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1. Introduction 

Since the first pieces of software have been introduced into automobiles in 1976, the 
complexity of automotive software systems is growing rapidly. Today automotive software 
is widely installed for diverse applications ranging from the infotainment domain (e.g. 
entertainment, navigation, etc.) with typically no real-time requirements to safety-critical 
control software (e.g. engine control, safety functionalities, etc.) with hard real-time 
requirements. In addition, many comfort functionalities of automobiles are realized by 
software nowadays (e.g. the control of the air condition system, electronic window 
regulator, etc.). Up to 90% of today’s innovations in the automotive industry are realized by 
hard- and software (Pretschner et al., 2007). This results in up to 2,500 ”atomic” functions 
realized in software on up to 67 electronic control units (ECUs) in modern high-end cars 
(Fürst, 2010). 
For the future development of automobile electronics, there are two major trends: A 
growing number of functionalities and through this a growing importance of software in the 
car (Hardung et al., 2004). Future generations of cars will be equipped with many new, 
complex features (Czarnecki & Eisenecker, 2000). For example, functionalities to support 
active driving safety (e.g. driver assistance systems), features which enable new innovative 
driving concepts (e.g. engine control for hybrid vehicles), or new functionalities in the 
comfort domain (e.g. new infotainment features). Most of these functionalities will be 
realized in software, which increases the amount and importance of software within the 
automotive domain necessarily. But these new features will also increase the complexity of 
future vehicular system architectures. For instance, driver assistance systems increase the 
complexity because they interact with several in-vehicle domains, e.g. the power-train and 
infotainment domain. In future, the trend of establishing more and more interactions 
between software components will continue, e.g. through x-by-wire features, where 
mechanical transmission is replaced by electrical signals. This results in a growing 
interdependency of separated software domains and in an increased need for 
interconnection. Another important aspect is the continuously growing number of 
functional variants caused by customer-specific equipment options or country-specific 
regulations. At the same time, the demand on the software quality within the automotive 
domain is very high at all times. These requirements must be satisfied in the future, despite 
the increasing complexity of automotive software architectures. Even today it is a great 
challenge to manage these systems from the outside. 
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In recent years, a lot of research has been done, trying to explore new methods for the 
management of general complex software systems. Within the research area of Self-
adaptation (McKinley et al., 2004) and Self-organization (Serugendo et al., 2004) new 
paradigms for the management of complex systems have been introduced. Both approaches 
utilize control-loops for feedback-based control of the system. Self-adaptive systems realize 
the adaptation of the system in a top-down manner by setting global goals which are 
enforced hierarchically. On the contrary, self-organizing systems follow a bottom-up 
approach in which the local interaction of elements results in the intended global behavior. 
These paradigms for the development of general systems which are capable of adaptation 
also constitute a promising solution to master the complexity within automotive embedded 
systems (Weiss et al., 2009). Thereby, vehicular software systems can be enhanced with self-
management capabilities. These so-called self-x properties (like self-configuration, self-
healing, self-optimization or self-protection (Kephart & Chess, 2003)) improve the 
scalability, robustness and flexibility of the system. 
In 2001 IBM introduced the Autonomic Computing (AC) paradigm (Horn, 2001). The main 
idea is the adaptation of the behavior of the central nervous system which interacts 
autonomously. As basic principle the management of autonomic elements is realized by a 
reconfiguration-cycle where each autonomic element monitors and analyzes the 
environment, plans its next steps and executes the resulting actions. Originally, the focus 
lies on the management of large-scale computer networks. With Organic Computing (OC) 
(Schmeck, 2005) a novel principle for self-organizing systems is given by imitating adaptive, 
life-like behavior in the nature. Self-organization is realized on different abstraction levels 
with observer/controller models utilizing control-loops. No particular field of application is 
addressed and interdisciplinary research is covered. With the Self-adaptive Software Program 
(Robertson et al., 2001) a very ambitious research field is addressed where software 
evaluates and changes its own behavior at runtime. Therefore descriptions of intentions and 
alternative behavior need to be added in the deployed software. 
In the automotive sector several initiatives have already focused on evaluating self-x 
techniques for vehicles. A high-demanding goal for the future of transportation are 
autonomous cars which can adapt even in high complex scenarios as in urban traffic 
(Urmson & Whittaker, 2008). As promising as early results are, many - not only technical - 
problems are not solved yet and thus the practical appliance of autonomous driving is still 
not foreseeable yet. 
For the in-vehicle information and entertainment functionalities the Media Oriented Systems 
Transport (MOST) bus (MOST Cooperation, 2008) is a widespread established standard. It 
facilitates functional composition with a powerful API and already features very limited 
self-x properties with its configuration management. The Automotive Open System 
Architecture (AUTOSAR) (AUTOSAR Consortium, 2010) initiative is a consortium with the 
goal of an open standard for the automotive software architecture. Through a component-
based architecture the reuse and scalability of future automotive software is pursued. By a 
virtual integration of software components (Virtual Function Bus) the allocation of functions 
to ECUs can be assembled at design time. Even though this approach facilitates a more 
liberal way of the allocation, it does not support any dynamic allocation at runtime. Hence, 
self-adaptation techniques that rely on reallocation of functions cannot be applied. In 
(Trumler et al., 2007) self-healing and self-configuration is evaluated in a component-based 
automotive architecture which indicates the potentials arising with these techniques. Dinkel 
(Dinkel, 2008) focuses on the development and simulation of a completely new IT-
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architecture for future cars with self-x capabilities. It utilizes Java and OSGi for simulation 
purposes and is not applied in the field. The DySCAS project (Anthony et al., 2006) focuses 
on developing a middleware enabling dynamic self-configuration in today’s cars. For the 
reconfiguration of the system a policy-based mechanism is utilized. Another approach was 
proposed by DaimlerChrysler (Hofmann & Leboch, 2005). The EvoArch project tries to put 
more value on the autonomy of the different parts of the automobile enhancing the 
automobile with self-x properties. Within the research project ReCoNets (Teich et al., 2006) 
fault-tolerance is addressed by bringing Hardware/Software- Reconfiguration into the 
automobile. Although, reallocation of both hardware and software is a consequent 
progression of the currently advancing adaptivity and decomposability, it is not aligned 
with present automotive development method (e.g. FPGA reconfiguration). 
As briefly described before, different approaches are in progress enabling self-x properties in 
future cars with various degrees of a possible adaptation. Many open challenges need to be 
researched for meeting the domain-specific requirements of automotive electronic systems 
(e.g. the verification of adaptation). But no project focuses on the embedding of techniques in 
present automotive electronic systems allowing a transition to self-adaptive systems. 
 

 

Fig. 1. Self-adaptation in the context of automotive embedded systems 

The characteristics of self-adaptive or self-organized systems might provide a solution for the 
growing complexity in the automotive domain. Within this chapter we present an approach 
for enhancing automotive embedded software systems with self-x properties which 
increases the scalability, robustness and flexibility of vehicular software systems (cp. Figure 1). 
The structure of this paper is organized as follows: In Section 3 we present the challenges in 
the realization of self-x properties in automotive embedded systems. Afterwards, we 
illustrate the advantages of self-adapting automotive software systems by presenting 
concrete use cases. Our model-based approach to design self-adaptive automotive software 
systems is outlined in Section 5. In Section 6 we introduce an approach to realize self-x 
capabilities during runtime. Finally, we conclude the chapter in Section 7. 
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2. Self-adaptation in the context of automotive embedded systems 

Under the umbrella term self-adaptation a set of terms is defined, e.g. self-x properties. In 
this section we will explain relevant terms in the domain-specific context of automotive 
embedded systems. 
Self-adaptive software systems must be able to adapt the behavior (Behavioral Adaptation) 
or/and the structure (Structural Adaptation) of the system to changes in the environment or 
within the system itself (Zadeh, 1963)(McKinley et al., 2004). To adapt itself autonomously, the 
system must be able to detect and to evaluate its own context. Therefore, a model of the system 
and its feasible states is needed. The comparison of the currently detected context and the 
reference situation of the system model enables the evaluation of the current system state. This 
so-called Self-Awareness is the basis for the adaptation of the system or a sub-system. 
During runtime self-awareness is enabled by the Self-Description of each component within 
the system. The language and the scope of this description must be as small as possible to 
fulfill their purpose. Furthermore, the description must be processable by an embedded 
system with limited resources. 
Today, there are already examples for adaptive behavior in modern automobiles. For 
example, the engine control adapts the fuel injection according to the current road behavior. 
But this kind of adaptivity is limited to control applications and allows adaptation only in 
predetermined variants. To fully exploit the potentials of adaptivity, it is not practical to 
limit the variability by calculating all possible system configurations in advance (during 
design time). Due to the enormous amount of possible variability in today’s and future 
automotive software systems, it is necessary to adapt the system dynamically at runtime 
(Dynamic Reconfiguration) (Geihs, 2008). 
With respect to (Hofmeister, 1993) three different kinds of dynamic reconfiguration can be 
differentiated: 
1. The implementation of a component is replaced by another one (Behavioral 

Adaptation). 
2. The relation between components of the system is modified. New components and 

features can be added or removed (Behavioral Adaptation). 
3. The allocation of the software components is changed without the modification of the 

logical structure. Therefore, components are migrated from one hardware platform to 
another (Structural Adaptation). 

In the context of automotive embedded systems behavioral adaptation is achieved by the 
dynamic activation or deactivation of specific software-based features during runtime. 
Structural adaptation is realized by the dynamic reallocation of software components onto 
the available control units during runtime. 
To apply dynamic reconfiguration successfully in the context of automotive embedded 

systems, we have to deal with so-called emergent behavior. Emergence is defined as a 

property of a total system which cannot be derived from the simple summation of 

properties of its constituent sub-systems (Müller-Schloer, 2004). It is a result of self-adaptive 

or self-organizing processes and leads to a system behavior which is not explicitly defined 

(Wolf & Holvoet, 2004). This may lead to unwanted or uncontrolled behavior - so-called 

emergent misbehavior (Mogul, 2005). Because automotive embedded systems provide safety-

relevant applications (e.g. airbag), it is very important that the predefined requirements and 

constraints of the system are preserved during runtime. Therefore, emergent behavior is not 

tolerated in adaptive automotive software systems. 
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Instead, the aim of self-adaptation in the context of vehicles is to improve to the system with 
different self-x properties: 
Self-Management: The system must be able to manage its own functionalities without 

actions from outside the system. The complexity of the system management task can be 
decreased by increasing the management capability of single components. For example, 
by adding a self-description to each element within the system the current status of self-
aware elements does not need to be supervised continuously. Thereby, a divide-and- 
conquer strategy is applied. The more complex the management of individual elements 
is, the less complex is the management of the overall system. In the context of 
automotive embedded systems, a trade-off is needed between the self-management of 
the overall system and the management of individual parts of the system. 

Self-Configuration: Today, the configuration of complex systems (e.g. vehicular software 
systems) is performed by experts. By enhancing a system with self-configuration 
capabilities, it is possible to find a feasible configuration in a distributed and 
autonomous way. Thus, the manual and error-prone configuration process can be 
omitted. Furthermore, self-configuration enables the dynamic integration of new 
components and features during the runtime of the system. For example, in today’s cars 
the autonomous configuration is already supported by the infotainment system MOST 
in which a central instance - the so-called NetworkMaster - enables the configuration of 
features (MOST FBlocks) independent from their position. 

Self-Healing: The autonomous diagnosis of the current system state enables the detection of 
invalid system states. Afterwards, a valid system state is restored by means of self-
healing. The self-healing process is supported by the self-configuration capabilities of 
the system. To achieve the complete ”healing” of the system a certain degree of 
redundancy is assumed. The ability to heal itself is growing with the size of the overall 
system. Thus, self-healing is especially interesting in the field of infotainment and 
telematics applications. Delays due to the process of self-healing must be considered 
additionally during system design. 

Self-Protection: Self-protection of specific elements is necessary if the system is operating in 

a dynamic environment. For automobiles which are divided into different separated 

domains of automotive software, self-protection is an additional overhead which is not 

justifiable in the context of present automotive embedded systems. But the protection 

against critical system states and the prediction of problematic conditions is an option 

to prevent the system from failures and to satisfy the safety requirements within the 

automotive domain. Furthermore, by opening the in-vehicle communication to the 

outside world (e.g. car-2-x communication (CAR 2 CAR Communication Consortium, 

2010), the importance of self-protection will increase. 

Self-Optimization: The proactive search of a specific element for new opportunities to 

optimize its own behavior helps to reach the optimal system state. But to achieve such 

an optimization, resources are continuously needed. In the context of automobiles, it is 

necessary to evaluate carefully if this effort for self-optimization is justifiable. Context-

based self-optimization in terms of different predefined scenarios may be a potential 

trade-off for automobiles. 

To use the full potential of the previously described self-x properties in automotive 

embedded systems, certain challenges must be met. In the next Section we will describe 

these challenges in detail. 
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3. Challenges in realizing self-x properties in automotive embedded systems 

For realizing self-adaptive software systems for automobiles which enhance the system with 
self-x properties, several challenges have to be addressed which we describe in the 
following. Today, the software-based features of modern vehicles are statically assigned to 
specific ECUs. Since the number of control units cannot be expanded arbitrarily for the 
integration of new features, new concepts for the dynamic allocation of features to ECUs are 
needed. The Automotive Open System Architecture (AUTOSAR) (AUTOSAR Consortium, 
2010) initiative aims to establish a standardized software architecture for cars since 2002. By 
using a component-based approach, the reusability and the scalability of automotive 
software is increased. The so-called Virtual Function Bus (VFB) enables the virtual integration 
of software components by allocating these components to ECUs during design time. 
Thereby, the flexibility of designing automotive embedded systems is increased. However, 
with a more modular approach like AUTOSAR there is the need to decompose features into 
services and services into atomic functions. This approach enables the reuse of 
functionalities and reduces the overhead by eliminating redundant implementations within 
the software system. Furthermore, more freedom for the runtime adaptation is achieved by 
a more fine-granular decomposition of features. 
Modern runtime environments for automotive software, like Offene Systeme und deren 
Schnittstellen für die Elektronik in Kraftfahrzeugen (OSEK) (OSEK VDX Portal, n.d.) or 
AUTOSAR, are only configured statically during design time. Within statically designed 
systems most of the available resources are assigned permanently. Dynamic changes of this 
configuration (e.g. creating a new task) during runtime are not allowed. As runtime 
adaptation is needed to control the growing complexity, a runtime resource and conflict 
management is inevitable for the dynamic reconfiguration of the system (e.g. instead of a 
statically resolved virtual function bus with fixed port assignments in AUTOSAR, a real 
communication bus with a dynamic scheduling is needed). Therefore, the resources of each 
ECU - like CPU, memory, etc. – must be managed dynamically. 
Although sensors and actuators are separated from the computation, there is still the 
necessity for locality of the software functions to access the sensor/actuator data in today’s 
automotive embedded systems. Caused by the growing cross-linking of different 
functionalities – even inter-domain (e.g. caused by driver assistance features) - sensor and 
actuator data must be accessible by all features. Techniques like publish/subscribe and 
distributed data access might ease this problem. By the complete separation of sensors or 
actuators from the computation (control unit), their data can be accessed throughout the 
whole in-vehicle network. In case of an ECU breakdown the data of sensors or actuators will 
still be available. Thus, a more flexible distribution of software components is enabled which 
is mandatory to tap the full optimization potential of self-adaptation. 
Another challenge for the realization of self-x properties poses the heterogeneity of today’s 
vehicle electrical system architecture where diverse technologies are incorporated. The 
various hardware platforms and the different interconnection systems make it difficult to 
reallocate software components to different ECUs during runtime. For the migration to a 
different ECU, software components must be recompiled which increases the latency to 
adapt the system enormously or the program code of each component must be pre-compiled 
for the corresponding hardware platform and stored within the in-vehicle network. But for 
the various hardware platforms in today’s automobiles the memory capacity must be 
increased significantly which is not cost-effective. Only an abstraction from the underlying 
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technology (e.g. via a runtime environment or middleware) will allow the interaction of the 
components and thus the efficient self-adaptation of the overall system. 
In the automotive domain several applications with divergent safety and real-time 
requirements (specified as Safety Integrity Level, SIL (International Electrotechnical 
Commission (IEC), 1998)) are composed to one system. Presently, the requirements are met 
by a separation into domains (infotainment, power-train, comfort and chassis). Thus, a 
major challenge is to guarantee and meet the safety requirements of automotive systems 
even in adaptive systems (for example the ability to satisfy hard timing constraints). This 
results in an implied limitation of possible configurations of the system. The mandatory 
system constraints must be extracted during the design process and enforced during 
runtime. Thereby, the reconfiguration process of the system must not influence the behavior 
of safety-critical features. For this reason, the constraints and the effects of the adaptation 
must be considered in safety-relevant systems - like automobiles. 
To realize self-adaptive or self-organizing (technical) systems a control instance is needed 
which collects information about the system, analyses these information and decides how to 
adapt the system to reach the predefined objectives (Mühl et al., 2007). Such a control 
instance must ensure that the system is in a correct state at any time. Present automotive 
systems have no capabilities to describe their properties and requirements at runtime so that 
a controller instance could not obtain enough information about the current systems state, 
only deduced information. Accordingly, a description of the components has to be made 
available at runtime. For component-based approaches a self-description (for hardware and 
software components) generated out of the design seems promising. But a trade-off between 
the expressiveness with more potential for self-adaptation and the overhead of a higher 
complexity for analysis algorithms has to be done. 
To address these challenges in realizing self-adaptive automotive embedded systems with 
self-x properties, a design process is necessary which allows the modeling and the 
verification of adaptivity while considering the domain-specific requirements. Furthermore, 
we need a runtime environment which monitors the requirements and constraints specified 
during design and which enables the dynamic reconfiguration of the system. Before we 
introduce these concepts in Section 5 and 6, use cases which exploit self-x properties of 
automobiles are presented in the next section. 

4. Use cases for the application of self-x properties in automobiles 

By enhancing the automotive software system with the self-x properties as described in 
Section 2, significant improvements beyond today’s state of the art may be realized. 

4.1 Resource optimization 
A car operates in a continuously changing environment. On the freeway, features like the 
cruise control system, the lane departure warning system or the adaptive driving speed 
control are used. While driving in the city, other or modified driver assistance features are 
needed (e.g. the parking assistant system). The night view assistant, adaptive headlights or 
the high-beam assistant are only used by night or in cases of restricted view. To reach the 
optimal utilization of the available resources, individual features have to be used situation-
based. Thereby, the required hardware resources are reduced by mutually exclusive 
features. The situation-based deactivation of unnecessary but simultaneously possible 
features saves resources (e.g. energy, computing time, etc.) during runtime. 
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4.2 Fault tolerance 
Due to reasons of cost and efficiency, there is almost no redundancy in today’s automobiles. 
The failure of software-based functionalities must be repaired normally by a specialized car 
repair. In some cases, the failure of an electronic component may lead to the total 
breakdown of the car. These failures within the car’s electric/electronic are very negative 
experiences for the customers and in worst case may possibly threaten the life of the driver. 
By enhancing automotive embedded systems with self-healing capabilities, the fault 
tolerance and the availability of the systems is increased by software without costs for 
additional hardware resources. For example, the failure of a control unit can be 
compensated by the dynamic adaptation of the system’s structure. Thus, a temporary 
emergency operation of the automotive embedded system is enabled by equipping the system 
with self-x properties. Life-threatening situations for the driver can be avoided and the 
satisfaction of the customers can be increased. 

4.3 Third party consumer device integration 
Today, the replacement of vehicle components, the upgrade of new components (after-

market products) within the car repair or the update of the vehicular software may lead to 

problems because the software versions of specific components may not be compatible with 

the shipped vehicle software. Furthermore, the user demand for integrating modern 

consumer devices (e.g. mobile phones, smart phones, PDAs, etc.) into the vehicle is very 

high. The short lifecycles (especially in comparison to the life-cycles of automobiles) and the 

diversity of these devices have led to proprietary solutions for connecting consumer devices 

to the vehicle infotainment system. Enhancing the automotive embedded system by self-

configuration enables the seamless, flexible and scalable integration of new software-based 

features, new hardware components and consumer devices. Thereby, failures due to 

software versions which are incompatible are eliminated. Based on the autonomous 

allocation of software components to ECUs, self-configuration reduces the complexity for 

the system integrator and the effort during the production of the automobile. The error-

prone manual assignment of features to hardware platforms and the time-consuming 

flashing (software deployment) of the ECUs during the end-of-line production can be 

omitted. 

4.4 Partial in-vehicle network operation 
Another use case which can be enabled by self-adaptive automotive systems with self-x 

properties is the partial in-vehicle network operation. In this use case certain parts of the in-

vehicle network or single ECUs can be shut down to save resources (e.g. energy) during 

runtime. This can be done in certain contexts (situations) when all features located in a 

distinct area of the network are not required or can be substituted by functions running on 

other platforms. These functions might be started dynamically or for simplicity run as 

shadow tasks in the background all the time. The potential benefits of a partial in-vehicle 

network operation of course strongly depend on the mapping of software components to 

the ECUs. For an optimal allocation, with respect to the partial in-vehicle network operation, 

the distribution should cluster functionality which is and is not used in the same context. 

Self-x properties may improve the partial in-vehicle network operation by dynamically 

reallocating software components to shut down even more parts of the network. 
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5. Designing automotive embedded systems with self-x properties 

Nowadays software development in the automobile area has been dominated by its 
traditional development of mechanical components, as it has been practiced for the last 
decades. With the growing number of automobile features realized mainly in software, the 
design process is becoming more and more challenging. For managing the complexity of 
distributed embedded systems like automotive electronic systems a specialized software 
development process is necessary which allows the abstraction and realization of single 
system components and the whole system. Therefore, the description and the description 
language are a critical factor how well - in terms of how close to the reality - the system can 
be modeled on different layers of abstraction. In a distributed adaptive system with self-x 
properties - beneath the static description - the dynamic description in particular is of great 
importance. 
An architecture of a software system is generally described by an Architecture Description 
Language. In the automobile domain several efforts for the system modeling are undertaken. 
EAST-ADL (Electronics Architecture and Software Technology - Architecture Description 
Language) (Cuenot et al., 2008) as a domain-specific architecture description language is a 
promising standard for the seamless automotive architecture design. On the 
Implementation Level it also targets the component-based architecture AUTOSAR 
(AUTOSAR Consortium, 2010) allowing an integration with this standard. In our approach 
we foresee to utilize EAST-ADL as basis for describing an automotive electronic system 
enhanced with self-x properties. EAST-ADL allows the design of static automotive systems 
based on UML (EAST-ADL2, 2010), but for adaptive systems with self-x properties it has to 
be enhanced, e.g. by considering dynamic behavior at runtime. Additionally defined 
attributes are modeled to specify the runtime variability of the EAST-ADL system 
components. Thereby, for example self-configuration and self-healing can be supported by 
annotating components to be reconfigurable at runtime. Thus, they can be instantiated in a 
self-configuration or self-healing process. 
The design space of runtime adaptive systems with self-x properties increases exponentially 
in terms of possible runtime configurations. Thus, special emphasis has to be placed on the 
validation of the dynamic behavior in early design phases. This allows an iterative validation of 
the system and its adaptation behavior leading to find faults early in the development 
process. By this, the development costs can be decreased as late design changes typically 
result in drastically increased costs. The designed and validated system has to be executed 
by a tailored runtime environment as outlined in Section 6. The allowed degree of variability 
has to be defined in the design to comply with requirements on the system safety. An 
uncontrolled self-organization is not feasible in safety-related systems as certain 
requirements need to be met at any time. Especially, the abstraction of the definition of the 
adaptation is crucial. For the validation of the system and its behavior this should be 
defined on a rather high level of abstraction. Thereby, the allowed nominal behavior - 
including the adaptation behavior – can be constrained. On a high level of abstraction so-
called features can be modeled representing user-visual functionality. Additional to static 
features which are present in a product, dynamic features can be defined. These represent 
adaptive functionality on an abstract level. They contain interdependencies and distinct 
selection criteria which define their selection at runtime. Derived contexts can be used to 
select a set of dynamic features with respect to the actual driving situation. Car 
manufacturers may specify distinct scenarios (e.g. driving situations) in which defined 
functions of the automobile are necessary. 
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Fig. 2. Integration of SystemC validation on EAST-ADL layers of abstraction 

For the iterative validation of the design we use SystemC simulations. SystemC is a 
standardized system modeling and simulation language which supports 
Hardware/Software-Co-Design and Co-Simulation. It is specified and promoted by the 
Open SystemC Initiative (OSCI) (Open SystemC Initiative (OSCI), 2010) and has been 
approved by the IEEE Standards Association as IEEE 1666-2005 (IEEE, 2005). Based on the 
wide-spread programming language C++, SystemC provides artifacts to simulate 
concurrent processes and an event-driven simulation kernel. It incorporates semantic 
constructs of hardware description languages (like VHDL and Verilog) and can be used to 
model the holistic system using plain C++. A stepwise refinement in a top-down design 
process is realized with the SystemC Transaction-Level Modeling (TLM) (Cai & Gajski, 2003) 
methodology. TLM is a methodology used for modeling digital systems which separates the 
details of communication among computational components from the details of the 
computational components. Details of communication or computation can be hidden in 
early stages of the design and added later. Since the application of SystemC for a simulation-
based validation of automotive electronic systems is a promising approach for the design 
exploration and hardware sizing, it is integrated within our approach for adaptive 
automotive systems with self-x properties. Therefore, we adopt SystemC in the 
development process with architecture descriptions based on EAST-ADL. An automatic 
transformation on the layers of abstraction of EAST-ADL to the SystemC TLM levels is 
performed (see Figure 2) which enables a simulation-based validation. Thereby, architecture 
models can be iteratively refined and improved in the development process. Through this, 
adaptive automobile systems can be seamlessly developed and described. The design of 
such a system including the defined adaptivity has to be realized and enforced at runtime in 
the end, which is described in Section 6. In the next section we present an automotive 
example which has been designed with the above methodology and validated by a SystemC 
simulation. 
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5.1 Automotive example for validation 
As outlined before, in the design of automotive systems with self-x properties the validation 
of such systems is increasingly challenging. Therefore, we transform EAST-ADL models to 
executable SystemC models in a prototypical tool-chain. For evaluation purposes an 
automotive case study (Hardung et al., 2004) has been modeled in EAST-ADL and 
transformed to SystemC simulations on different levels of abstraction. 
The use case is located within the so-called body domain of an automobile and consists of 

the four features exterior light, direction indication, central door locking and keyless door entry. 

The exterior light feature allows controlling the front and rear lights of the vehicle. The 

lights can be switched on/off manually or automatically through darkness or rain detected 

by the rain/light sensor. These inputs are interpreted by the function exterior light control 

which controls the light units (front and rear). For the direction indication a direction 

indication switch can be used to signal the turning direction. With the hazard light switch, 

risky driving situations can be signaled to other road users. Therefore, the direction 

indication master control informs the direction indication front and rear controls about the 

designated status of the direction indication lights. These turn the direction indication lights 

on or off in the front and rear light units. Central door locking allows locking and unlocking 

all doors simultaneously by using the key in the lock or by radio transmission. A radio 

receiver signals the information to the central door locking control. This function flashes the 

direction indication lights for a feedback to the driver and controls the four door locks of the 

car. An additional feature to the un-/locking of an automobile is the keyless entry. A driver 

can approach his car with the key in his pocket and the doors will unlock automatically. It 

can be locked by simply pressing a button on the door handle. Antenna components detect 

the key in the surrounding and inform the central door locking function which in turn 

unlocks the doors. With respect to the interaction with exterior light (which gives feedback 

via the direction indication lights), it does not make any difference whether the doors have 

been unlocked in a standard way or via the keyless entry. At Analysis Level this use case is 

modelled in EAST-ADL by so-called FunctionalDevices components: KeylessEntryController, 

CentralDoorLockingController, DirectionIndicationMasterController, DirectionIndicationFront-

Controller, DirectionIndicationRearController and ExteriorLightController as is depicted in Figure 

3. The behavior of these functionalities is described as UML opaque behavior of the 

components (C++ source code). Additionally, behavior can also be modeled with UML 

Statecharts as a UML based behavior specification. Communication is designed as data flow 

between the components represented by FunctionFlowPorts and FunctionConnectors. 

A SystemC simulation generated from this level includes modules interconnected for each of 

the above mentioned FunctionalDevices. They implement the respective behavior of these 

modeled components in a thread of the module. A simulation based on the abstract EAST-

ADL Analysis Level of the use case was realized. Thus, the interaction of the abstract modeled 

functionalities can be validated with a simulation-based analysis. 

At Design Level the use case is modeled in a Functional Design Architecture (FDA) 

representing the software parts and a Hardware Design Architecture (HDA) representing 

the hardware parts of the use case realization. The FDA includes DesignFunctionTypes 

for the software functionalities of the use case and LocalDeviceManagers representing 

the software access to the modeled sensors and actuators. Latter are designed in the HDA 

together with the hardware platforms (Nodes) and the interconnecting LocalBus. 

Components in the FDA are interconnected with FunctionConnectors and in the HDA  
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Fig. 3. Composite diagram of the use case at Analysis Level 

with HardwareConnectors. Additionally, LocalDeviceManagers exist for each 

depicted Sensor and Actuator in the Functional Design Architecture which are not explicitly 

displayed in this figure. The generated SystemC implementation of the use case at Design 

Level - which models software and hardware explicitly - is depicted in Figure 4. It includes 

the use of a framework for automotive-specific modules. For example, ECUs and software 

functions can be included out of a library as specific sc module implementations. As can be 

derived from Figure 4 the EAST-ADL Design Level components are generated as sc modules 

representing software functions. These modules are included in another SystemC module 

which realizes a hardware platform with attached sensors and actuators in form of  

sc modules. These hardware platforms are interconnected by a module implementation of the  

 
 

 

Fig. 4. Overview of the generated SystemC simulation at the Design Level 
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defined LocalBus. SystemC interfaces and channels realize the concrete interconnections of 

the modules. For example, a specialized type of sc interface (EcuSw If) realizes the 

communication between software functions and ECU modules. 

The introduced transformation is realized in a prototypical toolchain which integrates into 

the Eclipse environment as a plug-in. By this, it can easily be used with EAST-ADL models 

based on UML in Eclipse (e.g. with the Papyrus UML modeling tool which supports EAST-

ADL). The transformations itself are implemented as templates of the Xpand model-to-text 

transformation language. They use EAST-ADL models as input and generate the single 

SystemC files according to the mapping of the languages. Currently, simulations can be 

generated from the Analysis Level or Design Level. Simple checks allow to examine the 

conformity for a simulation. Because a generation of incomplete models in early design 

stages should be possible, the checks are only as strict as needed for generating correct 

SystemC simulations. This supports the iterative simulation of ADL models in the design 

process. For the simulation at Design Level we utilize a self-developed framework called 

DynaSim which allows the modeling of an automotive in-vehicle network in SystemC. The 

generated files refer to SystemC models in the DynaSim library (e.g. ECUs or software 

functions). By this, a simulation can be performed considering the automotive-specific 

system environment. We have briefly introduced our approach for the validation of self-x 

properties in adaptive automotive systems at different design stages on the basis of a case 

study. Since the designed properties of the models have to be ensured at runtime, the next 

section focuses on the runtime mechanisms. 

6. Enforcing self-x properties during runtime 

To enforce self-x properties in automotive embedded systems during runtime, an adopted 

runtime environment is needed. This must provide mechanisms to manage system  

resources dynamically and must enable the structural and behavioral adaptation of the 

automotive software system. Furthermore, it is essential to satisfy all mandatory 

requirements and constraints which are defined during the design process (see Section 5). 

Thereby, the correct system behavior can be guaranteed during runtime and unwanted or 

uncontrolled behavior can be avoided. In our approach this is realized by using a control 

loop based mechanism according to the AC paradigm. The automotive embedded system is 

monitored continuously, changes are analyzed and adaptations of the system are planed 

and executed. 

Especially for automotive systems with various requirements and constraints, enabling  

self-x properties and building such a control loop is a difficult task. Not only functional but 

also non-functional requirements (e.g. timing, safety) have to be met during runtime. 

Generally, automotive software features are divided into so-called Safety Integrity Level (SIL) 

according to their safety relevance. Each SIL has different requirements which must be 

considered by the control loop accordingly. For example, a safety-critical feature (e.g. the 

airbag control) may not be affected at any time - even during reconfiguration. However, a 

feature from the infotainment domain (e.g. the hands-free kit) can be deactivated during 

reconfiguration without life-threatening consequences. The control architecture of the 

automotive embedded systems must take these requirements into account. 
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Furthermore, the control architecture of a self-adaptive system which provides safety-

relevant applications has to be highly dependable and needs to provide the necessary 

degree of flexibility to react on changing conditions in an appropriate way. Therefore, 

managing the whole system by one single control loop is complex and results in a single-

point-of-failure. 

In order to cope with these requirements, a divide-and-conquer strategy can be applied 

which is partitioning the system into smaller entities - so-called clusters. A cluster is defined 

as a logic group of software components as well as a sub-set of requirements and system 

objectives which have to be met by all of software components within the cluster. 

The partitioning of the system into different clusters can be based on different criteria: 

• Functional dependencies 

• Non-functional dependencies 

• Physical location of the functions 

• Requirements and system objectives 
These criteria can be combined in any way in order to provide an optimal segmentation of 

the automotive software system. In this context, an optimal segmentation means that 

decisions can be made in a single cluster from a local point of view without interfering other 

clusters. 

Repeated partitioning of the system leads to a hierarchy of clusters, representing the entire 

automotive software system. Each cluster within this hierarchy is controlled by its own 

control loop resulting in a hierarchical multi-layered control architecture (cp. Figure 5). This 

control loop is an external component which is not included in the cluster itself. It is 

monitoring and controlling the current state of a cluster continuously, so that all 

requirements and system objectives are satisfied. If one of the defined requirements or 

system objectives is not met anymore, the affected cluster must be adapted in order to meet 

all requirements and system objectives again. This is either done by the reassignment of 

software components to different ECUs (structural adaptation) or by the 

activation/deactivation of specific software-based features (behavioral adaptation). 

The clusters on the lower layers have a local scope with only a few requirements to be 

satisfied and software components to be controlled. Thereby, an individual implementation 

of the control loop and a fast reaction on changes is possible. Many clusters have only one 

system objective, so tailored methods and algorithms can be applied for the observation and 

control of the cluster. Due to different implementations of the control cycle, the control 

architecture can be customized individually for the different needs of the automotive 

software domains. As a drawback, the clusters on the lower layers have a restricted scope 

and may not be capable of finding a new valid assignment of software components  

to ECUs. 

On higher layers, the number of software components managed by a cluster is increasing, as 
the number of requirements and system objectives, which have to be met. Thus, on the one 
hand the chance of finding a new allocation which satisfies all requirements is increased; 
one the other hand, it is more complex to find one at all. 
The Root Cluster on the top layer represents the top element in the hierarchy and manages 
the entire automotive embedded system. But it is only involved in the self-adaptation 
process as a last instance. The Root Cluster is not aware of the decisions made on the lower 
clusters. 
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Within an n-layered control architecture up to n control loops are involved in the process of 

self-adaptation. In worst case, calculations of the control cycle are performed n times until a 

new valid allocation is found, resulting in a long response time to changes and a certain 

overhead. To reduce this overhead, partial solutions of calculations are passed to the next 

higher layer and will be reused there. But nevertheless, a trade-off is needed between the 

overhead provided by each new layer added to the control architecture and the advantages 

gained by it. 

Each control loop within the hierarchical multi-layered control architecture consists of four 

stages, according to the AC paradigm: 

Monitoring: Certain parameters of the system must be monitored continuously to detect 

changes quickly and dependably within the system’s environment or within the system 

itself. To enhance the system with self-healing capabilities, malfunctions must be 

discovered autonomously. Traditionally, monitoring and fault detection recognize the 

malfunction of individual components. Thereby, the expected behavior is compared to 

the actual behavior of the component. If the actual behavior deviates from the expected 

behavior, a failure is likely. The representation of the expected behavior or the 

measurement of the actual behavior is very specific and tailored for a certain 

component. With growing complexity, interdependencies and distribution of the 

vehicles software features the following problems need to be solved: 

• Monitoring the complete system behavior: Although each individual component is 

working correctly, the overall system exhibits incorrect behavior. 

• Monitoring the dynamic system behavior: Adaptive systems may operate in different 

system configurations. Thus, it is difficult to predict all possible configurations (State 

Explosion) and to monitor the system with static monitoring techniques. 

• Detection of unknown failures: Today’s monitoring techniques have limited 

abilities to discover unknown failures during runtime. This is due to the use of 

error patterns to identify specific errors in most monitoring mechanisms. Errors 

which do not match the predefined patterns are not detected. 

Analysis: During the analysis stage the present, the desired and the future state of the 

system must be detected and predicted. Thereby, the analysis stage is closely linked to 

the monitoring stage, because the observations from the monitoring of the system are 

directly passed to the analysis. In contrary to the monitoring stage, the analysis of the 

system uses additional information (e.g. current environmental conditions, predefined 

system objectives, etc.) for the evaluation of the actual system state. The so-called 

Livingstone Model (Cimatti et al., 2003) may be used for this purpose. It describes a 

model-based diagnostic mechanism for autonomous spacecrafts with self-configuration 

capabilities. Therefore, it compares the predicted behavior with the actual behavior and 

makes statements concerning the needed actions based on the model of the system. In 

diagnosis, information about which features are needed for the further operation of the 

system beyond the detection of error causes are made depending on the current 

environmental conditions of the system and the system’s objective (Williams et al., 

1996). With these information about the available resources and the features needed in 

future which are gained from the analysis stage, the next stage (planning) may find a 

new allocation of software components to ECUs. 
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Planning: The planning stage creates or composes a set of actions to modify the managed 

elements of the system. In the context of automotive embedded systems the planning 

stage determines a new set of features and a new allocation of software components 

and control units which fulfills all predefined requirements. This allocation problem 

can be either expressed as Generalized Assignment Problem (GAP) (Cattrysse & 

VanWassenhove, 1990) or as Constraint Satisfaction Problem (CSP) (Dinkel & 

Baumgarten, 2007). Since the allocation problem is a NP-hard optimization problem, a 

heuristic approach is needed to solve this problem during runtime. The challenge of the 

planing stage is to find a trade-off between the computation time and the quality of the 

solution in order to satisfy the requirements of the automotive domain. 

Execution: The execution stage of the control cycle provides mechanisms to execute the 

plan determined by the planning stage in order to adapt the system. Within the 

vehicular software system these changes refer to the activation or deactivation of 

features as well as the migration of software components to different ECUs. In the 

context of safety-relevant applications, it is important that the normal system 

behavior is not disturbed during the reconfiguration of the system. The migration of 

software components can be chosen whether the context of the software component 

(variables, program stack, etc.), the program code (binary or source code) or both is 

transfered to another ECU. Thus, for example, a safety-relevant feature may exist on 

several ECUs. In case of a migration only the current context of this feature must be 

transfered to another ECU. Other features may be recompiled for the target hardware 

platform in case of a migration and transmitted as binary code. According to the 

predefined requirements of a feature, specific techniques for the migration of 

software components may be used. 

As pointed out before, a multi-layered control architecture provides the necessary 

performance and degree of flexibility to react on changes within the system’s environment 

or within the system itself in an adequate way. Thus, it is possible to supervise these 

requirements predefined during the design and to adapt the system if one of the 

requirements is not satisfied anymore. Small clusters with individually tailored control 

loops can react quickly, while clusters on higher layers have a wider scope and more 

information to find the optimal configuration of the automotive embedded system. Thus, 

the chance of finding a new valid allocation of software components to ECUs is better on 

upper layers. Furthermore, a software component is always supervised by more than one 

control loop. This avoids single-point-of-failures and increases the dependability of the 

control architecture. In comparison to other control architectures the hierarchical multi-

layered approach reduces the complexity of the self-adaptation process within automotive 

embedded systems (Zeller et al., 2009). Thus, the hierarchical multi-layered control 

architecture enables the extension of automotive embedded systems by self-x properties like 

self-configuration, self-healing and self-optimization. 

6.1 Example control architecture for today’s automotive embedded systems 
Managing today’s vehicle software systems, means managing about 270 features, running 

on nearly 70 different ECUs (Pretschner et al., 2007). These ECUs and various sensors and 

actuators are interconnected through different network buses. 
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Nowadays there are three major vehicle network systems (cp. Figure 6): The most common 

network technology used in vehicles is the Controller Area Network (CAN) bus (Robert Bosch 

GmbH, 1991). CAN is a multi-master broadcast bus for connecting ECUs without central 

control, providing real-time capable data transmission. FlexRay (FlexRay Consortium, 2005) 

is a fast, deterministic and fault-tolerant automotive network technology. It is designed to be 

faster and more reliable than CAN. Therefore, it is used in the field of safety-critical 

applications (e.g. active and passive safety systems). The Media Oriented Systems Transport 

(MOST) (MOST Cooperation, 2008) bus is used for interconnecting multimedia and 

infotainment components proving high data rates and synchronous channels for the 

transmission of audio and video data. 

 

 

 

 

   

 
 

 

Fig. 6. In-vehicle network topology of a BMW 7-series (Source: BMW AG, 2005) 

The vehicle features reach from infotainment functionalities without real-time requirements 

over features with soft real-time requirements in the comfort domain up to safety-critical 

features with hard real-time requirements in the chassis or power train domain. Therefore, 

various requirements and very diverse system objectives have to be satisfied during 

runtime. 

By using a multi-layered control architecture it is possible to manage the complexity and 

heterogeneity of modern vehicle electronics and to enable adaptivity and self-x  

properties. To achieve a high degree of dependability and a quick reaction to changes, we 

use different criteria for partitioning the automotive embedded system into clusters (see 

Figure 7): 
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Fig. 7. Example of a hierarchical multi-layered architecture for today’s automotive 
embedded systems 

In a first step, the whole system (Vehicle Cluster on the top layer) is divided into the five 
Safety Integrity Levels (SIL 0-4) (International Electrotechnical Commission (IEC), 1998), 
because features with the same requirements on functional safety can be managed using the 
same algorithms and reconfiguration mechanisms. Nowadays, this classification is more 
appropriate than the traditional division into different automotive software domains 
because most new driver-assistance features do not fit into this domain-separated 
classification anymore. 
In a second partitioning, the system is divided into the physical location of the vehicle’s 
features according to the network bus the feature is designed for. This layer is added, so that 
all features with the same or similar communication requirements (e.g. required bandwidth) 
and real-time requirements can be controlled in the same way. 
On the next layer, each Network Cluster is divided into the different features which are 
communicating using this vehicle network bus. Hence, each feature is controlled by its own 
control loop, managing its individual requirements and system objectives. 
Most features within the automotive domain are composed of several software components 
as well as sensors and actuators. One example is the Adaptive Cruise Control (ACC) feature 
which can automatically adjust the car’s speed to maintain a safe distance to the vehicle in 
front. This is achieved through a radar headway sensor to detect the position and the speed 
of the leading vehicle, a digital signal processor and a longitudinal controller for calculating 
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the car’s deceleration. If the leading vehicle slows down or if another object is detected by 
the radar sensor, the system sends a signal to the braking system (the actuators) to 
decelerate. When the road is clear, the system will re-accelerate the vehicle back to the set 
speed of the cruise control. 
On the bottom layer, each feature is decomposed into one or more services by which the 
feature is composed of. For example, the ACC Feature Cluster can be decomposed into the 
radar sensor service, the digital signal processing service, the longitudinal controller service 
and the engine and braking system services to decelerate. Each sensor, actuator and 
computation or controlling algorithm is a software-based function represented by a service. 
Each Service Cluster consists of either one or several software components (so-called 
functions) and represents the lowest control layer in our approach. Because services are often 
used by more than one feature, a service may be part of more than one Feature Cluster. 
This hierarchical multi-layered control architecture provides a suitable mechanism for 
realizing adaptive automotive embedded systems. The requirements specified during 
design (see Section 5) can be enforced during runtime and self-x properties like self-healing, 
self-optimization or self-configuration are enabled by a control loop based approach. 

7. Conclusion 

The growing complexity of automotive software systems is getting more and more 
unmanageable. Enhancing these systems with self-x properties (e.g. self-healing or self-
configuration) by self-adaptation or self-organization may overcome these problem. This 
increases the flexibility and efficiency of complex software systems at the same time. In this 
chapter, we described the domain-specific challenges in realizing self-adaptive automotive 
embedded systems which provide self-x capabilities. To cope with the safety and the real-
time requirements of vehicular software systems, the degree of variability must be defined 
and uncontrolled behavior must be prevented. 
This is pursued by an integrated development process which enables the verification and 
validation of the dynamic system behavior in iterative steps during the design. We presented 
our approach which incorporates the automotive domain-specific architecture description 
language EAST-ADL. The focus of the presented work is on enabling the validation through 
simulation. By this, the system and adaptation behavior realizing self-x properties can be 
validated. Since the designed requirements have to be met and the constraints have to be 
enforced at runtime, we introduced a cluster-based methodology for the runtime. For the 
reduction of the variability and to guarantee the predefined system behavior at runtime the 
satisfaction of the predefined requirements and constraints is supported by a hierarchical 
multi-layered control architecture. If any system requirement is not met anymore, the system 
is adapted to meet the constraints again. Thus, we have shown in this work the challenges of 
automotive embedded systems with self-x properties and presented our approach for the 
design and runtime. 
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