luo, L. S. (1997). Lattice Boltzmann Model for the Incompressible Navier-Stokes Equation, *Journal of Statistical Physics*, Vol. 88, No. 3, 927-944, ISSN 0022-4715.
- He, X.; Shan, S. & Doolen, G. (1998). A Novel Thermal Model for Lattice Boltzmann Method in Incompressible Limit, *Journal of Computational Physics*, Vol. 146, No. 1, 282-300, ISSN 0021-9991.
- Jami, M.; Mezrhab, A.; Bouzidi, M. & Lallemand, P. (2006). Lattice-Boltzmann Computation of Natural Convection in a Partitioned Enclosure with Inclined Partitions Attached to its Hot Wall, *Physica A*, Vol. 368, No. 2, 481-494.
- Kuyper, R. A.; Meer, V. D.; Hoogendoorn, C. J. & Henkes, R. A. W. (1993). Numerical Study of Laminar and Turbulent Natural Convection in an Inclined Square Cavity, *International Journal of Heat Mass Transfer*, Vol. 36, No. 11, 2899-2911, ISSN 0017-9310.
- Nor Azwadi, C. S. & Tanahashi, T. (2006). Simplified Thermal Lattice Boltzmann in Incompressible Limit, *International Journal of Modern Physics B*, Vol. 20, No. 17, 2437-2449, ISSN 0217-9792.
- Nor Azwadi, C. S. & Tanahashi, T. (2007). Three-Dimensional Thermal Lattice Boltzmann Simulation of Natural Convection in a Cubic Cavity, *International Journal of Modern Physics B*, Vol. 21, No. 1, 87-96, ISSN 0217-9792.
- Nor Azwadi, C. S. & Tanahashi, T. (2008). Simplified Finite Difference Thermal Lattice Boltzmann Method, *International Journal of Modern Physics B*, Vol. 22, No. 22, 3865-3876, ISSN 0217-9792.
- Nor Azwadi, C. S.; Mohd Fairus, M. Y. & Samion, S. (2010). Virtual Study of Natural Convection Heat Transfer in an Inclined Square Cavity, *Journal of Applied Sciences*, Vol. 10, No. 4, 331-336, ISSN 1812-5654.
- Onishi, J.; Chen, Y. & Ohashi, H. (2001). Lattice Boltzmann Simulation of Natural Convection in a Square Cavity, *JSME International Journal Series B*, Vol. 44, No. 1, 53-62.
- Ozoe, H.; Yamamoto, K.; Sagama, H. & Churchill, S. W. (1974). Natural Circulation in an Inclined Rectangular Channel Heated on One Side and Cooled on the Opposing Side, *International Journal of Heat Mass Transfer*, Vol. 17, No. 10, 1209-1217, ISSN 0017-9310
- Peng, Y.; Shu, C. & Chew, Y. T. (2003). Simplified thermal lattice Boltzmann model for incompressible thermal flows, *Physical Review E*, Vol. 68, No. 1, 020671/1-20671/8, ISSN 1539-3755.
- Rasoul, J. & Prinos, P. (1997). Natural Convection in an Inclined Enclosure, *International Journal of Numerical Methods for Heat and Fluid Flow*, Vol. 7, No. 5, 438-478, ISSN 0961-5539.
- Shi, Y.; Zhao, T. S. & Guo, Z. L. (2004). Thermal lattice Bhatnagar-Gross-Krook model for flows with viscous heat dissipation in the incompressible limit, *Physical Review E*, Vol. 70, No. 6, 066310/1-066310/10, ISSN 1539-3755.
- Tric, E.; Labrosse, G. & Betrouni, M. (2000). A First Incursion into the 3D Structure of Natural Convection of Air in a Differentially Heated Cubic Cavity, from Accurate Numerical Solutions, *International Journal of Heat and Mass Transfer*, Vol. 43, No. 21, 4043-4056, ISSN 0017-9310



Heat Transfer - Mathematical Modelling, Numerical Methods and Information Technology

Edited by Prof. Aziz Belmiloudi

ISBN 978-953-307-550-1
Hard cover, 642 pages
Publisher InTech
Published online 14, February, 2011
Published in print edition February, 2011

Over the past few decades there has been a prolific increase in research and development in area of heat transfer, heat exchangers and their associated technologies. This book is a collection of current research in the above mentioned areas and describes modelling, numerical methods, simulation and information technology with modern ideas and methods to analyse and enhance heat transfer for single and multiphase systems. The topics considered include various basic concepts of heat transfer, the fundamental modes of heat transfer (namely conduction, convection and radiation), thermophysical properties, computational methodologies, control, stabilization and optimization problems, condensation, boiling and freezing, with many real-world problems and important modern applications. The book is divided in four sections: "Inverse, Stabilization and Optimization Problems", "Numerical Methods and Calculations", "Heat Transfer in Mini/Micro Systems", "Energy Transfer and Solid Materials", and each section discusses various issues, methods and applications in accordance with the subjects. The combination of fundamental approach with many important practical applications of current interest will make this book of interest to researchers, scientists, engineers and graduate students in many disciplines, who make use of mathematical modelling, inverse problems, implementation of recently developed numerical methods in this multidisciplinary field as well as to experimental and theoretical researchers in the field of heat and mass transfer.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Nor Azwadi Che Sidik and Syahrullail Samion (2011). Lattice Boltzmann Numerical Approach to Predict Macroscale Thermal Fluid Flow Problem, Heat Transfer - Mathematical Modelling, Numerical Methods and Information Technology, Prof. Aziz Belmiloudi (Ed.), ISBN: 978-953-307-550-1, InTech, Available from: http://www.intechopen.com/books/heat-transfer-mathematical-modelling-numerical-methods-and-information-technology/lattice-boltzmann-numerical-approach-to-predict-macroscale-thermal-fluid-flow-problem

InTech Europe

University Campus STeP Ri Slavka Krautzeka 83/A 51000 Rijeka, Croatia Phone: +385 (51) 770 447

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai No.65, Yan An Road (West), Shanghai, 200040, China 中国上海市延安西路65号上海国际贵都大饭店办公楼405单元 Phone: +86-21-62489820

www.intechopen.com

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com

IntechOpen

IntechOpen

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the <u>Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License</u>, which permits use, distribution and reproduction for non-commercial purposes, provided the original is properly cited and derivative works building on this content are distributed under the same license.

