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1. Introduction  

Taking into consideration growing ecology and safety demands, there are a need for more 
accurate and cheaper ways to monitor workflows of gases, which can be used in automotive 
applications. Such researches come into prominence in case of more commonly applied gas 
systems, that use hydrocarbons as well as hydrogen, which in case of running down of oil 
resources, are predicated as the most probable fuel for intern combustion engines or fuel 
cells used in vehicles. Use of tomography can be an alternative (in relation to currently used) 
method for such monitoring methods. The ultrasonic flow measurement is one of the most 
promising. The main advantage of this method is the fact that it is based on contactless, non-
invasive flow measurement which does not cause any pressure or other physics-chemical 
changes in observed environment.  
 

 

Fig. 1. A scheme of the ultrasonic transit-time flowmeter 

The measurement principle of an ultrasonic transit-time flowmeter involves at least one pair 
of ultrasonic transducers: transmitter (T) and receiver (R). Transmitting transducers are 
triggered to send an ultrasonic pulse, one upstream and one downstream to the receiving 
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transducers. Due to the fact that the distance between the opposite arranged transducers L is 
known, the travel time of the pulses can be estimated if the temperature is also known. The 
measurement principle of an ultrasonic transit-time flowmeter utilizes an ultrasonic travel 
time measurement for the calculation of both velocity v of the flowing medium and the 
speed of sound c (Kupnik, 2008): 
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In general, the measure of the matter that moves in a given time through a given transport 

cross-section is termed flow rate. The matter can be in solid, liquid or gaseous form. I should 

distinguish between volumetric flow rate Qv (quantity of a flow in cubic metre per unit 

time) and mass flow rate Qm (quantity of a flow in kilograms per unit time) (Kupnik, 2008): 
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where V is the volume, m is the mass, A is the cross-section of the transport way, vA is the 

averaged velocity over cross-sectional area of the transport way and ρ is the density. 

A fundamental problem in  acoustic flow measurement is the fact that the distribution of the 

velocity in the measurement pipe in each case is not known exactly, because an ultrasonic 

transit-time flowmeter  always determines the averaged velocity along the sound path (vs), 

i.e. it integrates the velocity profile over the volume of the sound beam. Exact knowledge of 

the velocity profile is essential to convert the line averaged path velocity vs to the velocity 

vA. The connection between these two velocities is usually considered by a correction factor 

kv, also termed meter factor (Kupnik, 2008): 
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For a given axially symmetric flow profile v(r), where r denotes the radius and D denoted 

the internal diameter of the pipe, can write (Kupnik, 2008): 
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Equation (6) shows clearly that meter factor kv.depends directly on the flow profile v(r). Each 
deviation of the flow profile from the assumed one, which is used in Equation (6), forcibly 
leads to uncertainties of the flowmeter. Finding an appropriate model equation for the flow 
profile  v(r) for each flow measurement problem is essential (Kupnik, 2008).  
Multipath systems with different sets of emitters and receivers are used in order to enlarge 
the data and accuracy of measurement (Mandard at al., 2008). In considered system equally 
spaced sensors around the pipe’s perimeter in perpendicular surface to pipe’s axis were 
placed. In the system the transmitters one by one generates ultrasound impulses, which 
with different delays reach all receivers. The time duration of these waves is the basis for 
calculation of the average value of measured flow’s speed (Roger & Baker, 2005). 
If I assume that the transmitters emit ultrasound waves of not too high frequencies, than the 
angle of spreading groups of waves is big enough to allow them to reach all of the receivers 
placed in pipe’s perimeter (Opieliński at al., 2006). 
The speed profile image (a magnitude of speed vectors distribution on the surface 
perpendicular to flow direction) we can achieve with an aid of ultrasonic tomography method. 

2. The inverse problem solution 

New generations of computer’s tomography systems often based on algebraic algorithms of 
image reconstruction (ART) from projections. The tomography image is constructed with 
the help of algorithm, which digitize the diagnosed area to the quadratic cells, which 
geometric centres are handled like pixels of the image. 
Velocity profile image construction in a plane of receivers means estimation of a set of 
unknown values, which we can denote as f(x, y). 
I can get integrated values of speed on a base of time measurement of ultrasonic impulses 
travelling like rays from transmitters to the receivers (Fig. 2). These values, according to 
projection method, are named the ray-sum measured with i-th ray si. I have assumed that in 
each cell of the rectangular or square grid, the function f(x, y) is constant. The relationship 
between the fj’s and si’s may be expressed as: 

 
1
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n

ij j jj
w f s i m

=
= =∑  (7) 

where: m is total number of rays (main and auxiliary ones) in all projections, n number of 
cells crossed by rays, wij is the weighting factor that represents the contribution of the j-th 
cell to the i-th ray integral. 
The iterative method, based on the “method of projections” as first proposed by Kaczmarz 
(Kak & Slaney, 1999) is very useful for solving this problem. In this method a grid 
representation with n2 cells gives image of n degrees of freedom. Therefore, an image, 
represented by (f1, f2, …, fn) may be considered to be a single point in an n dimensional 
space. In this space each of equations (8), represents a hyperplane. When a unique solution 
of these equations exists (for m ≥ n), the intersection of all these hyperplanes is a single point 
giving that solution. 
The equation (7) we can write in an expanded form: 
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In order to solve the system of equations (8) we have used least squares method which gives 
an excellent results particularly in case when m is bigger than n (over-determined system of 
equations). 
 

 

Fig. 2. A square grid and the rays in the cross-section of the transport way 

If n and m were small we could use conventional matrix theory methods to invert the 
system of equations (1). For larger values m and n may have to be used some least squares 
method for solving this problem (Lawson at al., 1995). 
I’m looking for set of solutions of [f1, f2, …, fn] which equally well satisfy all of equations (8), 
but every value si is measured with an error. So, in order to solve this problem we should to 
look for a global minimum in an n–dimensional space, for example with the help of the least 
squares method. 
The factors wij of the cells, which are not crossed by the rays are equal to 0. When a j-th cell 
is crossed by i-th ray this factor could be calculated according to very simple relation (9): 
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Problem of image construction in case of the ultrasonic flowmeters very often leads to the 
over determined algebraic set of equations (2), which in matrix form can be expressed: 

 Wf = s  (10) 

where: W is the matrix of dimensions m × n and m > n, s=[s1,s2,…,sm] – right hand side 
vector, and f=[f1,f2,…fn]T – the solution vector. One of the ways of the solution of the problem 
(8) is to find the vector f*, which minimize Euclidean norm of residual vector r for the 
known matrix W and vector s. It means:  ║r║2=min║s-Wf║2, ║f*║2=min║f║2,  
where - the last minimum is taken for all vectors f  which fulfil the previous relation. This is 
Linear Least Squares Problem (LSP) (Lawson at al., 1995). 
In order to calculate the solution to Problem LS and analyzing the effect of data errors as 

they influence to it, we will use the Singular Value Decomposition (SVD) theorem. This 

theorem says that for any arbitrary matrix W∈Rm×n(m ≥ n) of pseudo-rank k exists an m by m 

orthogonal matrix U∈Rm×n an n by n orthogonal matrix V∈Rm×n  and  D∈Rm×n such that: 

 T=W UDV  (11) 

where: 
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and k is the pseudo-rank of matrix W. 
The diagonal entries diof the diagonal matrix D are known as singular values of matrix W 

and relation (11) as a Singular Value Decomposition (SVD), (Polakowski at al., 2007, a). 

This decomposition is closely related to the eigenvalue-eigenvector decomposition of the 

symmetric nonnegative matrix WTW, and diagonal terms of matrix D are the squared 

eigenvalues of WTW. Columns of matrix V are the orthonormal eigenvectors of WTW, and 

columns of matrix U are eigenvectors of WWT. 
Knowing the Singular Value Decomposition (11) one can easily to find the solution of LSP: 

 * +=f W s  (13) 

where: W+=VD+UT is the pseudoinverse of matrix W (or inverse matrix in Moore – Penrose 

sense) and 
1

1 1
,..., ,0,...,0 m n

k

diag R
d d

+
×
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⎝ ⎠
D . 

For a square nonsingular matrix W, the pseudoinverse of matrix W is the inverse of matrix W. 

 1+ −=W W  (14) 

In case of ill-conditioned problem (in tomography usually we have to deal with ill-

conditioned problems) the solution can be achieved in the following way. Suppose the 

singular value decomposition is computed for the matrix W: 
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One can compute: 

 T=g U s  (16) 

and consider the least squares problem: 
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where q is related to f by the orthogonal linear transformation: 

 =f Vq  (18) 

Problem (18) is equivalent to the problem ≅Wf s  in the sense of general orthogonal 

transformations of least squares problems. Since D is diagonal (D=diag{d1,d2,…,dn}) the effect 

of each component of q upon the residual norm is immediately obvious. Introducing a 

component qj with the value: 
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j
j

g
q

d
=  (19) 

reduces the sum of squares of residuals by the amount 2
jq . 

Assume the singular values are ordered so dk ≥ dk+1, k=1,2,…,n. It is then natural to consider 
“candidate” solutions for problem (18) of the form: 
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where qj is given by Eq. (19). The candidate solution vector q(k) is the pseudoinverse solution 
(i.e., the minimal length solution) of problem (18) under the assumption that the singular 

values dj for j ≥ k are regarded as being zero. 
From the candidate solution vectors q(k) one obtains candidate solution vectors f(k) for the 

problem ≅Wf s  as: 

 ( ) ( )

1

,        0,...,
k

jk k
j

j

q V k n
=

= = =∑f Vq  (21) 

where Vj denotes the j-th column vector of V. 

Note that: 
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hence ║f (k)║ is a nondecreasing function of k. 
The squared residual norm associated with f (k) is given by: 
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= − = ∑r s Wf  (23) 

Inspections of the columns of the matrix V associated with small singular values are a very 
effective technique for identifying the set of columns of W that are nearly linearly 
dependent. 
Suppose that the matrix W is ill-conditioned; then some of the later singular values are 
significantly smaller than the earlier ones. In such a case some of the later qj values may be 

undesirably large. One hopes to locate an index k such that all coefficients qj for j ≤ k are 

acceptably small, all singular values dj for j ≤ k are acceptably large, and the residual norm 
r(k) is acceptably small. If such an index k exists, then one can take the candidate vector f(k) as 
an acceptable solution vector. (Polakowski at al., 2007, b). 
In order to choose a preferred value of index k one can use a graph of residual norm versus 

solutions norm ║r(k)║=f(║f(k)║). For ill-conditioned problems we have „L” shaped curve. 

Using such the graph it is easy to determine the optimal value of index k. 

Using the method called FOCUSS (FOCal Underdetermined System Solver) we could solve 

a system of underdetermined algebraic set of equations (fewer measurements than the 

unknowns which are a common case for industrial tomography), (Gorodinitsky at al., 1995). 

It let us consider the following constrained optimization problem  
Minimize 

 ( ) | |p p fj=J f  (24) 

subject to 

=Wf s  

where fj are non zero values of the matrix f and Jp(f) (often called the diversity measure) is 
some measure of sparsity of signals and it can take form, called the generalized p-norm : 

 
1

( ) ( ) | |
n

p
p j

j

sign p p f
=

= ∑J f  (25) 

where p ≤ 1 and is selected by the user. 
To minimize the generalized p norm diversity measure Jp(f) in (21), subject to the equality 
constraint  Wf = s we define the Lagrangian L(f,λ) as: 

 ( , ) ( ) ( - )p= +L f λ J f λ s Wf  (26) 

where λ∈Rn  is a vector of Lagrange multipliers and D|f|∈R(n×n) is a diagonal matrix with the 

entries dj=|fj|
2-p. 
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Solving the above equations by simple mathematical operations, we obtain that 

 ( )| || | ( ) 1T
fp ∗= −*λ WD f W s  (27) 

 1 1
| | | || | ( ) ( ) ( | | )T T

f fp − −
∗ ∗ ∗ ∗= =f D f D f W WD f W s  (28) 

The equation (24) is not in a convenient form for computation since the desired vector f* is 

implicitly in the right side of the equation f*.  However, it suggests that an iterative algorithm 

for estimation of the optimal vector f* is given as: 

 1
| | | |( 1) ( ) ( ( ) )T T

f fk k k −+ =f D W WD W s  (29) 

where 

 2 2 2
| | 1 2( ) {| ( )| ,| ( )| ,| ( )| }p p p

f nk diag f k f k f k− − −=D  (30) 

The above algorithm, called the generalized FOCUSS algorithm can be expressed in a more 
compact form: 

 | |( 1) ( )[ | |( )]fk k f k ++ = # #f D WD s  (31) 

where the superscript ( . )+ denotes the Moore-Penrose pseudo-inverse and 

 1 /2 1 /2 1 /21/2
| | 1 2| |( ) ( ) {| | ( ),| | ( ),| | ( )}p p p

f nfk k diag f k f k f k− − −= =#D D  (32) 

It’s should be noted that the matrix D|f| exists for all f and even for a negative p. For p=2, the 
matrix D|f| =J and the FOCUSS algorithm simplifies to the standard LS or the minimum    2-
norm solution: 

 1( )T T −
∗ =f W WW s  (33) 

 

3. Results 

The system of equations describing the tomographic flowmeter was solved with the aid of 
Linear Least Squares method for overdetermined algebraic set of equations. With the 
method called FOCUSS (FOCal Underdetermined System Solver) I have solved a system of 
underdetermined algebraic set of equations. 
Condition number of the resulting rectangular matrix was high enough so that the classical 

Kaczmarz’s algorithm was not able to produce correct results. That’s why I have to take into 

account pseudo rank deficiency of the matrix coefficients. I have considered all possible 

candidate solutions, when k was changing from 1 till the full pseudo – rank equal to 1000 

(Polakowski at al., 2008, a). 

The images and their relief plots constructed on the basis of the candidate solutions are 

presented in Figure: 4b, 6b and 7b. The images and their relief plots constructed on the basis 

of FOCUSS are presented in Figure: 4c, 5b, c, d, 6c and 7c. 
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Fig. 3. Diagram ║r(k)║=f(║f(k)║)of the residual vector norm versus the solution vector norm 
for the cross shaped object 

 

 
The resolution of grid 16x16, number of 

the rays 256 
The resolution of grid 16x16, number of the 

rays 624 

a) 

 

b) 

  

c) 

  

Fig. 4. The changes of images and the relief plots of a cross shaped object in dependence of 
number of the rays a) reconstructed object, b) reconstruction with the aid of Linear Least 
Squares Method , c) reconstruction with the aid of FOCUSS 
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a) 

 

b) 

 

c) 

 

d)

 

Fig. 5. Images and the relief plots of a cross shaped object reconstructed with the aid of 
FOCUSS in dependence of regularity index a) reconstructed object, b) regularity index 0.02 , 
c) regularity index 0.2, d). regularity index 50. 

When I compare Figure: 5b, c and d we can also see, that the images have not been 
improved with the bigger regularization parameter, when the resolution of the grid was not 
to high. 
Inspecting those images we can observe the influence of the resolution of the square greed 
and number of the rays on the object forming inside the region. The influence of resolution 
and number of the rays on improving the image we can clearly see on Figure 4, 5, 6 and 7. 
 

 
The resolution of grid 32x32, number of the 

rays 256 
The resolution of grid 32x32, number of the 

rays 512 

a) 

 

b) 

  

c) 

  

Fig. 6. The changes of images and the relief plots of a cross shaped object in dependence of 
number of the rays a) reconstructed object, b) reconstruction with the aid of Linear Least 
Squares Method , c) reconstruction with the aid of FOCUSS 

It is worth to mention, that shown in Figures: 4÷7 achieved results were constructed for 
unpolluted synthetic data and the images were not filtered in order to check the behaviour 
of the image construction algorithm. 
Theoretical and experimental researches carried out in this work prove that by increasing 
the number of radiuses which cross the pipe we increase the number of rows in the 
coefficient matrix W. It causes the results improvement, but at the same algorithm’s  
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The resolution of grid 64x64, number of 

the rays 256 
The resolution of grid 64x64, number of 

the rays 512 

a) 

 

b) 

  

c) 

  

Fig. 7. The changes of images and the relief plots of a cross shaped object in dependence of 
number of the rays a) reconstructed object , b) reconstruction with the aid of Linear Least 
Squares Method , c) reconstruction with the aid of FOCUSS 

execution time. Thus the number of rays should be selected in reasonable and considered 
way, thinking about image’s quality and algorithm’s execution time. By increasing the size 
of the resolution of the square greed (increase number of pixel) we cause a rise of the 
number of columns in coefficient matrix W. On the other hand, with higher resolution of the 
square greed, reconstructed object could have more details and it is more similar to the real 
object. We should notice that with higher resolution of the square greed, the number of rays 
has to be increased proportionally. 
After checking the behaviour of described above the image construction algorithms we tried 
to receive a velocity profile of the flow. For receive a velocity profile computations were 
made in area of a pipe with 0,20 m diameter. In the model transmitters (N=32) and receivers 
(O=48) were evenly distributed around cross-sectional area of the pipe as shown in Fig. 8.  
In analyzed model the transmitters one by one generates ultrasound impulses, which with 
different delays reach all receivers (Polakowski at al., 2008, b). 
This work contains examples of simulation computations of the complex shape modelling 
the flow with complicated 3D shape (Fig. 9). Chosen methods made it possible to obtain 
tomographic images that accurately map tested shape (Fig. 11). 
The tested area with modelled object was divided into 5 surfaces (Fig. 10). In each surface 
were made 32 projections with help of 32 x 48 rays between 32 transmitters and 48 
receivers in each surface. In all surfaces were made calculations, which gave tomography 
images of calculated area. On figure 9 are shown only 9 from all achieved results with 
their relief plots.  
From these 2,5 D results we can quite accurately reconstruct the whole 3D modelled flow 
shape. 
The system of equations describing that tomographic imaging was solved with the aid of 
Linear Least Squares Method. Condition number of the resulting rectangular matrix was 
high enough so that the classical Kaczmarz’s algorithm was not able to produce correctly 
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results (Polakowski at al., 2008, b). That is why I have to take into account pseudo rank 
deficiency of the matrix coefficients. I have considered all possible candidate solutions 
according Eq. (21), when k was changing from 1 till the full pseudo–rank. 
 

 
 
 

 
 
 
 
 

Fig. 8. Modelled area divided with 32x32 pixels and evenly distributed transducers: 32 
transmitters N x 48 receivers O 
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Fig. 9. All possible 1536 rays in modelled cross-sectional area from 32 projections between 32 
transmitters and 48 receivers 
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Fig. 10. Model of the complicated flow shape and its 2,5D visualization 
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c) d) 

Fig. 11. Two examples of obtained tomography images with their relief plots in W1 (a, b) 
and W2 (c, d) surfaces used for reconstruction of the flow in 2,5 D 

I also have performed calculations for noise polluted data. The noise was generated 

according to algorithm where the changes in rays flow were achieved through changing the 

position of transmitters and receivers according to Eq. (33), where in case of noise a random 

number llos with weight w was added to ny coordinate llos was within the <0, 1> scope and 

was calculated by random numbers generator.  

 ( 0,5)y y los yn n w l n= + −  (33) 

After that the value was reduced by 0,5 in order to get positive or negative values. 
In this case even data with high noise haven’t caused big image deformation. It is an 
essential fact, because real data consists of noise from measurement errors. 
The obtained tomography images (Fig. 11) confirm that chosen method gave us images that 
accurately map tested shape. 
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3. Conclusion 

The calculations with use of the modelling in 2,5D space, give a chance to get results which 
reflect the phenomenon in the analyzed 3D area, quite accurately (Fig. 9). The obtained 
results are satisfying and further work should be given the answer for the question, if the 
proposed method will finding practical application in automotive applications. The 
simplification of calculations with assuring the sufficient accuracy in making tomography 
images of analyzed physical phenomenon should succeed in faster obtaining of results. This 
issue is important because the contemporary tomography is expected to bring real time 
tomography images of dynamically changing environment. 
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