
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

21

Towards Automotive Embedded Systems with
Self-X Properties

Gereon Weiss, Marc Zeller and Dirk Eilers
Fraunhofer Institute for Communication Systems ESK

Germany

1. Introduction

Since the first pieces of software have been introduced into automobiles in 1976, the
complexity of automotive software systems is growing rapidly. Today automotive software
is widely installed for diverse applications ranging from the infotainment domain (e.g.
entertainment, navigation, etc.) with typically no real-time requirements to safety-critical
control software (e.g. engine control, safety functionalities, etc.) with hard real-time
requirements. In addition, many comfort functionalities of automobiles are realized by
software nowadays (e.g. the control of the air condition system, electronic window
regulator, etc.). Up to 90% of today’s innovations in the automotive industry are realized by
hard- and software (Pretschner et al., 2007). This results in up to 2,500 ”atomic” functions
realized in software on up to 67 electronic control units (ECUs) in modern high-end cars
(Fürst, 2010).
For the future development of automobile electronics, there are two major trends: A
growing number of functionalities and through this a growing importance of software in the
car (Hardung et al., 2004). Future generations of cars will be equipped with many new,
complex features (Czarnecki & Eisenecker, 2000). For example, functionalities to support
active driving safety (e.g. driver assistance systems), features which enable new innovative
driving concepts (e.g. engine control for hybrid vehicles), or new functionalities in the
comfort domain (e.g. new infotainment features). Most of these functionalities will be
realized in software, which increases the amount and importance of software within the
automotive domain necessarily. But these new features will also increase the complexity of
future vehicular system architectures. For instance, driver assistance systems increase the
complexity because they interact with several in-vehicle domains, e.g. the power-train and
infotainment domain. In future, the trend of establishing more and more interactions
between software components will continue, e.g. through x-by-wire features, where
mechanical transmission is replaced by electrical signals. This results in a growing
interdependency of separated software domains and in an increased need for
interconnection. Another important aspect is the continuously growing number of
functional variants caused by customer-specific equipment options or country-specific
regulations. At the same time, the demand on the software quality within the automotive
domain is very high at all times. These requirements must be satisfied in the future, despite
the increasing complexity of automotive software architectures. Even today it is a great
challenge to manage these systems from the outside.

www.intechopen.com

 New Trends and Developments in Automotive System Engineering

412

In recent years, a lot of research has been done, trying to explore new methods for the
management of general complex software systems. Within the research area of Self-
adaptation (McKinley et al., 2004) and Self-organization (Serugendo et al., 2004) new
paradigms for the management of complex systems have been introduced. Both approaches
utilize control-loops for feedback-based control of the system. Self-adaptive systems realize
the adaptation of the system in a top-down manner by setting global goals which are
enforced hierarchically. On the contrary, self-organizing systems follow a bottom-up
approach in which the local interaction of elements results in the intended global behavior.
These paradigms for the development of general systems which are capable of adaptation
also constitute a promising solution to master the complexity within automotive embedded
systems (Weiss et al., 2009). Thereby, vehicular software systems can be enhanced with self-
management capabilities. These so-called self-x properties (like self-configuration, self-
healing, self-optimization or self-protection (Kephart & Chess, 2003)) improve the
scalability, robustness and flexibility of the system.
In 2001 IBM introduced the Autonomic Computing (AC) paradigm (Horn, 2001). The main
idea is the adaptation of the behavior of the central nervous system which interacts
autonomously. As basic principle the management of autonomic elements is realized by a
reconfiguration-cycle where each autonomic element monitors and analyzes the
environment, plans its next steps and executes the resulting actions. Originally, the focus
lies on the management of large-scale computer networks. With Organic Computing (OC)
(Schmeck, 2005) a novel principle for self-organizing systems is given by imitating adaptive,
life-like behavior in the nature. Self-organization is realized on different abstraction levels
with observer/controller models utilizing control-loops. No particular field of application is
addressed and interdisciplinary research is covered. With the Self-adaptive Software Program
(Robertson et al., 2001) a very ambitious research field is addressed where software
evaluates and changes its own behavior at runtime. Therefore descriptions of intentions and
alternative behavior need to be added in the deployed software.
In the automotive sector several initiatives have already focused on evaluating self-x
techniques for vehicles. A high-demanding goal for the future of transportation are
autonomous cars which can adapt even in high complex scenarios as in urban traffic
(Urmson & Whittaker, 2008). As promising as early results are, many - not only technical -
problems are not solved yet and thus the practical appliance of autonomous driving is still
not foreseeable yet.
For the in-vehicle information and entertainment functionalities the Media Oriented Systems
Transport (MOST) bus (MOST Cooperation, 2008) is a widespread established standard. It
facilitates functional composition with a powerful API and already features very limited
self-x properties with its configuration management. The Automotive Open System
Architecture (AUTOSAR) (AUTOSAR Consortium, 2010) initiative is a consortium with the
goal of an open standard for the automotive software architecture. Through a component-
based architecture the reuse and scalability of future automotive software is pursued. By a
virtual integration of software components (Virtual Function Bus) the allocation of functions
to ECUs can be assembled at design time. Even though this approach facilitates a more
liberal way of the allocation, it does not support any dynamic allocation at runtime. Hence,
self-adaptation techniques that rely on reallocation of functions cannot be applied. In
(Trumler et al., 2007) self-healing and self-configuration is evaluated in a component-based
automotive architecture which indicates the potentials arising with these techniques. Dinkel
(Dinkel, 2008) focuses on the development and simulation of a completely new IT-

www.intechopen.com

Towards Automotive Embedded Systems with Self-X Properties

413

architecture for future cars with self-x capabilities. It utilizes Java and OSGi for simulation
purposes and is not applied in the field. The DySCAS project (Anthony et al., 2006) focuses
on developing a middleware enabling dynamic self-configuration in today’s cars. For the
reconfiguration of the system a policy-based mechanism is utilized. Another approach was
proposed by DaimlerChrysler (Hofmann & Leboch, 2005). The EvoArch project tries to put
more value on the autonomy of the different parts of the automobile enhancing the
automobile with self-x properties. Within the research project ReCoNets (Teich et al., 2006)
fault-tolerance is addressed by bringing Hardware/Software- Reconfiguration into the
automobile. Although, reallocation of both hardware and software is a consequent
progression of the currently advancing adaptivity and decomposability, it is not aligned
with present automotive development method (e.g. FPGA reconfiguration).
As briefly described before, different approaches are in progress enabling self-x properties in
future cars with various degrees of a possible adaptation. Many open challenges need to be
researched for meeting the domain-specific requirements of automotive electronic systems
(e.g. the verification of adaptation). But no project focuses on the embedding of techniques in
present automotive electronic systems allowing a transition to self-adaptive systems.

Fig. 1. Self-adaptation in the context of automotive embedded systems

The characteristics of self-adaptive or self-organized systems might provide a solution for the
growing complexity in the automotive domain. Within this chapter we present an approach
for enhancing automotive embedded software systems with self-x properties which
increases the scalability, robustness and flexibility of vehicular software systems (cp. Figure 1).
The structure of this paper is organized as follows: In Section 3 we present the challenges in
the realization of self-x properties in automotive embedded systems. Afterwards, we
illustrate the advantages of self-adapting automotive software systems by presenting
concrete use cases. Our model-based approach to design self-adaptive automotive software
systems is outlined in Section 5. In Section 6 we introduce an approach to realize self-x
capabilities during runtime. Finally, we conclude the chapter in Section 7.

www.intechopen.com

 New Trends and Developments in Automotive System Engineering

414

2. Self-adaptation in the context of automotive embedded systems

Under the umbrella term self-adaptation a set of terms is defined, e.g. self-x properties. In
this section we will explain relevant terms in the domain-specific context of automotive
embedded systems.
Self-adaptive software systems must be able to adapt the behavior (Behavioral Adaptation)
or/and the structure (Structural Adaptation) of the system to changes in the environment or
within the system itself (Zadeh, 1963)(McKinley et al., 2004). To adapt itself autonomously, the
system must be able to detect and to evaluate its own context. Therefore, a model of the system
and its feasible states is needed. The comparison of the currently detected context and the
reference situation of the system model enables the evaluation of the current system state. This
so-called Self-Awareness is the basis for the adaptation of the system or a sub-system.
During runtime self-awareness is enabled by the Self-Description of each component within
the system. The language and the scope of this description must be as small as possible to
fulfill their purpose. Furthermore, the description must be processable by an embedded
system with limited resources.
Today, there are already examples for adaptive behavior in modern automobiles. For
example, the engine control adapts the fuel injection according to the current road behavior.
But this kind of adaptivity is limited to control applications and allows adaptation only in
predetermined variants. To fully exploit the potentials of adaptivity, it is not practical to
limit the variability by calculating all possible system configurations in advance (during
design time). Due to the enormous amount of possible variability in today’s and future
automotive software systems, it is necessary to adapt the system dynamically at runtime
(Dynamic Reconfiguration) (Geihs, 2008).
With respect to (Hofmeister, 1993) three different kinds of dynamic reconfiguration can be
differentiated:
1. The implementation of a component is replaced by another one (Behavioral

Adaptation).
2. The relation between components of the system is modified. New components and

features can be added or removed (Behavioral Adaptation).
3. The allocation of the software components is changed without the modification of the

logical structure. Therefore, components are migrated from one hardware platform to
another (Structural Adaptation).

In the context of automotive embedded systems behavioral adaptation is achieved by the
dynamic activation or deactivation of specific software-based features during runtime.
Structural adaptation is realized by the dynamic reallocation of software components onto
the available control units during runtime.
To apply dynamic reconfiguration successfully in the context of automotive embedded

systems, we have to deal with so-called emergent behavior. Emergence is defined as a

property of a total system which cannot be derived from the simple summation of

properties of its constituent sub-systems (Müller-Schloer, 2004). It is a result of self-adaptive

or self-organizing processes and leads to a system behavior which is not explicitly defined

(Wolf & Holvoet, 2004). This may lead to unwanted or uncontrolled behavior - so-called

emergent misbehavior (Mogul, 2005). Because automotive embedded systems provide safety-

relevant applications (e.g. airbag), it is very important that the predefined requirements and

constraints of the system are preserved during runtime. Therefore, emergent behavior is not

tolerated in adaptive automotive software systems.

www.intechopen.com

Towards Automotive Embedded Systems with Self-X Properties

415

Instead, the aim of self-adaptation in the context of vehicles is to improve to the system with
different self-x properties:
Self-Management: The system must be able to manage its own functionalities without

actions from outside the system. The complexity of the system management task can be
decreased by increasing the management capability of single components. For example,
by adding a self-description to each element within the system the current status of self-
aware elements does not need to be supervised continuously. Thereby, a divide-and-
conquer strategy is applied. The more complex the management of individual elements
is, the less complex is the management of the overall system. In the context of
automotive embedded systems, a trade-off is needed between the self-management of
the overall system and the management of individual parts of the system.

Self-Configuration: Today, the configuration of complex systems (e.g. vehicular software
systems) is performed by experts. By enhancing a system with self-configuration
capabilities, it is possible to find a feasible configuration in a distributed and
autonomous way. Thus, the manual and error-prone configuration process can be
omitted. Furthermore, self-configuration enables the dynamic integration of new
components and features during the runtime of the system. For example, in today’s cars
the autonomous configuration is already supported by the infotainment system MOST
in which a central instance - the so-called NetworkMaster - enables the configuration of
features (MOST FBlocks) independent from their position.

Self-Healing: The autonomous diagnosis of the current system state enables the detection of
invalid system states. Afterwards, a valid system state is restored by means of self-
healing. The self-healing process is supported by the self-configuration capabilities of
the system. To achieve the complete ”healing” of the system a certain degree of
redundancy is assumed. The ability to heal itself is growing with the size of the overall
system. Thus, self-healing is especially interesting in the field of infotainment and
telematics applications. Delays due to the process of self-healing must be considered
additionally during system design.

Self-Protection: Self-protection of specific elements is necessary if the system is operating in

a dynamic environment. For automobiles which are divided into different separated

domains of automotive software, self-protection is an additional overhead which is not

justifiable in the context of present automotive embedded systems. But the protection

against critical system states and the prediction of problematic conditions is an option

to prevent the system from failures and to satisfy the safety requirements within the

automotive domain. Furthermore, by opening the in-vehicle communication to the

outside world (e.g. car-2-x communication (CAR 2 CAR Communication Consortium,

2010), the importance of self-protection will increase.

Self-Optimization: The proactive search of a specific element for new opportunities to

optimize its own behavior helps to reach the optimal system state. But to achieve such

an optimization, resources are continuously needed. In the context of automobiles, it is

necessary to evaluate carefully if this effort for self-optimization is justifiable. Context-

based self-optimization in terms of different predefined scenarios may be a potential

trade-off for automobiles.

To use the full potential of the previously described self-x properties in automotive

embedded systems, certain challenges must be met. In the next Section we will describe

these challenges in detail.

www.intechopen.com

 New Trends and Developments in Automotive System Engineering

416

3. Challenges in realizing self-x properties in automotive embedded systems

For realizing self-adaptive software systems for automobiles which enhance the system with
self-x properties, several challenges have to be addressed which we describe in the
following. Today, the software-based features of modern vehicles are statically assigned to
specific ECUs. Since the number of control units cannot be expanded arbitrarily for the
integration of new features, new concepts for the dynamic allocation of features to ECUs are
needed. The Automotive Open System Architecture (AUTOSAR) (AUTOSAR Consortium,
2010) initiative aims to establish a standardized software architecture for cars since 2002. By
using a component-based approach, the reusability and the scalability of automotive
software is increased. The so-called Virtual Function Bus (VFB) enables the virtual integration
of software components by allocating these components to ECUs during design time.
Thereby, the flexibility of designing automotive embedded systems is increased. However,
with a more modular approach like AUTOSAR there is the need to decompose features into
services and services into atomic functions. This approach enables the reuse of
functionalities and reduces the overhead by eliminating redundant implementations within
the software system. Furthermore, more freedom for the runtime adaptation is achieved by
a more fine-granular decomposition of features.
Modern runtime environments for automotive software, like Offene Systeme und deren
Schnittstellen für die Elektronik in Kraftfahrzeugen (OSEK) (OSEK VDX Portal, n.d.) or
AUTOSAR, are only configured statically during design time. Within statically designed
systems most of the available resources are assigned permanently. Dynamic changes of this
configuration (e.g. creating a new task) during runtime are not allowed. As runtime
adaptation is needed to control the growing complexity, a runtime resource and conflict
management is inevitable for the dynamic reconfiguration of the system (e.g. instead of a
statically resolved virtual function bus with fixed port assignments in AUTOSAR, a real
communication bus with a dynamic scheduling is needed). Therefore, the resources of each
ECU - like CPU, memory, etc. – must be managed dynamically.
Although sensors and actuators are separated from the computation, there is still the
necessity for locality of the software functions to access the sensor/actuator data in today’s
automotive embedded systems. Caused by the growing cross-linking of different
functionalities – even inter-domain (e.g. caused by driver assistance features) - sensor and
actuator data must be accessible by all features. Techniques like publish/subscribe and
distributed data access might ease this problem. By the complete separation of sensors or
actuators from the computation (control unit), their data can be accessed throughout the
whole in-vehicle network. In case of an ECU breakdown the data of sensors or actuators will
still be available. Thus, a more flexible distribution of software components is enabled which
is mandatory to tap the full optimization potential of self-adaptation.
Another challenge for the realization of self-x properties poses the heterogeneity of today’s
vehicle electrical system architecture where diverse technologies are incorporated. The
various hardware platforms and the different interconnection systems make it difficult to
reallocate software components to different ECUs during runtime. For the migration to a
different ECU, software components must be recompiled which increases the latency to
adapt the system enormously or the program code of each component must be pre-compiled
for the corresponding hardware platform and stored within the in-vehicle network. But for
the various hardware platforms in today’s automobiles the memory capacity must be
increased significantly which is not cost-effective. Only an abstraction from the underlying

www.intechopen.com

Towards Automotive Embedded Systems with Self-X Properties

417

technology (e.g. via a runtime environment or middleware) will allow the interaction of the
components and thus the efficient self-adaptation of the overall system.
In the automotive domain several applications with divergent safety and real-time
requirements (specified as Safety Integrity Level, SIL (International Electrotechnical
Commission (IEC), 1998)) are composed to one system. Presently, the requirements are met
by a separation into domains (infotainment, power-train, comfort and chassis). Thus, a
major challenge is to guarantee and meet the safety requirements of automotive systems
even in adaptive systems (for example the ability to satisfy hard timing constraints). This
results in an implied limitation of possible configurations of the system. The mandatory
system constraints must be extracted during the design process and enforced during
runtime. Thereby, the reconfiguration process of the system must not influence the behavior
of safety-critical features. For this reason, the constraints and the effects of the adaptation
must be considered in safety-relevant systems - like automobiles.
To realize self-adaptive or self-organizing (technical) systems a control instance is needed
which collects information about the system, analyses these information and decides how to
adapt the system to reach the predefined objectives (Mühl et al., 2007). Such a control
instance must ensure that the system is in a correct state at any time. Present automotive
systems have no capabilities to describe their properties and requirements at runtime so that
a controller instance could not obtain enough information about the current systems state,
only deduced information. Accordingly, a description of the components has to be made
available at runtime. For component-based approaches a self-description (for hardware and
software components) generated out of the design seems promising. But a trade-off between
the expressiveness with more potential for self-adaptation and the overhead of a higher
complexity for analysis algorithms has to be done.
To address these challenges in realizing self-adaptive automotive embedded systems with
self-x properties, a design process is necessary which allows the modeling and the
verification of adaptivity while considering the domain-specific requirements. Furthermore,
we need a runtime environment which monitors the requirements and constraints specified
during design and which enables the dynamic reconfiguration of the system. Before we
introduce these concepts in Section 5 and 6, use cases which exploit self-x properties of
automobiles are presented in the next section.

4. Use cases for the application of self-x properties in automobiles

By enhancing the automotive software system with the self-x properties as described in
Section 2, significant improvements beyond today’s state of the art may be realized.

4.1 Resource optimization
A car operates in a continuously changing environment. On the freeway, features like the
cruise control system, the lane departure warning system or the adaptive driving speed
control are used. While driving in the city, other or modified driver assistance features are
needed (e.g. the parking assistant system). The night view assistant, adaptive headlights or
the high-beam assistant are only used by night or in cases of restricted view. To reach the
optimal utilization of the available resources, individual features have to be used situation-
based. Thereby, the required hardware resources are reduced by mutually exclusive
features. The situation-based deactivation of unnecessary but simultaneously possible
features saves resources (e.g. energy, computing time, etc.) during runtime.

www.intechopen.com

 New Trends and Developments in Automotive System Engineering

418

4.2 Fault tolerance
Due to reasons of cost and efficiency, there is almost no redundancy in today’s automobiles.
The failure of software-based functionalities must be repaired normally by a specialized car
repair. In some cases, the failure of an electronic component may lead to the total
breakdown of the car. These failures within the car’s electric/electronic are very negative
experiences for the customers and in worst case may possibly threaten the life of the driver.
By enhancing automotive embedded systems with self-healing capabilities, the fault
tolerance and the availability of the systems is increased by software without costs for
additional hardware resources. For example, the failure of a control unit can be
compensated by the dynamic adaptation of the system’s structure. Thus, a temporary
emergency operation of the automotive embedded system is enabled by equipping the system
with self-x properties. Life-threatening situations for the driver can be avoided and the
satisfaction of the customers can be increased.

4.3 Third party consumer device integration
Today, the replacement of vehicle components, the upgrade of new components (after-

market products) within the car repair or the update of the vehicular software may lead to

problems because the software versions of specific components may not be compatible with

the shipped vehicle software. Furthermore, the user demand for integrating modern

consumer devices (e.g. mobile phones, smart phones, PDAs, etc.) into the vehicle is very

high. The short lifecycles (especially in comparison to the life-cycles of automobiles) and the

diversity of these devices have led to proprietary solutions for connecting consumer devices

to the vehicle infotainment system. Enhancing the automotive embedded system by self-

configuration enables the seamless, flexible and scalable integration of new software-based

features, new hardware components and consumer devices. Thereby, failures due to

software versions which are incompatible are eliminated. Based on the autonomous

allocation of software components to ECUs, self-configuration reduces the complexity for

the system integrator and the effort during the production of the automobile. The error-

prone manual assignment of features to hardware platforms and the time-consuming

flashing (software deployment) of the ECUs during the end-of-line production can be

omitted.

4.4 Partial in-vehicle network operation
Another use case which can be enabled by self-adaptive automotive systems with self-x

properties is the partial in-vehicle network operation. In this use case certain parts of the in-

vehicle network or single ECUs can be shut down to save resources (e.g. energy) during

runtime. This can be done in certain contexts (situations) when all features located in a

distinct area of the network are not required or can be substituted by functions running on

other platforms. These functions might be started dynamically or for simplicity run as

shadow tasks in the background all the time. The potential benefits of a partial in-vehicle

network operation of course strongly depend on the mapping of software components to

the ECUs. For an optimal allocation, with respect to the partial in-vehicle network operation,

the distribution should cluster functionality which is and is not used in the same context.

Self-x properties may improve the partial in-vehicle network operation by dynamically

reallocating software components to shut down even more parts of the network.

www.intechopen.com

Towards Automotive Embedded Systems with Self-X Properties

419

5. Designing automotive embedded systems with self-x properties

Nowadays software development in the automobile area has been dominated by its
traditional development of mechanical components, as it has been practiced for the last
decades. With the growing number of automobile features realized mainly in software, the
design process is becoming more and more challenging. For managing the complexity of
distributed embedded systems like automotive electronic systems a specialized software
development process is necessary which allows the abstraction and realization of single
system components and the whole system. Therefore, the description and the description
language are a critical factor how well - in terms of how close to the reality - the system can
be modeled on different layers of abstraction. In a distributed adaptive system with self-x
properties - beneath the static description - the dynamic description in particular is of great
importance.
An architecture of a software system is generally described by an Architecture Description
Language. In the automobile domain several efforts for the system modeling are undertaken.
EAST-ADL (Electronics Architecture and Software Technology - Architecture Description
Language) (Cuenot et al., 2008) as a domain-specific architecture description language is a
promising standard for the seamless automotive architecture design. On the
Implementation Level it also targets the component-based architecture AUTOSAR
(AUTOSAR Consortium, 2010) allowing an integration with this standard. In our approach
we foresee to utilize EAST-ADL as basis for describing an automotive electronic system
enhanced with self-x properties. EAST-ADL allows the design of static automotive systems
based on UML (EAST-ADL2, 2010), but for adaptive systems with self-x properties it has to
be enhanced, e.g. by considering dynamic behavior at runtime. Additionally defined
attributes are modeled to specify the runtime variability of the EAST-ADL system
components. Thereby, for example self-configuration and self-healing can be supported by
annotating components to be reconfigurable at runtime. Thus, they can be instantiated in a
self-configuration or self-healing process.
The design space of runtime adaptive systems with self-x properties increases exponentially
in terms of possible runtime configurations. Thus, special emphasis has to be placed on the
validation of the dynamic behavior in early design phases. This allows an iterative validation of
the system and its adaptation behavior leading to find faults early in the development
process. By this, the development costs can be decreased as late design changes typically
result in drastically increased costs. The designed and validated system has to be executed
by a tailored runtime environment as outlined in Section 6. The allowed degree of variability
has to be defined in the design to comply with requirements on the system safety. An
uncontrolled self-organization is not feasible in safety-related systems as certain
requirements need to be met at any time. Especially, the abstraction of the definition of the
adaptation is crucial. For the validation of the system and its behavior this should be
defined on a rather high level of abstraction. Thereby, the allowed nominal behavior -
including the adaptation behavior – can be constrained. On a high level of abstraction so-
called features can be modeled representing user-visual functionality. Additional to static
features which are present in a product, dynamic features can be defined. These represent
adaptive functionality on an abstract level. They contain interdependencies and distinct
selection criteria which define their selection at runtime. Derived contexts can be used to
select a set of dynamic features with respect to the actual driving situation. Car
manufacturers may specify distinct scenarios (e.g. driving situations) in which defined
functions of the automobile are necessary.

www.intechopen.com

 New Trends and Developments in Automotive System Engineering

420

Fig. 2. Integration of SystemC validation on EAST-ADL layers of abstraction

For the iterative validation of the design we use SystemC simulations. SystemC is a
standardized system modeling and simulation language which supports
Hardware/Software-Co-Design and Co-Simulation. It is specified and promoted by the
Open SystemC Initiative (OSCI) (Open SystemC Initiative (OSCI), 2010) and has been
approved by the IEEE Standards Association as IEEE 1666-2005 (IEEE, 2005). Based on the
wide-spread programming language C++, SystemC provides artifacts to simulate
concurrent processes and an event-driven simulation kernel. It incorporates semantic
constructs of hardware description languages (like VHDL and Verilog) and can be used to
model the holistic system using plain C++. A stepwise refinement in a top-down design
process is realized with the SystemC Transaction-Level Modeling (TLM) (Cai & Gajski, 2003)
methodology. TLM is a methodology used for modeling digital systems which separates the
details of communication among computational components from the details of the
computational components. Details of communication or computation can be hidden in
early stages of the design and added later. Since the application of SystemC for a simulation-
based validation of automotive electronic systems is a promising approach for the design
exploration and hardware sizing, it is integrated within our approach for adaptive
automotive systems with self-x properties. Therefore, we adopt SystemC in the
development process with architecture descriptions based on EAST-ADL. An automatic
transformation on the layers of abstraction of EAST-ADL to the SystemC TLM levels is
performed (see Figure 2) which enables a simulation-based validation. Thereby, architecture
models can be iteratively refined and improved in the development process. Through this,
adaptive automobile systems can be seamlessly developed and described. The design of
such a system including the defined adaptivity has to be realized and enforced at runtime in
the end, which is described in Section 6. In the next section we present an automotive
example which has been designed with the above methodology and validated by a SystemC
simulation.

www.intechopen.com

Towards Automotive Embedded Systems with Self-X Properties

421

5.1 Automotive example for validation
As outlined before, in the design of automotive systems with self-x properties the validation
of such systems is increasingly challenging. Therefore, we transform EAST-ADL models to
executable SystemC models in a prototypical tool-chain. For evaluation purposes an
automotive case study (Hardung et al., 2004) has been modeled in EAST-ADL and
transformed to SystemC simulations on different levels of abstraction.
The use case is located within the so-called body domain of an automobile and consists of

the four features exterior light, direction indication, central door locking and keyless door entry.

The exterior light feature allows controlling the front and rear lights of the vehicle. The

lights can be switched on/off manually or automatically through darkness or rain detected

by the rain/light sensor. These inputs are interpreted by the function exterior light control

which controls the light units (front and rear). For the direction indication a direction

indication switch can be used to signal the turning direction. With the hazard light switch,

risky driving situations can be signaled to other road users. Therefore, the direction

indication master control informs the direction indication front and rear controls about the

designated status of the direction indication lights. These turn the direction indication lights

on or off in the front and rear light units. Central door locking allows locking and unlocking

all doors simultaneously by using the key in the lock or by radio transmission. A radio

receiver signals the information to the central door locking control. This function flashes the

direction indication lights for a feedback to the driver and controls the four door locks of the

car. An additional feature to the un-/locking of an automobile is the keyless entry. A driver

can approach his car with the key in his pocket and the doors will unlock automatically. It

can be locked by simply pressing a button on the door handle. Antenna components detect

the key in the surrounding and inform the central door locking function which in turn

unlocks the doors. With respect to the interaction with exterior light (which gives feedback

via the direction indication lights), it does not make any difference whether the doors have

been unlocked in a standard way or via the keyless entry. At Analysis Level this use case is

modelled in EAST-ADL by so-called FunctionalDevices components: KeylessEntryController,

CentralDoorLockingController, DirectionIndicationMasterController, DirectionIndicationFront-

Controller, DirectionIndicationRearController and ExteriorLightController as is depicted in Figure

3. The behavior of these functionalities is described as UML opaque behavior of the

components (C++ source code). Additionally, behavior can also be modeled with UML

Statecharts as a UML based behavior specification. Communication is designed as data flow

between the components represented by FunctionFlowPorts and FunctionConnectors.

A SystemC simulation generated from this level includes modules interconnected for each of

the above mentioned FunctionalDevices. They implement the respective behavior of these

modeled components in a thread of the module. A simulation based on the abstract EAST-

ADL Analysis Level of the use case was realized. Thus, the interaction of the abstract modeled

functionalities can be validated with a simulation-based analysis.

At Design Level the use case is modeled in a Functional Design Architecture (FDA)

representing the software parts and a Hardware Design Architecture (HDA) representing

the hardware parts of the use case realization. The FDA includes DesignFunctionTypes

for the software functionalities of the use case and LocalDeviceManagers representing

the software access to the modeled sensors and actuators. Latter are designed in the HDA

together with the hardware platforms (Nodes) and the interconnecting LocalBus.

Components in the FDA are interconnected with FunctionConnectors and in the HDA

www.intechopen.com

 New Trends and Developments in Automotive System Engineering

422

Fig. 3. Composite diagram of the use case at Analysis Level

with HardwareConnectors. Additionally, LocalDeviceManagers exist for each

depicted Sensor and Actuator in the Functional Design Architecture which are not explicitly

displayed in this figure. The generated SystemC implementation of the use case at Design

Level - which models software and hardware explicitly - is depicted in Figure 4. It includes

the use of a framework for automotive-specific modules. For example, ECUs and software

functions can be included out of a library as specific sc module implementations. As can be

derived from Figure 4 the EAST-ADL Design Level components are generated as sc modules

representing software functions. These modules are included in another SystemC module

which realizes a hardware platform with attached sensors and actuators in form of

sc modules. These hardware platforms are interconnected by a module implementation of the

Fig. 4. Overview of the generated SystemC simulation at the Design Level

www.intechopen.com

Towards Automotive Embedded Systems with Self-X Properties

423

defined LocalBus. SystemC interfaces and channels realize the concrete interconnections of

the modules. For example, a specialized type of sc interface (EcuSw If) realizes the

communication between software functions and ECU modules.

The introduced transformation is realized in a prototypical toolchain which integrates into

the Eclipse environment as a plug-in. By this, it can easily be used with EAST-ADL models

based on UML in Eclipse (e.g. with the Papyrus UML modeling tool which supports EAST-

ADL). The transformations itself are implemented as templates of the Xpand model-to-text

transformation language. They use EAST-ADL models as input and generate the single

SystemC files according to the mapping of the languages. Currently, simulations can be

generated from the Analysis Level or Design Level. Simple checks allow to examine the

conformity for a simulation. Because a generation of incomplete models in early design

stages should be possible, the checks are only as strict as needed for generating correct

SystemC simulations. This supports the iterative simulation of ADL models in the design

process. For the simulation at Design Level we utilize a self-developed framework called

DynaSim which allows the modeling of an automotive in-vehicle network in SystemC. The

generated files refer to SystemC models in the DynaSim library (e.g. ECUs or software

functions). By this, a simulation can be performed considering the automotive-specific

system environment. We have briefly introduced our approach for the validation of self-x

properties in adaptive automotive systems at different design stages on the basis of a case

study. Since the designed properties of the models have to be ensured at runtime, the next

section focuses on the runtime mechanisms.

6. Enforcing self-x properties during runtime

To enforce self-x properties in automotive embedded systems during runtime, an adopted

runtime environment is needed. This must provide mechanisms to manage system

resources dynamically and must enable the structural and behavioral adaptation of the

automotive software system. Furthermore, it is essential to satisfy all mandatory

requirements and constraints which are defined during the design process (see Section 5).

Thereby, the correct system behavior can be guaranteed during runtime and unwanted or

uncontrolled behavior can be avoided. In our approach this is realized by using a control

loop based mechanism according to the AC paradigm. The automotive embedded system is

monitored continuously, changes are analyzed and adaptations of the system are planed

and executed.

Especially for automotive systems with various requirements and constraints, enabling

self-x properties and building such a control loop is a difficult task. Not only functional but

also non-functional requirements (e.g. timing, safety) have to be met during runtime.

Generally, automotive software features are divided into so-called Safety Integrity Level (SIL)

according to their safety relevance. Each SIL has different requirements which must be

considered by the control loop accordingly. For example, a safety-critical feature (e.g. the

airbag control) may not be affected at any time - even during reconfiguration. However, a

feature from the infotainment domain (e.g. the hands-free kit) can be deactivated during

reconfiguration without life-threatening consequences. The control architecture of the

automotive embedded systems must take these requirements into account.

www.intechopen.com

 New Trends and Developments in Automotive System Engineering

424

Furthermore, the control architecture of a self-adaptive system which provides safety-

relevant applications has to be highly dependable and needs to provide the necessary

degree of flexibility to react on changing conditions in an appropriate way. Therefore,

managing the whole system by one single control loop is complex and results in a single-

point-of-failure.

In order to cope with these requirements, a divide-and-conquer strategy can be applied

which is partitioning the system into smaller entities - so-called clusters. A cluster is defined

as a logic group of software components as well as a sub-set of requirements and system

objectives which have to be met by all of software components within the cluster.

The partitioning of the system into different clusters can be based on different criteria:

• Functional dependencies

• Non-functional dependencies

• Physical location of the functions

• Requirements and system objectives
These criteria can be combined in any way in order to provide an optimal segmentation of

the automotive software system. In this context, an optimal segmentation means that

decisions can be made in a single cluster from a local point of view without interfering other

clusters.

Repeated partitioning of the system leads to a hierarchy of clusters, representing the entire

automotive software system. Each cluster within this hierarchy is controlled by its own

control loop resulting in a hierarchical multi-layered control architecture (cp. Figure 5). This

control loop is an external component which is not included in the cluster itself. It is

monitoring and controlling the current state of a cluster continuously, so that all

requirements and system objectives are satisfied. If one of the defined requirements or

system objectives is not met anymore, the affected cluster must be adapted in order to meet

all requirements and system objectives again. This is either done by the reassignment of

software components to different ECUs (structural adaptation) or by the

activation/deactivation of specific software-based features (behavioral adaptation).

The clusters on the lower layers have a local scope with only a few requirements to be

satisfied and software components to be controlled. Thereby, an individual implementation

of the control loop and a fast reaction on changes is possible. Many clusters have only one

system objective, so tailored methods and algorithms can be applied for the observation and

control of the cluster. Due to different implementations of the control cycle, the control

architecture can be customized individually for the different needs of the automotive

software domains. As a drawback, the clusters on the lower layers have a restricted scope

and may not be capable of finding a new valid assignment of software components

to ECUs.

On higher layers, the number of software components managed by a cluster is increasing, as
the number of requirements and system objectives, which have to be met. Thus, on the one
hand the chance of finding a new allocation which satisfies all requirements is increased;
one the other hand, it is more complex to find one at all.
The Root Cluster on the top layer represents the top element in the hierarchy and manages
the entire automotive embedded system. But it is only involved in the self-adaptation
process as a last instance. The Root Cluster is not aware of the decisions made on the lower
clusters.

www.intechopen.com

Towards Automotive Embedded Systems with Self-X Properties

425

Within an n-layered control architecture up to n control loops are involved in the process of

self-adaptation. In worst case, calculations of the control cycle are performed n times until a

new valid allocation is found, resulting in a long response time to changes and a certain

overhead. To reduce this overhead, partial solutions of calculations are passed to the next

higher layer and will be reused there. But nevertheless, a trade-off is needed between the

overhead provided by each new layer added to the control architecture and the advantages

gained by it.

Each control loop within the hierarchical multi-layered control architecture consists of four

stages, according to the AC paradigm:

Monitoring: Certain parameters of the system must be monitored continuously to detect

changes quickly and dependably within the system’s environment or within the system

itself. To enhance the system with self-healing capabilities, malfunctions must be

discovered autonomously. Traditionally, monitoring and fault detection recognize the

malfunction of individual components. Thereby, the expected behavior is compared to

the actual behavior of the component. If the actual behavior deviates from the expected

behavior, a failure is likely. The representation of the expected behavior or the

measurement of the actual behavior is very specific and tailored for a certain

component. With growing complexity, interdependencies and distribution of the

vehicles software features the following problems need to be solved:

• Monitoring the complete system behavior: Although each individual component is

working correctly, the overall system exhibits incorrect behavior.

• Monitoring the dynamic system behavior: Adaptive systems may operate in different

system configurations. Thus, it is difficult to predict all possible configurations (State

Explosion) and to monitor the system with static monitoring techniques.

• Detection of unknown failures: Today’s monitoring techniques have limited

abilities to discover unknown failures during runtime. This is due to the use of

error patterns to identify specific errors in most monitoring mechanisms. Errors

which do not match the predefined patterns are not detected.

Analysis: During the analysis stage the present, the desired and the future state of the

system must be detected and predicted. Thereby, the analysis stage is closely linked to

the monitoring stage, because the observations from the monitoring of the system are

directly passed to the analysis. In contrary to the monitoring stage, the analysis of the

system uses additional information (e.g. current environmental conditions, predefined

system objectives, etc.) for the evaluation of the actual system state. The so-called

Livingstone Model (Cimatti et al., 2003) may be used for this purpose. It describes a

model-based diagnostic mechanism for autonomous spacecrafts with self-configuration

capabilities. Therefore, it compares the predicted behavior with the actual behavior and

makes statements concerning the needed actions based on the model of the system. In

diagnosis, information about which features are needed for the further operation of the

system beyond the detection of error causes are made depending on the current

environmental conditions of the system and the system’s objective (Williams et al.,

1996). With these information about the available resources and the features needed in

future which are gained from the analysis stage, the next stage (planning) may find a

new allocation of software components to ECUs.

www.intechopen.com

 New Trends and Developments in Automotive System Engineering

426

Planning: The planning stage creates or composes a set of actions to modify the managed

elements of the system. In the context of automotive embedded systems the planning

stage determines a new set of features and a new allocation of software components

and control units which fulfills all predefined requirements. This allocation problem

can be either expressed as Generalized Assignment Problem (GAP) (Cattrysse &

VanWassenhove, 1990) or as Constraint Satisfaction Problem (CSP) (Dinkel &

Baumgarten, 2007). Since the allocation problem is a NP-hard optimization problem, a

heuristic approach is needed to solve this problem during runtime. The challenge of the

planing stage is to find a trade-off between the computation time and the quality of the

solution in order to satisfy the requirements of the automotive domain.

Execution: The execution stage of the control cycle provides mechanisms to execute the

plan determined by the planning stage in order to adapt the system. Within the

vehicular software system these changes refer to the activation or deactivation of

features as well as the migration of software components to different ECUs. In the

context of safety-relevant applications, it is important that the normal system

behavior is not disturbed during the reconfiguration of the system. The migration of

software components can be chosen whether the context of the software component

(variables, program stack, etc.), the program code (binary or source code) or both is

transfered to another ECU. Thus, for example, a safety-relevant feature may exist on

several ECUs. In case of a migration only the current context of this feature must be

transfered to another ECU. Other features may be recompiled for the target hardware

platform in case of a migration and transmitted as binary code. According to the

predefined requirements of a feature, specific techniques for the migration of

software components may be used.

As pointed out before, a multi-layered control architecture provides the necessary

performance and degree of flexibility to react on changes within the system’s environment

or within the system itself in an adequate way. Thus, it is possible to supervise these

requirements predefined during the design and to adapt the system if one of the

requirements is not satisfied anymore. Small clusters with individually tailored control

loops can react quickly, while clusters on higher layers have a wider scope and more

information to find the optimal configuration of the automotive embedded system. Thus,

the chance of finding a new valid allocation of software components to ECUs is better on

upper layers. Furthermore, a software component is always supervised by more than one

control loop. This avoids single-point-of-failures and increases the dependability of the

control architecture. In comparison to other control architectures the hierarchical multi-

layered approach reduces the complexity of the self-adaptation process within automotive

embedded systems (Zeller et al., 2009). Thus, the hierarchical multi-layered control

architecture enables the extension of automotive embedded systems by self-x properties like

self-configuration, self-healing and self-optimization.

6.1 Example control architecture for today’s automotive embedded systems
Managing today’s vehicle software systems, means managing about 270 features, running

on nearly 70 different ECUs (Pretschner et al., 2007). These ECUs and various sensors and

actuators are interconnected through different network buses.

www.intechopen.com

Towards Automotive Embedded Systems with Self-X Properties

427

Nowadays there are three major vehicle network systems (cp. Figure 6): The most common

network technology used in vehicles is the Controller Area Network (CAN) bus (Robert Bosch

GmbH, 1991). CAN is a multi-master broadcast bus for connecting ECUs without central

control, providing real-time capable data transmission. FlexRay (FlexRay Consortium, 2005)

is a fast, deterministic and fault-tolerant automotive network technology. It is designed to be

faster and more reliable than CAN. Therefore, it is used in the field of safety-critical

applications (e.g. active and passive safety systems). The Media Oriented Systems Transport

(MOST) (MOST Cooperation, 2008) bus is used for interconnecting multimedia and

infotainment components proving high data rates and synchronous channels for the

transmission of audio and video data.

Fig. 6. In-vehicle network topology of a BMW 7-series (Source: BMW AG, 2005)

The vehicle features reach from infotainment functionalities without real-time requirements

over features with soft real-time requirements in the comfort domain up to safety-critical

features with hard real-time requirements in the chassis or power train domain. Therefore,

various requirements and very diverse system objectives have to be satisfied during

runtime.

By using a multi-layered control architecture it is possible to manage the complexity and

heterogeneity of modern vehicle electronics and to enable adaptivity and self-x

properties. To achieve a high degree of dependability and a quick reaction to changes, we

use different criteria for partitioning the automotive embedded system into clusters (see

Figure 7):

www.intechopen.com

 New Trends and Developments in Automotive System Engineering

428

FunctionFunctionFunctionFunctionFunction

Vehicle Cluster

Safety Cluster

SIL 1

Safety Cluster

SIL 3

Safety Cluster

SIL 4

Safety Cluster

SIL 2

Network Cluster

PT-CAN

Network Cluster

FlexRay

Network Cluster

MOST

Feature Cluster

(Engine Control)

Feature Cluster

(ESP)

Feature Cluster

(Keyless Entry)

Feature Cluster

(AuxIn)

Service Cluster Service ClusterL
a
y
e
r

1
T

o
p

L
a

y
e

r
L
a
y
e
r

2
L

a
y
e
r

3
L

a
y
e
r

4

Network Cluster

K-CAN

Safety Cluster

SIL 0

Feature Cluster

(Parking Assistant)

L
a
y
e
r

0

Function

Service Cluster

FunctionFunctionFunction

Service Cluster

Fig. 7. Example of a hierarchical multi-layered architecture for today’s automotive
embedded systems

In a first step, the whole system (Vehicle Cluster on the top layer) is divided into the five
Safety Integrity Levels (SIL 0-4) (International Electrotechnical Commission (IEC), 1998),
because features with the same requirements on functional safety can be managed using the
same algorithms and reconfiguration mechanisms. Nowadays, this classification is more
appropriate than the traditional division into different automotive software domains
because most new driver-assistance features do not fit into this domain-separated
classification anymore.
In a second partitioning, the system is divided into the physical location of the vehicle’s
features according to the network bus the feature is designed for. This layer is added, so that
all features with the same or similar communication requirements (e.g. required bandwidth)
and real-time requirements can be controlled in the same way.
On the next layer, each Network Cluster is divided into the different features which are
communicating using this vehicle network bus. Hence, each feature is controlled by its own
control loop, managing its individual requirements and system objectives.
Most features within the automotive domain are composed of several software components
as well as sensors and actuators. One example is the Adaptive Cruise Control (ACC) feature
which can automatically adjust the car’s speed to maintain a safe distance to the vehicle in
front. This is achieved through a radar headway sensor to detect the position and the speed
of the leading vehicle, a digital signal processor and a longitudinal controller for calculating

www.intechopen.com

Towards Automotive Embedded Systems with Self-X Properties

429

the car’s deceleration. If the leading vehicle slows down or if another object is detected by
the radar sensor, the system sends a signal to the braking system (the actuators) to
decelerate. When the road is clear, the system will re-accelerate the vehicle back to the set
speed of the cruise control.
On the bottom layer, each feature is decomposed into one or more services by which the
feature is composed of. For example, the ACC Feature Cluster can be decomposed into the
radar sensor service, the digital signal processing service, the longitudinal controller service
and the engine and braking system services to decelerate. Each sensor, actuator and
computation or controlling algorithm is a software-based function represented by a service.
Each Service Cluster consists of either one or several software components (so-called
functions) and represents the lowest control layer in our approach. Because services are often
used by more than one feature, a service may be part of more than one Feature Cluster.
This hierarchical multi-layered control architecture provides a suitable mechanism for
realizing adaptive automotive embedded systems. The requirements specified during
design (see Section 5) can be enforced during runtime and self-x properties like self-healing,
self-optimization or self-configuration are enabled by a control loop based approach.

7. Conclusion

The growing complexity of automotive software systems is getting more and more
unmanageable. Enhancing these systems with self-x properties (e.g. self-healing or self-
configuration) by self-adaptation or self-organization may overcome these problem. This
increases the flexibility and efficiency of complex software systems at the same time. In this
chapter, we described the domain-specific challenges in realizing self-adaptive automotive
embedded systems which provide self-x capabilities. To cope with the safety and the real-
time requirements of vehicular software systems, the degree of variability must be defined
and uncontrolled behavior must be prevented.
This is pursued by an integrated development process which enables the verification and
validation of the dynamic system behavior in iterative steps during the design. We presented
our approach which incorporates the automotive domain-specific architecture description
language EAST-ADL. The focus of the presented work is on enabling the validation through
simulation. By this, the system and adaptation behavior realizing self-x properties can be
validated. Since the designed requirements have to be met and the constraints have to be
enforced at runtime, we introduced a cluster-based methodology for the runtime. For the
reduction of the variability and to guarantee the predefined system behavior at runtime the
satisfaction of the predefined requirements and constraints is supported by a hierarchical
multi-layered control architecture. If any system requirement is not met anymore, the system
is adapted to meet the constraints again. Thus, we have shown in this work the challenges of
automotive embedded systems with self-x properties and presented our approach for the
design and runtime.

8. References

Anthony, R., Ekelin, C., Chen, D., Törngren, M., de Boer, G., Jahnich, I. et al. (2006). A future

dynamically reconfigurable automotive software system, Proceedings of the

”Elektronik im Kraftfahrzeug”.

AUTOSAR Consortium (2010). AUtomotive Open Sytem ARchitecture (AUTOSAR).

www.intechopen.com

 New Trends and Developments in Automotive System Engineering

430

 https: //www.autosar.org.

Cai, L. & Gajski, D. (2003). Transaction level modeling: an overview, Proceedings of the 1st

IEEE/ACM/IFIP international conference on Hardware/software Codesign and system

synthesis (CODES+ISSS ’03), pp. 19–24.

CAR 2 CAR Communication Consortium (2010).

 http://www.car-to-car.org.

Cattrysse, D. & Van Wassenhove, L. (1990). A survey of algorithms for the generalized

assignment problem, Erasmus University, Econometric Institute.

Cimatti, A., Pecheur, C. & Cavada, R. (2003). Formal verification of diagnosability via

symbolic model checking, In Proceedings of the 18th International Joint Conference on

Artificial Intelligence IJCAI03, pp. 363–369.

Cuenot, P., Frey, P., Johansson, R., Lönn, H., Reiser, M., Servat, D., Koligari, R. & Chen, D.

(2008). Developing Automotive Products Using the EASTADL2, an AUTOSAR

Compliant Architecture Description Language, Embedded Real-Time Software

Conference, Toulouse, France.

Czarnecki, K. & Eisenecker, U. (2000). Generative programming: methods, tools, and applications,

Addison-Wesley.

Dinkel, M. (2008). A Novel IT-Architecture for Self-Management in Distributed Embedded

Systems, PhD thesis, TU Munich.

Dinkel, M. & Baumgarten, U. (2007). Self-configuration of vehicle systems - algorithms and

simulation, WIT ’07: Proceedings of the 4th International Workshop on Intelligent

Transportation, pp. 85–91.

EAST-ADL2 (2010). Profile Specification 2.1 RC3,

 http://www.atesst.org/home/liblocal/docs/ATESST2_D4.1.1_EAST-ADL2-

Specification_ 2010-06-02.pdf.

FlexRay Consortium (2005). The FlexRay Communications System Specifications Version

2.1. http://www.flexray.com/.

Fürst, S. (2010). Challenges in the design of automotive software, Proceedings of Design,

Automation, and Test in Europe (DATE 2010).

Geihs, K. (2008). Selbst-adaptive Software, Informatik Spektrum 31(2): 133–145.

Hardung, B., Kölzow, T. & Krüger, A. (2004). Reuse of software in distributed embedded

automotive systems, Proceedings of the 4th ACM international conference on Embedded

software pp. 203 – 210.

Hofmann, P. & Leboch, S. (2005). Evolutionäre Elektronikarchitektur für Kraftfahrzeuge

(Evolutionary Electronic Systems for Automobiles), it-Information Technology

47(4/2005): 212–219.

Hofmeister, C. (1993). Dynamic reconfiguration of distributed applications, PhD thesis,

University of Maryland, Computer Science Department.

Horn, P. (2001). Autonomic computing: IBM’s perspective on the state of information

technology, IBM Corporation 15.

IEEE (2005). IEEE Standard 1666-2005 - System C Language Reference Manual.

International Electrotechnical Commission (IEC) (1998). IEC 61508: Functional safety of

Electrical/ Electronic/Programmable Electronic (E/E/PE) safety related systems.

www.intechopen.com

Towards Automotive Embedded Systems with Self-X Properties

431

Kephart, J. O. & Chess, D. M. (2003). The vision of autonomic computing, Computer 36(1):

41– 50.

McKinley, P. K., Sadjadi, S. M., Kasten, E. P. & Cheng, B. H. (2004). Composing adaptive

software, IEEE Computer 37(7): 56–64.

Mogul, J. (2005). Emergent (Mis)behavior vs. Complex Software Systems, Technical report,

HP Laboratories Palo Alto.

MOST Cooperation (2008). MOST Specification Rev. 3.0.

 http://www.mostcooperation. com/.

Mühl, G., Werner, M., Jaeger, M., Herrmann, K. & Parzyjegla, H. (2007). On the definitions

of self-managing and self-organizing systems, KiVS 2007 Workshop:

Selbstorganisierende, Adaptive, Kontextsensitive verteilte Systeme (SAKS 2007).

Müller-Schloer, C. (2004). Organic computing: on the feasibility of controlled emergence,
CODES+ISSS ’04: Proceedings of the 2nd IEEE/ACM/IFIP international conference on

Hardware/software codesign and system synthesis, ACM, pp. 2–5.

Open SystemC Initiative (OSCI) (2010). SystemC,

 http://www.systemc.org.

OSEK VDX Portal (n.d.). http://www.osek-vdx.org.

Pretschner, A., Broy, M., Kruger, I. & Stauner, T. (2007). Software engineering for automotive

systems: A roadmap, Future of Software Engineering (FOSE ’07) pp. 55–71.

Robert Bosch GmbH (1991). CAN Specification Version 2.0.

 http://www. semiconductors.bosch.de/pdf/can2spec.pdf.

Robertson, P., Laddaga, R. & Shrobe, H. (2001). Self-adaptive software, Proceedings of the 1st

international workshop on self-adaptive software, Springer, pp. 1–10.

Schmeck, H. (2005). Organic computing - a new vision for distributed embedded systems,

ISORC ’05: Proceedings of the Eighth IEEE International Symposium on Object-Oriented

Real-Time Distributed Computing, IEEE Computer Society, pp. 201–203.

Serugendo, G., Foukia, N., Hassas, S., Karageorgos, A., Mostéfaoui, S., Rana, O., Ulieru, M.,

Valckenaers, P. & Aart, C. (2004). Self-organisation: Paradigms and Applications,

Engineering Self-Organising Systems pp. 1–19.

Teich, J., Haubelt, C., Koch, D. & Streichert, T. (2006). Concepts for self-adaptive automotive

control architectures, Friday Workshop Future Trends in Automotive Electronicsand Tool

Integration (DATE’06).

Trumler, W., Helbig, M., Pietzowski, A., Satzger, B. & Ungerer, T. (2007). Self-configuration

and self-healing in autosar, 14th Asia Pacific Automotive Engineering Conference

(APAC- 14).

Urmson, C. & Whittaker, W. R. (2008). Self-driving cars and the urban challenge, IEEE

Intelligent Systems 23: 66–68.

Weiss, G., Zeller, M., Eilers, D. & Knorr, R. (2009). Towards self-organization in automotive

embedded systems, ATC ’09: Proceedings of the 6th International Conference on

Autonomic and Trusted Computing, Springer-Verlag, Berlin, Heidelberg, pp. 32–46.

Williams, B. C., Nayak, P. P. & Nayak, U. (1996). A model-based approach to reactive self-

configuring systems, In Proceedings of AAAI-96, pp. 971–978.

Wolf, T. D. & Holvoet, T. (2004). Emergence and self-organisation: a statement of similarities

and differences, Lecture Notes in Artificial Intelligence, Springer, pp. 96–110.

www.intechopen.com

 New Trends and Developments in Automotive System Engineering

432

Zadeh, L. (1963). On the definition of adaptivity, Proceedings of the IEEE 51(3): 469–470.

Zeller, M., Weiss, G., Eilers, D. & Knorr, R. (2009). A multi-layered control architecture for

self-management in adaptive automotive systems, ICAIS ’09: Proceedings of the 2009

International Conference on Adaptive and Intelligent Systems, IEEE Computer Society,

Washington, DC, USA, pp. 63–68.

www.intechopen.com

New Trends and Developments in Automotive System Engineering

Edited by Prof. Marcello Chiaberge

ISBN 978-953-307-517-4

Hard cover, 664 pages

Publisher InTech

Published online 08, January, 2011

Published in print edition January, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

In the last few years the automobile design process is required to become more responsible and responsibly

related to environmental needs. Basing the automotive design not only on the appearance, the visual

appearance of the vehicle needs to be thought together and deeply integrated with the â€œpowerâ€ ​

developed by the engine. The purpose of this book is to try to present the new technologies development

scenario, and not to give any indication about the direction that should be given to the research in this complex

and multi-disciplinary challenging field.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Gereon Weiss, Marc Zeller and Dirk Eilers (2011). Towards Automotive Embedded Systems with Self-X

Properties, New Trends and Developments in Automotive System Engineering, Prof. Marcello Chiaberge (Ed.),

ISBN: 978-953-307-517-4, InTech, Available from: http://www.intechopen.com/books/new-trends-and-

developments-in-automotive-system-engineering/towards-automotive-embedded-systems-with-self-x-

properties

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

