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1. Introduction 

At present production systems in car manufacturing processes are under high demand 
requirements and maintenance plans are of great importance in order to achieve the 
production objectives. The main goal of the maintenance is to increase the operativity of the 
plant and the machines involved in the manufacturing process, avoiding all unexpected 
stops. Preventive maintenance has been the solution adopted by most factories for years. 
Based on past experience or on machines suppliers specifications, the maintenance manager 
decides when to check or replace the machines or some of their components to guarantee 
their operation without faults until the next maintenance stop. This implies two kinds of 
costs for the factory: checking a lot of equipment (time and staff costs) and replacing 
components that may be in good conditions. 
That is why knowing the actual state of the different parts and machines of the factory is 
so important for a good management of the plant. The increasing automation of the plants 
allows to acquire, store and visualize lots of variables of the process. Most factories have 
nowadays SCADA systems that allow supervision of processes and equipment giving a 
valuable information about them. However it is not easy to manage this great amount of 
information for different reasons. First of all the sample rate of these variables usually 
hides their dynamic behaviour. Also the complexity of the processes makes it difficult to 
identify all the relations and dependencies between variables, so it is not possible to 
determine a wrong operation looking only the variation of a few variables without taking 
into account how the rest are changing. The number of variables and data acquired in the 
whole factory makes it impossible for a human supervisor to process all that information, 
relate it to past data and try to find out if something is going wrong. Although his 
experience will allow him to detect some problems it is evident that he needs some help to 
succeed in his work. 
Predictive maintenance is a methodology that improves systems availability and contributes 
to cost reduction and increase of useful life of production assets. It comprises different 
techniques to process acquired data from the factory to determine machines state and 
predict how they will work in the future. The variety of problems that must be solved makes 
the design of a predictive maintenance system be a very complex task where different 
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knowledge areas must be integrated. It is very important to know the state of the art in all of 
them and sometimes introduce innovations for applying the solutions to particular cases. 
Next sections explain the main components of a predictive maintenance system and how it 
was implemented in real industrial problems of the automotive industry. An effort has been 
made in order to choose case studies that offer a wide range of the possible techniques to 
use, combining classical solutions with newer ones. 

2. Structure of a fault detection system for the automotive industry 

The core of any predictive maintenance system is a fault diagnosis system able to detect 
failures not only when they are happening, but also a pre-failure behaviour. It is an 
advanced solution for the supervision level of the factory where in most cases only SCADAs 
and alarms based on variables values are considered. One of the main advantages of 
predictive maintenance is its ability to provide useful information to the human supervisor 
showing what the real state of a plant or machine is and helping him in the planification of 
the factory operation. It is also capable of substituting the human operator in some systems 
taking decisions such as stopping the operation in case of a critical fault or scheduling 
maintenance operations. 
The three main components for any fault diagnosis system are data acquisition, signal 
processing and decision making. These three components must be designed jointly because 
the requirements or outputs of one of them will affect the others. Their complexity level will 
depend on the application and how the symptoms of the faults can be found. 
Data acquisition is the first stage of every diagnosis system. This component consists of all 
the sensors, signal transmission systems, acquisition devices and storage equipment. 
Sensors are a key component of the fault detection system because they provide all the 
information the system will have to deal with, although in some cases information coming 
from production management systems can be useful. In some cases those sensors can be 
shared with other tasks such as control or supervision and they are included in the machine 
or plant during its design. But in most cases predictive maintenance is not taken into 
account during the design of the machines and new sensors are usually required. This 
occurs specially when predictive maintenance must to be applied to old machines because 
they start to be a bottle neck in the plant due to their unexpected faults. Electric current, 
voltage, accelerometers and temperature sensors are of common use for diagnosis systems. 
Some applications require more specific sensors, like photodiodes and spectrometers. The 
selection of the appropriate sensor and acquisition system can be determinant for the 
success of the application because they must guarantee that the collected data have the 
information of the state of the machine. Capture and synchronize data from sensors of 
different nature and variables with different dynamics can be an interesting problem to 
solve and sometimes requires specific programming or storaging methods designed ad-hoc. 
In the signal processing stage, signals acquired and/or stored by the data acquisition 
component are processed. This includes common signal treatment like filtering that is used 
to eliminate noise. However, the most important part in signal processing is feature 
extraction. Feature extraction consists in looking for a particular behaviour in the signals 
that allows to identify the faulty or pre-faulty states. There are a wide variety of feature 
extraction techniques and the one used depends on the problem at hand. For example, one 
of the most common feature extraction techniques is the Fourier Analysis, which gives 
information on the distribution of energy power associated to different frequency ranges in 
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the signals acquired by the sensors. This content changes when a fault occurs or is close to 
occur. Besides this, feature extraction techniques in the time domain are also useful. Some 
problems require the use of very specific feature extraction techniques, like the estimation of 
electron temperature. The final stage is the decision making where the features that have been 
extracted from the signals generated by the sensors, have to be classified in order to determine 
the state of the system. The classification is the base of the decision making process, so it has an 
important role in the fault diagnosis scheme. In some cases, classification can be done by 
merely checking the features values against a threshold, although selecting the threshold value 
could be a hard problem to solve. In other cases, more sophisticated non-linear classifiers, like 
neural networks, neuro-fuzzy systems or support vector machines have to be used. Besides 
this, features time evolution is also of great importance because it allows to perform trend 
analysis, which is one of the basis of the fault predictive capabilities of the fault detection 
systems. The lack of historical data is the main problem that must be solved when designing 
the decision making component. It can be sometimes a problem to decide what is the optimal 
classification method to use, and it is always an added difficulty to fix the parameters of the 
system. Usually conservative strategies are used. This leads to a great number of false alarms 
during the initial phases of the predictive maintenance system implementation. Human 
experts supervision and knowledge is one of the main supports for a good design of the 
decision making system and its configuration. 

3. Case studies 

3.1 Case study 1: Multitooth machine tool 
Machine tools represent one of the main examples of highly automated components 
(Altintas, 2000). In spite of this automation, the cutting process has an inherent degradation 
(Astakhov, 2004), which is one of the main problems to be overcome. Other aspects to 
consider are workpiece tolerance deviations, ensuring a correct evacuation of the chips, 
changing of worn tools and, if necessary, stopping the machine if abnormal working 
conditions appear (for example chatter). So, to achieve the desired level of autonomy for this 
kind of machines, it is necessary to develop the monitoring and diagnosis of the cutting 
process. Many different kinds of machine tools are used in the automotive industry. Among 
them, the so called Multitooth Machine Tools represent the most challenging ones, from the 
diagnosis point of view, due to high number of inserts susceptible to break, and the different 
machining operations integrated within the same tool. The tools analyzed in this chapter are 
used in the car industry for mass production of different mechanical parts, such as the 
crankshaft or the camshaft of car engines. These tools are complex ad hoc devices built with 
many cutting inserts (up to 250, depending on the machine) of different kinds (roughing and 
finishing) presented in Fig.1(b) and for different operations (turning, milling or broaching) 
within the same tool, as shown in Fig.1(a). The configuration of the tool is based on multiple 
tool holders specially designed for the particular operation of the mass production line. 
Such complexity is necessary to achieve the required high metal removal rate. 

3.1.1 Data acquisition in machine tool environment 
Regarding the main three components of a fault detection system (data acquisition, signal 
processing and decision making) an optimal selection of sensors is of paramount importance 
to obtain valuable information from the environment of the machine tool that should be 
correlated with the abnormalities to be detected. Different signals susceptible of 
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(a) Layout of multitooth tools used in the car 

industry 
(b) Different inserts in the multitooth tool 

Fig. 1. Multitooth tools used in the car industry 

having correlation with tool wear and the breakage of inserts in the multitooth tool, are 
shown in Fig.2. Among others the following are the most common in the literature: 
Noise: can be measured in the environment of the tool using microphones (Fig. 2(a)). Al- 

though noise gathers information coming from the whole machine tool environment, 
this measure can be very valuable for the first analysis of the machining cycle through 
the analysis of the time-frequency representation like the spectrogram. 

Vibration: measured with accelerometers in one of the main shafts of the machine tool (Fig. 
2(b)). As the wear increases in the tool an abnormal increase in the vibration also 
occurs and can often lead to bad surface quality. 

Temperature: the increase of the tool wear causes an increase in the temperature due to an 
excessive friction. Using sensors like pyrometers, the temperature of the machined 
surface can be easily measured after the machining has been completed (Fig. 2(c)). 

Electrical power consumption: can be measured from the output signals of the frequency 
converters (for the usual case of AC drives) for every motor that moves the multitooth 
tool and moves the workpiece (usually rotation movement). Fig. 2(d) depicts the 
example of rms electrical power consumption of the two drives of an example tool: 
feed and rotation of the tool holder. These kind of signals show clearly the different 
parts of the cycle and the grouped attack of the inserts in the tool. 

In order to analyze the sensitivity of every recorded signal, the measurements have to be 
done over the useful life of several consecutive tools. After that, every set of signals is 
statistically analyzed to extract global information for comparison and to decide whether 
there is a correlation with the degradation of the tool, or other abnormalities that could have 
been recorded. In (Reñones, Rodríguez & Miguel, 2009) are presented the results of such 
analysis that lead to choose the electrical power consumption as the most appropriate signal 
for use in the diagnosis of the multitooth tool. This signal showed the best signal-to-noise 
ratio for the evolution of the wear and was the most cost-effective measure: non-invasive, 
moderate sensor cost (inexpensive if appropriate signals are available at the drive converter) 
and high reliability of the measure in comparison with other measures like noise and 
vibration, because of the high influence of the sensor location. Fig. 3 shows the evolution in 
electrical power consumption in a particular zone of the analyzed tool. It is clear the increase 
of the power due to the wear and the abrupt decrease after the tool reaches its useful life and 
it is changed by a new one. 

www.intechopen.com



Monitoring and Fault Diagnosis in Manufacturing Processes in the Automotive Industry   

 

37 

-0.5

-0.3

-0.1

0.1

0.3

0.5

0 10 20 30 40
Time (s)

S
o

u
n

d
 p

re
ss

u
re

 (
u

.a
.)

(a) Sound pressure recorded during the
      machining of a car crankshaft supports

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 10 20 30 40
Time (s)

V
ib

ra
ti

o
n

 (
g

)

(b) Vibration amplitude of the main rotation tool
       axis recorded during the machining of a
       car crankshaft supports

0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49

0.5

0 8 16 24 32 40 48 56 64
Time (s)

T
em

p
er

at
u

re
 (

u
.a

.) Temperature of 
the machined 
surface

Temperature 
increase

Ambient 
temperature

(c) Temperature support scanned after the
      machining cycle

-30

-20

-10

0

10

20

30

0 10 20 30 40 50 60
Time (s)

C
u

rr
en

t 
(A

)
Feed

Rotation

Roughing Finishing

(d) Electrical power consumption of the feed and
       rotation electrical drives  

Fig. 2. Signal more common in the literature 

 

 

Fig. 3. Evolution of the tool wear using the electrical power consumption. 

3.1.2 Signal processing of the electrical power consumption 
Once the electrical power consumption has been chosen as the desired signal for diagnosis 
of the tool, it is time to extract the part of the electrical power consumption that belongs to 
each insert or every group of inserts that attacks the workpiece simultaneously. This process 
is known as signal segmentation and can be formulated as the automatic decomposition of a 
signal into stationary or transient pieces with a length adapted to the local properties of the 
signal (Basseville & Nikiforov, 1993). 
Firstly, the number of segments that must be extracted has to be defined, taking into account 
different aspects of the machining process, such as the different kinds of cutting inserts, the 
workpiece material, changes in the cutting conditions, changes in the PLC programming, 
different mechanized zones of the workpiece and the layout of the tool. 
Among the different alternatives for making the segmentation of the electrical power 
consumption signals, the use of auxiliary signals not directly affected by the machining, 
such as, for example, the sampled speed reference of the machining cycle, or its acceleration, 
ensures a reliable segmentation avoiding false alarms in the detection of a fault in the tool. 
Once the different signal segments are extracted, the next step is to obtain the model for 
every segment that should be sensitive to electrical power consumption changes caused by a 
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fault in the tool. Another goal of this step is to reduce the amount of information used in the 
following steps of the diagnosis scheme. There are different methods available to make such 
reduction (Reñones, Rodríguez & Miguel, 2009). Among them, the calculation of statistical 
parameters is a straightforward reduction of information. Only those which presented a 
greater sensitivity to the variations produced by the failures in the tool must be chosen in 
order to reduce the amount of data for detection of failures in each group of the tool. With 
the appropriate statistical parameters chosen, the change detection problem can be stated as 
the detection of a change in a set of random variables. The change detection is usually 
carried out using a so called stopping rule, as presented in (1); that is, a function of the 

random variables yk that exceed a preset threshold λ  in case of abrupt change. The 
parameter ta represents the estimated time of change at which the stopping rule is true for 
the first time (Basseville & Nikiforov, 1993). 

 { }1inf : ( , , )a n nt n g y y λ= … ≥  (1) 

This problem is frequently solved from a statistical point of view. In Fig.3 an example of 
abrupt change that must be detected can be seen. The following requirements must be taken 
into account to solve this change detection problem: 

• The segmentations or electrical power consumption trends are non-stationary, so an 
adaptive detection scheme is needed. 

• The changes must be reliably detected, and the false alarms due to occasional electrical 
power consumption changes must be avoided. 

• A mean time between false alarms (MTFA) must be fixed. 

• The change detection must be fast enough to avoid serious damage to the whole tool 
and machine. 

• The changes can be abrupt decreases (in case of breakage) but also abrupt increases due 
to the loss of an insert or an abnormal wear rate caused by the breakage of previous 
inserts. 

Among the different alternatives that can be used to detect abrupt changes (Reñones, 
Miguel & Perán, 2009), the algorithm based on an adaptive local linear model of electrical 
power consumption showed the best performance in terms of reliability, and an extremely 
low computational cost. The algorithm is based on the detection of linear regression outliers. 
In the present case, the outliers are recorded points with an electrical power consumption 
out of normal variation due to a breakage (abrupt decrease) or abnormal wear rate (abrupt 
increase). 
Due to the fact that the evolution of the electrical power consumption trends are not linear 
as the wear increases, this detection scheme must be implemented using a moving data 
window, let’s say of size L. 
The outlier detection algorithm is done through the calculation of statistical parameter ti de- 

fined in (2). This statistical parameter follows a Student’s t-distribution. Under no fault in 

the tool and hence no change in the electrical power consumption, the residuals ti should 

remain in the interval ±t(1 – α/(2L), L – 3) of confidence α. These bounds of the interval are 

also known as the critical level or threshold. 
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In order to adjust the algorithm in an optimal way, some performance measures must be done 
and it must be taken into account the variation range of the different parameters for the 
algorithm (window size L and the critical level or threshold). To make the detection robust, an 
additional parameter can be added, such as the amount of consecutive detected outliers. 
In quality control this is called a run test. In fact, this robust mechanism is not particular to 
this detection scheme and can be applied to other detection algorithms. 
In order to optimally adjust the parameters of the detection change algorithm, performance 
measures must be done, such as (Gusstafson, 2000): MTFA (Mean Time between False 
Alarms), MTD (Mean Time to Detection) and, MDR (Missed Detection Rate). 
The optimal algorithm adjustment is performed by fixing either the performance measure 
MTFA or MTD, and the parameters of the algorithm are chosen to minimize the other 
performance measures. The presented algorithm have been evaluated with data coming 
from the machining of more than 30000 workpieces. As the exploration of the whole range 
of parameters for the change detection algorithm is unapproachable, some restrictions and 
assumptions were added to cope with the problem. For the window size L, it seems 
reasonable to choose a value lower than the mean time between faults. For the test set used, 
it is approximately 300 workpieces, then the interval for this parameter was set as [40,100] 
workpieces.  
The run test, represented as R, influences the speed of detection. After studying historical 
data and taking into account the protection of the tool, an interval of [2,6] workpieces seems 
reasonable. The threshold interval was [2,7] and for the residuals was fixed as an interval 
with a confidence level from 0.1 to 0.001. Two tests have been done to study the relationship 
between the different parameters, where the threshold is varied in the preset interval and 
the other two parameters are fixed at the midpoint of their own interval. 
In Fig. 4 is presented an example of such performance measures. Detailed analysis of these 
graphics can be found in (Reñones, Miguel & Perán, 2009). It is straightforward to see that 
an increase in the threshold (horizontal axis of the graphics) leads to a more reliable 
detection (higher MTFA) but fewer faults are detected as shown in the third row of graphics. 
This exploration of parameters influence let to finally make an optimal adjustment in the 
parameters for the change detection in the different electrical power consumption trends for 
the different zones of the multitooth tool. 
The result of this step is a list of thresholds for every zone of the tool. Positive thresholds can 
be adjusted to detect abrupt increases of the electrical power consumption due to an 
abnormal wear rate (called as overload), and also abrupt decreases due to a breakage of one 
or more inserts in the tool. 

3.1.3 Decision making process for the machine tool diagnosis 
The last step of the methodology used to detect faults in the multitooth tool is the so-called 

Decision-making process as presented in section 2. In this step, using the information coming 

from the change detection algorithm and other information of the state of the system, an 

effective declaration of the fault in some zone in the tool is done. That means, for example, 

that the machine tool will be stopped at the end of the current cutting cycle, and the 

operator will fix the problem based on the information of the diagnosis system: the faulty 

zone of the tool and the type of fault (overload or breakage). 

The electrical power consumption signal gives the best signal-to-noise ratio to detect faults, 
as was presented in section 3.1.1. On the other hand, this signal exhibits sensitivity (abrupt 
changes in the signal) to other phenomena that may cause false alarms which must 
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Fig. 4. Performance measures for the linear regression change detection algorithm with 

parameters: L ∈ [40,100], R ∈ [2,6] and λ ∈ [2,7]. 

be taken into account, such as a tool changed by a new one, changes in the material of the 
workpieces (foundry or steel), compensation adjustments in the inserts made by the 
operators to achieve the desired tolerances, the warm up process after a long stop, etc. To 
prevent false alarms caused by any of these events, it is necessary to protect or disable the 
change detection algorithm. Protective measures that can be taken to avoid false alarms are 
to use output signals from the PLC governing the machine tool (new tool, material change, 
etc), or to inhibit change detection when changes affect the whole recorded signal or there 
are sample points separated too much time. 

3.2 Case study 2: Car painting cabinet 
This case study shows a predictive maintenance system currently operating in an assembly 
car factory, specifically in painting cabinets section. It has been working for thirteen years 
now and serves as a valuable tool for anticipating to breakdowns all along the plant, 
optimizing equipment performance and reducing unplanned shutdowns and incidents. This 
predictive maintenance system is based on mechanical vibrations analysis techniques 
applied on the motor-fan sets operating in painting cabinets. 
The predictive maintenance for this kind of installations can be performed in two ways. 
With online analysis systems or with hand-held, walk-around vibration analyzers. For 
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extremely large operations and/or very expensive equipment, the first approach is the most 
cost effective and has repeatedly shown to saving money. 
The main advantage of an on-line dynamic vibration monitoring system is that the data 
acquisition is made continuously. This allows to check past values and to know the 
evolution of the state of the machine, providing a more reliable diagnosis that off-line data 
acquisition systems cannot offer. Most of the on-line systems use some kind of acquisition 
system architecture that involves input channels multiplexing many vibration sensors. This 
results in a scan rate that varies according to the system scheduler. Another advantage to an 
on-line dynamic vibration monitoring system is that there is no labour cost to acquiring the 
data and minimal labour cost for identifying machine faults. 
The disadvantages of these systems are that they are the more costly systems to implement and 
maintain as they include maintaining a full time vibration analyst, and installing a wired 
network to get the signals from the sensor to the analysis system. Furthermore, the software and 
hardware that make up the system typically require an extensive maintenance contract as well. 
Hand-held, walk around vibration analyzers only provide trending information to identify 
that a potential problem exists, and do not provide the detailed information necessary to 
determine the cause of the problem. The supervision is done only at specific moments and it 
does not provide a trend of vibration levels. Moreover, they require skilled vibration 
analysts to interpret the data and, without continuous monitoring, problems in between 
rounds could be costly. 

3.2.1 Problem description 
The plant under study consists of a series of motor–fans that keep painting cabinets under 
very strict temperature and humid conditions. In some cases air must be put into these 
cabinets and in some others air is taken out of them. The target is to keep working 
atmosphere under control in such a way that safety and sanitary conditions are guaranteed 
for the staff. Moreover, in order to achieve a good production quality, it is required that air 
inside the cabinets is at the right temperature, filtered and keeping an adequate relative 
humidity that prevents varnish thinners from evaporation. It is also necessary to extract the 
air from the cabinet, in order to eliminate polluting elements. 
For each motor-fan the fan is driven by an electric drive whose rotation movement is 
transmitted to the fan through a couple of pulleys, one attached to the fan and the other one 
to the drive, together with a belt. Both the electric drive and fan are mounted on an elastic 
structure that keeps the set isolated from the high frequency excitations of the structure and 
at the same time, this base structure is not affected by the mechanical vibrations coming 
from the electric drive and fan. 
This assembly plant is able to produce around 1.200 cars every day along three shifts, 
depending on demand needs. To achieve this, it is mandatory to ensure that every machine 
is working under optimal conditions avoiding unexpected breakdowns which could lead to 
stops and subsequent lost of production. Therefore, a predictive maintenance system is 
needed. A thorough analysis of the related machines has led us to consider the following 
sources of mechanical vibration that could be the cause of potential failures: 
1. Defect related mechanical vibrations: Unbalance, misalignment, looseness, defects in 

bearings, blade breakage and defects in belts. 
2. Mechanical vibrations related to natural frequencies: Natural frequencies of the base 

structure, natural frequencies from any part of the machine structure and natural 
frequencies from other elements outside the machine. 
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3.2.2 Predictive maintenance system 
The system consists of an industrial computer in charge of data acquisition, communication 
protocols and the calculation of spectra and alarms (DCS station in Fig. 5) to which up to 
four nodes are connected through a LAN. They are multiplexors and receive signals from 
accelerometers placed on the machines. Analysis and diagnosis tasks are carried out by 
means of a PC (MD station). This PC has a communication module that allows remote access 
to the data, so that it is possible to perform the same tasks from a remote computer, outside 
the factory. Fig. 5 shows the layout just described. 
 

 

Fig. 5. Predictive maintenance system schema 

In each motor-fan two accelerometers have been placed to register mechanical vibrations from 
the electric drive and the fan, which is the most sensitive part to be monitored in this case. The 
related bandwidth is 20 kHz, which is enough for the application under study. They have been 
placed in radial position, as close as possible to the bearings near the pulleys. 
The signals from the accelerometers reach one of the four multiplexors (nodes from Fig. 5) 
inside which they are displayed along 32 channels, and finally get to the industrial computer 
where they are registered and sent to the PC for further analysis. As soon as an abnormal 
value is detected, an alarm shows up on the screen so that subsequent actions can be taken 
in order to solve the problem arising. This scheme is the same for every motor-fan being 
monitored. 
The system is automatically registering data on a daily basis. At the same time, mechanical 
vibration levels, process variables and alarm levels are being checked for the plant. 
It is possible to register three kinds of data: gross scan, spectrum and time signal: 
Gross Scan: These data constitute a unique signal taken from a DC stationary signal o 
calculated from an AC dynamic signal, as for example, a RMS one. 
The gross scan measurement from each sensor is compared to a reference value that serves 
as an alert. After this, the measurement is used to update the related maximum and 
minimum values that will be finally registered in the database. Whenever any gross scan 
measurement exceeds the alert value, it is first registered in the database, then it is updated 
for the DCS, and finally, the related spectrum and time signal are recorded as alarm related 
data for the specific sensor. 
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Spectrum: They are calculated from a related time signal and further processed in order to 
get specific information at certain frequencies associated with the potential defects of the 
machine being monitored. In this case, this is done through what we call Analysis 
Parameters Set (APS). Gross scan data are registered for every signal once per each data 
registered cycle. Spectrum data are recorded for one or two signals once per each data 
acquisition cycle and time signals are registered simultaneously to the spectra. 
Time signal: This software allows the user to visualise data in the time domain, which can 
be very useful is specific situations, though no further analysis is being performed in the 
case under study. 
The system allows to define up to 12 parameters directly related to the frequencies or 
selected ranges of them that are of interest in order to characterize (detect) certain types of 
machine failures. There are many possibilities to choose different types of Analysis 
Parameter Sets and the most widely used are briefly described next: 
Total Energy: This value represents all of the energy of a signal. Because of the nature of the 

FFT, the first two points of the spectrum are excluded from this summation. 
Energy within a Frequency Range: The energy between the two specified points of a 

spectrum will be summed. 
Non-Synchronous Energy within a Frequency Range: The energy between the two 

specified points, which is not an integer multiple of turning speed, is summed. 
Synchronous Energy within a Frequency Range: The energy between the two specified 

points, which is an integer multiple of turning speed, is summed. 
Synchronous Peak: The signal is synchronously sampled to determine the energy at 

harmonic of running speed. In order to use this parameter, the sensor must have a 
tach pulse defined for it. 

HFD (5k-20kHz) High Frequency Detection: An additional collection of vibration data is 
made from which the energy from 5.000 Hz to 20.000 Hz is computed. HFD 
sometimes useful in detecting bearing faults at an early stage. 

RPM: This field displays the RPM for this sensor. A good way to ensure that the tachometer 
definition is set up correctly and the RPM ratio is correct is to compare the reported 
RPM with the expected value. 

3.2.3 Practical example 
Next, an example of a fault is showed. In this case, a progressive defect in the fan bearings 
has been detected. As soon as the pre-alarm level is reached all the related parameters are 
supervised, and once the system indicates the alarm level has been exceeded, the faulty 
bearings are replaced. This kind of fault is best detected using the energy within a frequency 
range parameter. For this kind of defect several frequency ranges have been selected in 
order to assess the degree of severity of the fault. When a bearing defect is first detected (just 
within a unique frequency range), the machine will still be able to work under acceptable 
conditions long before it is advisable to replace the damaged bearings. Therefore, when 
some ranges are affected simultaneously the fault is considered severe enough so as to 
recommend the replacement of the faulty pieces. Fig. 6 shows the trend followed by 
mechanical vibrations for five related consecutive frequency ranges. They all have the same 
performance, giving precise information on the very moment when the failure first 
appeared. Then, it became more and more important until the alarm level was reached, and 
finally it can be seen the level of vibration once the faulty bearings were replaced by means 
of a planned intervention, not affecting production by any means. 
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                  (a) Frequency band 5-30 Hz                               (b) Frequency band 230-310 Hz 
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                (c) Frequency band 400-800 Hz                          (d) Second Harmonic (2X) 

Fig. 6. Fault detected in the bearings of the fan 

3.3 Case study 3: Electric motors diagnosis in non-stationary processes 
3.3.1 Predictive maintenance of electrical motors 
Electrical motors are one of the most crucial components of production, and many of them 
are of vital importance for factories to be operational. For this reason a great number of 
diagnosis methods have been developed during years in order to detect motor faults. Some 
of this methods can only be applied off-line because the motor needs to be disconnected and 
isolated. This is the case of hipot analysis, partial discharges, isolation test or surge 
comparison testing. These are well-known techniques in the field of maintenance of 
electrical motors and are widely used in industry, especially for high power machines. There 
are another group of techniques that can be used on-line such as thermography or vibration 
and spectral current analysis. All of them can be considered as predictive methods because 
allow to detect incipient faults and predict the time until a critical fault is declared. The 
problem with the off-line methods is that a fault can produce damages in the system before 
it is detected. This happens when its evolution is faster than the period between analysis. On 
the other hand, spectral analysis methods (current and vibration) allow on-line detection of 
mechanical faults besides electrical ones. Bearings faults, mechanical unbalance, eccentricity, 
windings or coils short-circuits and electrical unbalance are the faults than can be diagnosed 
using vibration or current spectrum. To obtain good results with these methods it is 
important to have the adequate precision in the analized spectrum, what is related mainly 
with the data acquisition rate, acquisition time and speed variation. Though there exist 
processing techniques to use spectral analysis in case of speed variation, they require the use 
of an encoder and have a limit in speed variation. 
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In this section, two industrial applications will be presented: 

• Diagnosis of DC motors of stamping presses 

• Diagnosis of master-slave synchronized AC motors in metal cutting machine 
In both cases it will be explained why it is not possible to use any of the previous detailed 
methods and how other fault detection techniques can be used instead. It is intended to 
show the application in the industry of methods validated in laboratory and widely present 
in scientific literature. 

3.3.2 Diagnosis of DC motors of stamping presses 
Stamping presses are machines used for metal processing with an important role in the 
automotive industry. They usually work forming a line of stamping presses in which the 
piece of metal is sequentially processed along it to acquire its final shape. The movement of 
the press punch is generated with an electrical motor and transmitted trough several gears 
that transform the rotation of the motor in a lineal displacement of the punch with the 
appropriate speed and force to process the metal. The high power of the motor makes that 
in many cases, specially in old machines, it be a DC motor. In these cases it is not possible to 
apply current spectral analysis because fault frequencies appear as side bands of the 
fundamental frequency of the AC motor. Vibration analysis could be used to diagnose faults 
in bearings or other mechanical faults but electrical faults need another diagnosis method.  
In this case a model–based diagnosis system were used to detect faults in motor windings. 
Model-based diagnosis uses the differences between the real system and a model of it to 
detect possible faults and locate their origin. Since it was first proposed by (Chow & 
Willsky, 1984), model–based diagnosis has been object of a great number of publications. 
Many theoretical and practical studies have been carried out along these years, but it is not 
easy to find it in the industry. The main reason for this is the complexity of most systems 
and machines and the difficulty to obtain a model that represents them in all the operating 
conditions. Multiple techniques and solutions have been proposed to solve non-linearity 
problems or model uncertainties. The advantage of applying model-based diagnosis to a DC 
motor is that it has a well-known linear model. In this case the difficulty is the identification 
of the model, because in an industrial environment it is not easy to develop all the required 
experiments and only production data were available.  
The motor model is defined using two electrical equations, one for field winding and 
another for armature winding: 

 ·
f

f f f f

di
U R i L

dt
= +  (3) 

 · a
a a a a

di
U E R i L

dt
= + +  (4) 

being U the source voltage, i the current through the winding, R the winding resistance and 
L its inductance. Subscripts f and a refers to field and armature windings respectively. 
Finally, E is the electromotive force and it is proportional to the field current and motor 

speed ω: 

 fE K iω= ⋅ ⋅  (5) 
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Identifying a closed–loop system is difficult due to correlation between inputs and outputs 
what makes impossible to use some of the usual identification methods of linear systems. In 
this case, the armature and field source voltage are generated with a controlled rectifier so 
the feedback between output (speed) and input (voltage) is made controlling the firing 
angle. This means that during the period between commutations of the power electronic 
switches an RL circuit is established and it can be seen as an open–loop system between 
voltage and current. Fig. 7 shows measured voltage and current for field and armature 
windings. Induced voltage E can be easily calculated because it is the value of armature 
voltage when current armature is zero. From Equation 5, K can be obtained using measured 
field current and speed. The identification of R and L in each of the windings is made 
considering intervals of operation when a RL circuit between voltage and current can be 
assumed. In these intervals the relation between output (current) and input (voltage) is a 
first order system that can be easily identified calculating the attenuation and lag between 
signals. A mean of all the values of R and L is obtained as DC motor parameters. For 
parameter armature identification only data with ia >0 is used. In the case of field winding 
the continuity in if allows to use all the acquired data for identification. Parameter values are 
those showed in Table 1. 
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Fig. 7. Identification data for DC motor 
 

Ra 0.425Ω 

La 0.00233 H 

Rf 138.67Ω 

Lf 27.57H 

K 1.358 

Table 1. DC motor parameters 

Using the identified model it is possible to define two equations, called residuals, that take a 
value different from zero when a variation in the model happens. This two equations are: 

 1
f

f f f f

di
r U R i L

dt
= − ⋅ −  (6) 
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 2  a
a f a a a

di
r U K i R i L

dt
ω= − ⋅ ⋅ − ⋅ −  (7) 

The system could have been completed with the mechanical equation of the motor including 

ω as a variable. As only electrical faults are going to be studied, it is assumed that there will 
be no faults in the encoder. The considered faults are: 
• Brushes faults: can be modelled as a decrease in the armature voltage source respect the 

measured voltage 
• Armature winding short-circuit: this can be turn-to-turn or commutator bar-to-bar 

faults. In both cases RL circuit change its parameters 
• Field winding shot-circuit: also a change in RL circuit is the result of the fault 
• Fault in armature voltage rectifier: one of the power switches fails and remains opened 
• Fault in field voltage rectifier: one of the power switches fails and remains opened 
These five faults have been simulated using the identified model of the motor fed with a 
controlled rectifier in each of the circuits. The simulation allows to observe how the 
residuals change with each of the faults. Six and seven intervals have been defined for the 
values of r1 and r2 respectively. The limits of intervals have been fixed using simulation 
results allowing the use of this two residuals as directional residuals to isolate four type of 
faults. This is shown in Fig. 8. 
 

Fault r1 r2
No fault 0 0

Ra increase 0 − 1, − 2

Ra decrease 0 + 2

La increase 0 − 1

La decrease 0 + 1

Brushes fault 0 − 2

R f increase − 2 + 1

R f decrease + 2 − 1

L f increase + 1 0

L f decrease − 1 0

Armature thiristor up 0 + 3

Armature thiristor down 0 + 3

Field thiristor up + 1 + 1

Field thiristor down + 1 + 1  

Fig. 8. Structural residuals for DC motor diagnosis 

A DC motor diagnosis system was also presented in (Isermann, 2006) using different 
approaches. Four structured residuals were defined to identify and isolate sensor and motor 
faults. The limitations in the system identification are the main difference between both case 
studies. So a different identification method has been proposed in this case and only two 
residuals have been included in the diagnosis system. This imply that sensor faults cannot 
be considered. 

3.3.3 Diagnosis of AC motors using space current vector 
In the case of AC motors, the use of a model-based diagnosis method is more difficult due to 
non-linearities. But other signal analysis techniques can substitute current spectral analysis 
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when this cannot be used. Next example studies an AC motor in a cutting machine where 
speed variation is so high in such a short time that Fast Fourier Transform (FFT) cannot 
differentiate spectrum lines for fault detection. The cutting machine has two tilting knifes 
(one at the bottom and one at the top of the machine) that allow cutting trapezoidal pieces 
alternating between two angles of the knife. The reference position must be reached in one 
or two seconds. In this time both knifes must change their speed form zero to maximum 
speed and to zero again. Each knife is moved with an AC motor that are known as master 
and slave. The knifes are mechanically joined so the motors must be synchronized and 
generate always the same torque to avoid problems in the mechanical joint. Master motor 
receive the speed reference that makes possible to achieve the required angle in the specified 
time. This speed reference is prefixed as a function of the rotating angle and line speed (time 
to achieve the required angle), but there is no feedback of the knife angle during the 
movement. The controller of the master motor generates a torque reference -equal to the 
torque it is producing- that is used in the control of the slave motor. If the torque of both 
motors is not the same, it will originate medium-term mechanical faults. But the most 
obvious problem will be the oscillation in the knife control and the uncertainties in the 
cutting angle that this imply.  
To detect problems in the motor windings or in the inverter that controls the motors, current 
space vector analysis is used. Space vector is constructed from the three phase currents 
using the next equation: 

  

22
( )

3
S R S Ti i a i a i= + ⋅ + ⋅  (8) 

being 
2
3·

.
j

a e
π

=  The result is a rotating vector that for a balanced system has a constant 

modulus equal to the amplitude of the current of each phase and whose rotating frequency 
is the frequency of the currents. When an electrical fault occurs in any of the windings it will 
produce an electrical unbalance whose effect is that current space vector will not be centered 
in origin or will loose constant modulus. The fault can be detected using the spectral 
analysis of the space vector modulus (Cardoso et al., 1999; Acosta et al., 2006) or pattern 
recognition of the space vector representation during one or several cycles (Nejjari & 
Benbouzid, 2000; Diallo et al., 2005). 
Fig. 9(a) shows a capture of the master and slave motor angle during 50 seconds of cutting 
process. In Fig. 9(b) a detail of the negative angles can be seen. This difference between 
angles is a repetitive pattern during the production of this type of piece. To find the origin of 
this problem current space vector is analized during the movement of the knife at t = 240s 
and t = 280s. Fig. 10(a) and 10(b) presents the three currents of master motor in each of the 
cases, Fig. 10(c) and 10(d) the current space vectors and Fig. 10(e) its modulus. As the 
desired movement of the knife is always the same (constant time and angle references) it is 
expected that the control actions were identical for every piece. This means that current 
consumption pattern during the movement of the knife should be repeated continuously. 
Two points have been selected along this movement to compare current space vector. These 
are noted as points C and D in Fig. 10(c), 10(d) and 10(e). Points A and B are the start and 
end of the movement in both cases. It can be seen that when the reference point is at the left 
side of the plane, the modulus of the current space vector is higher that when it is at the 
right side. This imply that for the same reference, the generated current and then the 
generated torque are different. The problem is that the expected torque in both cases is the 
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(b) Detail of negative angles 

Fig. 9. Master and slave angle for 25 pieces production 

same but not the actual torque. That is why the difference between master and slave angles 
varies along time depending on the origin and final point of the current space vector. 
The detected fault is caused by the unbalance of the electric circuit that can be caused by a 
fault in the motor windings or in the voltage source inverter. The other possible cause that is 

a fault in the current sensor is rejected because the sum of the three currents is zero. To 
identify the origin of the fault it would be necessary to find a constant speed and constant 
torque operation of the motor and then compare the pattern of the current space vector with 

known fault patterns. 
An example of operation with constant torque can be seen in Fig. 11 where it is constant 
during almost a cycle of the current signal. The current space vector (Fig. 11(d)) is again 
displaced to the left side of the plane. 
Taking into account all the data shown, it can be concluded that the origin of the fault is 
located in the voltage source inverter. Probably the actual duty cycle of one of the switching 

devices is slightly different to the desired, what makes that the voltage generated is not 
balanced. 
Looking at this example it can be understood that the main challenge to use current space 
vector for diagnosis is the automation of the method that could allow using it without 

expert supervision. If the process under research would be stationary, the task will be only a 
pattern recognition problem. In a case like the showed tilting knife, the pattern recognition 
should also have into account the torque variation. 
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Fig. 10. Current Space Vector Analysis of master motor at different times 
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Fig. 11. Example of constant torque reference 

3.4 Case Study 4: Laser welding defect detection 
In this section, two approaches to the problem of defect detection in laser welding are 
presented. The first is based on analyzing the signal generated by a photodiode in both the 
time and frequency domain. The second consists of relating variations in the plasma 
electron temperature with weld quality. 
The methods presented have been tested in an industrial facility under real production 
conditions, exposing them to conditions more requiring than those found in laboratory 
experimentation. Detailed description can be found in (Saludes et al., 2010). 

3.4.1 Problem description 
Laser welding is used to weld the tailored welded blanks due to its advantages: a high 
processing speed, flexibility, low heat input and ease of automation. However, it is possible 
that some defects could appear in a laser welded seam that can also appear in seams welded 
using other techniques. 
The defects that have to be detected are lack of penetration, pores, inner pores, holes and 
drop–outs. 
The methods described here have been tested on an industrial facility equipped with a 
Trumpf Turbo 8000 CO2 laser with output power of up to 8000W and operated in a 
continuous–wave regime. The installation is completely automated and capable of welding 
up to 20,000 seams a day. 
The specimens welded in this installation were galvanized steel sheets whose thicknesses were 
different and, in both cases, less than 1 mm. Taking into account the sheets thickness and 
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according to (ISO, 1997), the minimum size of the defects is 200 μm. Beam–on–plate welding 
was carried out at a power ranging from 6 to 8 kW. The welding head displacement speed was 
between 6 and 10 m/min. The shielding gas used was Helium at a flow rate of 40 l/min. 

3.4.2 Radiation based methods 
Two 1.5 mm diameter optical fiber EH 4001 type were used to collect and transmit the 
plasma–emitted and melted–emitted radiation to two different photodiodes. The first was a 
Siemens SFH203FA IR sensor, sensitive to the 800–1100 nm range, intended to detect 
variations in the shape of the pool of molten material. The second was a Centronic OSD5,8-7 
Q UV and visible light detector, sensitive to the range 200–1100 nm. The signals generated 
were amplified by means of two Femto LCA-400K-10M amplifiers. A National Instruments 
PCI 6034E data acquisition board was used to measure and collect data using a PC with a 
sampling frequency of 10000 Hz. The detectors’ visual line was 25° above horizontal. 

3.4.2.1 Time domain method 

As the measured radiation is related to the melting of the welded metals, it is expected that 
defects in the welding process will produce changes in the signal to be analyzed. If the 
width and depth of the keyhole is constant, and the laser power is also constant, the 
quantity of melted metal at each point will be the same and the radiation produced will be 
constant throughout the process. In the case of a lack of penetration or porosity occurs at 
any point of the seam, the radiation will instantaneously decrease. 
Defect detection will be based on the idea that the changes in the signals generated by the 
photodiodes are related to the defects. Thus, the location of changes in the signals can lead 
to defect detection. This issue can be included in what is called detection of abrupt changes 
(Basseville & Nikiforov, 1993b). 
The algorithm used in this case is a CUSUM RLS adaptive filter that combines an adaptive 
least squares (LS) filter with a CUSUM test for change detection (Gusstafson, 2000). 
The time domain fault detection method is intended for finding small defects that can be 
present in the seam. These faults are typically holes, both trespassing and not trespassing, 
with sizes ranging from 0.5 mm to 2 mm. 
In order to simulate such kinds of defects, small scrapes have been removed from the edge 
of the thinnest of the workpieces to be welded. These scrapes have been done in such a way 
that they are not visible when the workpiece is looked at from above, i.e., from the side the 
laser hits the workpiece. Then, the workpieces have been welded under normal conditions. 
Afterwards, visual inspection has been carried out. Finally, the visual inspection findings 
have been compared to the ones obtained through the time–domain algorithm. The ratio of 
detected holes versus induced holes is 55.1% and the ratio of false alarms is 2.04%. The 
detected holes ratio seems to be very low but this can be explained by considering how the 
detection algorithm works. As it is based on a polynomial fit of the signal, to decide if a 
signal change is a fault or not, the number of valleys in the signal corresponding to holes 
will affect the threshold used. So the presence of various defects with great changes in the 
same signal can move the polynomial to a limit for which small holes with low changes do 
not overpass. If the number of seams with some hole detected is counted instead of every 
detected hole, the ratio of faulty seams detected is 100% and the false alarm ratio is 0%. 

3.4.2.2 Frequency domain method 

The authors found in previous work that, in the frequency domain, the signal energy de- 
creases significantly in the case of a partial penetration fault (Rodríguez et al., 2003). Based  
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Fig. 12. Features associated to faulty and non–faulty seams 

on this result, a method for detecting lack of penetration has been developed. The method 
comprises two parts. In the first, some features are extracted from the signals generated by 
both photodiodes. In the second, these features are classified by means of a multilayer 
perceptron neural network. The two steps are summarized below. 
1. Feature extraction. The signal coming from both sensors is divided into N equal–size 

segments and the Fast Fourier Transform (FFT) is used to perform a frequency domain 
transformation for each segment. Then, the RMS value for four frequency bands is 
obtained. Also, the RMS for the whole frequency range is computed. The bands range 
from 500 Hz to 1500 Hz and from 4000 Hz to 5000 Hz. The features can be seen in Fig. 12. 
Finally, a normalization for each segment is done obtaining the relative harmonic 
distribution for each frequency band. After all this calculation, four parameters for each 
sensor and for each segment are obtained: normalized and noise-free data of RMS 
values for the two frequency bands, global weld RMS and global noise RMS. 

2. Decision making. The extracted features are classified using a multilayer perceptron 
neural network (Haykin, 1999). 

The results obtained show that 93.9% of the normal seams were classified as normal and 
97.1% of the faulty seams were classified as faulty. 

3.4.3 Plasma electron temperature based method 
During laser welding, a plasma is formed inside the keyhole. The electron temperature is 
related to the energy of the electrons that are in the plasma. In the following sections, the 
estimation of the electron temperature and how to correlate it with weld quality is explained. 

3.4.3.1 Electron temperature estimation 

Plasma electron temperature Te can be determined by using the Boltzmann equation (Griem, 
1997), which allows the population of an excited level to be calculated by means of the 
equation (9): 
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where Nm is the population density of the excited estate m, N is the total density of the state, Z 

is the partition function, gm the statistical weight, Em the excitation energy, k the Boltzmann 

constant and Te the plasma electron temperature. Equation (9) can be used when the plasma is 

in local thermal equilibrium (LTE), a condition that is assumed to be valid when (Griem, 1997) 

 ( )312 1/21.6 10e eN T E≥ × Δ  (10) 

where Ne is the electronic density and ΔE is the largest energy gap in the atomic level 
system. Equation (10) can be determined by considering that a necessary condition for LTE 
is that the collision rate has to exceed the spontaneous emission by a factor of ten. The 
assumption of LTE implies that the different particles within the plasma have Maxwellian 
energy distributions. 
In optically thin plasmas, the intensity of a given emission line Imn induced by a transition from 

level m to level n, can be related to the population density of the upper level Nm through 

 mn m mn mnI N A hγ=  (11) 

where Amn is the transition probability, and hγm is the energy of such a transition. 
Combining equations (9) and (11), Te can be obtained from the following expression: 

 ln lnmn mn m

mn m e

I EhcN

A g Z kT

λ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 (12) 

The plot resulting from using various lines from the same atomic species in the same 
ionization state and representing the left–hand side of equation (12) versus Em has a slope 
inversely proportional to Te. This technique is usually referred to as a Boltzmann–plot. 

3.4.3.2 Spectroscopic lines identification 

There are several conditions spectral lines must fulfil in order to be valid candidates for 
electronic temperature estimation. Selected lines must verify that ΔE > kT on the upper 
energy levels to ensure they don’t belong to the same multiplet. Moreover, the line must be 
free of self–absorption; one can prove that this condition has been fulfilled by verifying that 

the optical depth (Griem, 1997) τ of the plasma for the selected spectral lines is τ < 0.1. 
Measurements were performed during normal welding. Radiation emitted by plasma plume 
was gathered by means of a 3 mm diameter optic fiber. This optic fiber fed light to a high 
resolution Oriel MS257 spectrometer fitted with an Andor ICCD–520 camera. The spectral 
lines suitable for electronic temperature estimation found in this way are shown in table 2. 
All the spectral lines shown in table 2 come from iron electronic transitions. The wavelength, 
transition probability, low level energy and its degeneration are all shown in this table. 
Wave- length is a measured feature, while the remainder come from the NIST (National 
Institute for Standards and Technology) atomic spectra database. 
The spectrometer used during on–line monitoring was an Ocean Optics HR4000, fitted with 

a 2400 lines/mm diffraction grating and a 5 μm aperture slit. The spectrometer features a 

3600 pixels CCD, a 0.05 nm spectral resolution and an 80 nm spectral range. Due to that the  
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λ (nm) Amn (s–1) Ek (cm–1) gk 

411.85 5.80 · 107 53093.52 13 

413.21 1.20 · 107 37162.74 7 

414.39 1.50 · 107 36686.16 9 

425.01 2.08 · 107 43434.63 7 

426.05 3.20 · 107 42815.86 11 

427.18 2.28 · 107 35379.21 11 

430.79 3.40 · 107 35767.56 9 

432.58 5.00 · 107 36079.37 7 

438.35 5.00 · 107 34782.42 11 

440.48 2.75 · 107 35257.32 9 

441.51 1.19 · 107 35611.62 7 

452.86 5.44 · 107 39625.8 9 

Table 2. Spectral lines associated to Fe I 

device is able to take data at a rate of 200 Hz and the welding speed ranges from 6 m/min to 
10 m/min, the distance travelled between spectra is two or three times the size of the 
smallest defect that must be detected. Since at least one spectrum must be gathered during a 
defect occurrence, this will be a drawback of the proposed method unless a strategy based 
on the synchronization of several spectrometers is adopted. 

3.4.3.3 Results 

The defect detection method based on electronic temperature has been tested in the 
industrial facility described in section 3.4.1. The conditions under which experiments were 
carried out are the same as those found during normal industrial production: electrical 
noise, mechanical vibrations and steel sheets to be welded covered by an oil film. During 
experiments, the laser power was set to 8000 W and welding speed was 4.5 m/s. 
Experiments can be classified into two classes: Those that have been performed during 
normal operation and those in which defects have been forced. 
Experiments carried out during normal operation are those in which the manufacturing 
cadence was the usual in the car factory where the experiments were done. The purpose of 
these experiments were twofold: to estimate the electronic temperature during normal 
operation and to observe its variation between seams. 
The electronic temperature variation between seams can be seen in Fig. 13(a), in which the 
electronic temperature of 70 consecutively welded seams is shown. The electronic 
temperature represented is the mean value of the temperatures estimated in 180 points 
along each seam. Moreover, the standard deviation is also represented by means of error 
bars. All the welds were made with the same process parameters. Worth to be noted is the 
sudden increment in the mean value of the electronic temperature in seam number 21, 
which decreases in seam number 40. The standard deviation remains constant along all the 
seams, although it can be seen that it is greater between seams numbers 39 and 40, just 
during a drop in the electronic temperature. The seams numbers 1 and 28 presents a huge 
standard deviation, but no differences were found in the seams, with respect to the other 
seams, that can explain this behaviour. A decreasing trend can be observed, specially from 
seam number 40. Again, no differences in quality terms, penetration depth in this case, were 
found. Since no changes in the process parameters were introduced, these fluctuations can 
only be related to some internal state of the laser welding machine. 
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Fig. 13. Electron temperature results 

Besides the estimation of electronic temperature during normal welding, some experiments 
intended to generate defect have been carried out. The class of detect used in such 
experiments was holes and pores. The difference between a pore and a hole is that the 
former does not go through the seam while the latter does. 
In Fig. 13(b), the electronic temperature associated to a seam in which three holes were 
forced is shown. Worth of be noted are the three peaks that appear at the same positions the 
holes were induced. They can be seen at positions between 76 mm and 114 mm, 152 mm and 
190 mm and 228 mm and 266 mm in figure 13(b). 

4. Conclusions 

Fault detection methods in the automotive industry have a great complexity due to the 
differences between the different machines and processes involved. This complexity makes 
difficult or even impossible the human supervision of all the processes, although the 
available technology are of great help in this task. The difficulties found in process 
supervision came from the huge amount of variables that have to be taken into account and 
the overwhelming information available. 
Nowadays, the correct operation of any plant is more than keeping all the devices in good 
shape. It also means to know the state of all the devices and machines in order to avoid 
disruptions in manufacturing production originated by faults or unexpected stops. 
In this chapter, it has been shown that predictive maintenance can be applied to very 
different equipment. This maintenance approach provides the operator with valuable 
information about equipment status and its future behaviour. The implementation of any 
predictive maintenance strategy is subject to the importance of the process to be supervised. 
This also will determine the diagnosis to be performed. Moreover, the economical analysis 
of the design and implementation of the diagnosis system will determine the adoption of 
any predictive maintenance strategy. 
Any diagnosis system can be broken down into three main modules: data acquisition, signal 
processing and decision making. Through the case studies presented in this paper, several 
implementation ways of each component have been presented. 
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In this way, data acquisition has been illustrated by the case of a machine tool in which the 
data needed to perform diagnosis is the same data the controller commanding it uses. In this 
case no more sensors are required. The opposite situation is found in the case of laser welding. 
In this case, very specialised sensors, like spectrometers, are required to gather data. In the 
other two study cases, conventional sensors have been installed. Current transducers and 
accelerometers are common in industrial applications. Their costs depends on precision, range 
and other requirements. Acquisition hardware to which sensors will be connected is not 
usually a critical element. This is due to the variety of devices commercially available. 
However, it could be necessary to develop tailored solutions for specific applications, although 
it will never be the most critical step in the implementation of a diagnosis system. 
Through the case studies, several approaches to the signal processing module are shown. 
They range from classical frequency analysis to plasma physics. Also, complex techniques 
have been used to process signal in the time domain or to detect abrupt changes. The most 
suitable technique is always determined by the pursued target. In same cases it would be 
possible to chose between several techniques that pursues the same objective. This is the 
case of defect detection in bearings, where vibration analysis and current analysis are both 
suitable. Nevertheless, usually only one technique provides the information required to 
detect the defects. For this reason, the designer has to have a deep knowledge of the 
processing techniques in order to find the most suitable for the problem at hand. In some 
cases this will not be enough, and the designer has to develop the processing techniques. 
This is the situation in the study case related to the machine tool, where segmentation 
techniques had to be developed in order to find the exact defect location. 
Decision making usually is the most difficult step, due to the lack of information about system 
behaviour when it is in faulty state. This information can be gathered along time once the data 
acquisition and signal processing modules are installed. The most simple case presented is the 
motor–fans in a car painting cabinet. In this case, the decision making is carried out by means 
of a threshold set whose values are set through observation. This is a process that has to be 
repeated every time a major maintenance task is done. A very different situation is found in 
the case of laser welding, where decision making is performed by a machine learning method, 
like neural networks, whose training is done only when significant information has been 
collected. In this case there is no need for an operator performing supervision tasks. 
It is important to note that process expert knowledge is basic in the design of any diagnosis 
system. A deep understanding of the physical principles involved in the process is the main 
clue to choose the best strategy to extract features indicating the presence of a fault. The 
expert is who will be able to know or to deduce which signals are the most affected by the 
presence of a fault and how they can change in this situation. For example, part of the 
failures will have an effect on the signal harmonic content, while others will affect the 
evolution in the time domain. Moreover, they will play a key role when assessing any other 
kind of dependencies among the data. Frequently it is advisable to analyse correlations 
among variables or along the evolution of any variable in the time domain. This can be done 
by means of mathematical methods that can also offer information on the changes 
associated with failures. The expert will be able to confirm if that information is relevant or 
is just a mathematical result coming from particular cases. 
To sum up, automotive industry can improve their processes through predictive 
maintenance and the automatic defect detection methods that can be integrate into it. The 
vast majority of these techniques have reached a mature state and have been successfully 
implemented. There are also new promising techniques that can improve new processes in 
the automotive industry, like laser material processing. The implementation of any of these 
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techniques needs of qualified technicians whose knowledge and expertise will make 
possible success in their implementation. 
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