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1. Introduction 

The task of fault diagnosis consists of determining the type, size and location of the fault as 
well as its time of detection. The use of knowledge-based techniques for fault localization 
and diagnosis allows on-line recognition of abnormal scenarios. These are based upon data 
treatment (Nelles, 2001), albeit these techniques require large amounts of data in order to 
obtain a valid representation of different scenarios. Alternatively, analytical redundancy 
allows a highly accurate detection of faults, based on a model of the observed system. 
Nevertheless, analytical redundancy requires a very accurate model of the system in order 
to locate a fault.  Both, knowledge-based techniques and analytical redundancy, allow 
localization and classification of unknown scenarios as abnormal situations. The advantages 
of both methods depend on the type of information obtained, such as heuristic knowledge 
or model-based implementation. However, for abnormal situations, they have the 
disadvantage of not providing accurate results. In general, both methods require two 
important features: (a) the capability to determine faults, and (b) its sources of information. 
Several different approaches attempt to combine knowledge-based techniques and 
analytical redundancy. (Venkatasubramanian V., et al., 2003a) (Venkatasubramanian V., et 
al., 2003b) (Venkatasubramanian V., et al., 2003c) present an extended overview of fault 
localization and diagnosis based on model- and knowledge-based techniques. In general, 
the combination of both methods is feasible, although presenting undesirable glitches when 
used simultaneously, as discussed by (Liling et al., 2002). 
Several approximations have reviewed this constraint like (Su T., et al., 2008) where function 
approximation is pursued using a hybrid artificial neural network where data analysis 
becomes crutial for this purpose. In a similar manner (Zhong & Wang, 2008) presents a 
support vector regression where data uncertainty is studied, giving a good idea about the 
inherent characteristics of the data in order to by analysed. Several issues need to be 
addressed in order to study data analysis for system identification and representation, most 
of there are out of the scope of this paper. The goal of the approach followed here is to 
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enhance fault localization by local model identification (Billings & Wei, 2005) (Wang X., et 
al., 1999) (Li D., et al., 2005) and classification to unknown scenarios through a self 
organizing map as shown in Fig. 1. Similar approaches haven been studied by Benitez-Perez 
(Benítez & García, 2005) (Benítez P., et al., 2007). 
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Fig. 1. Schematic approximation. 

Furthermore (Benítez P. H. & Benítez P. A., 2009)  present a novel strategy based upon the 
combination of parameter modeling (to extract several characteristics of the observed 
system) and the self organizing map (to classify the type of parameters extracted from the 
parametrization stage) in order to detect and classify online unknown behaviour. 
For the purpose of this work it is necessary to define that an autonomous element is a device 
that is able to communicate, self-diagnose, and make decisions. The main goal of this device 
is to obtain as much information as possible in order to produce self-calibration and 
compensation. By monitoring autonomous elements of a system, several approaches can be 
followed for fault detection, identification and localization. Moreover, the use of local 
control within autonomous elements is expected to attenuate the effects of disturbances and 
non-linearities inherent to local model. (Lee D., et al., 2000) proposes the use of parameter 
estimation in order to self-tune a PID control where the response of the self-tuning 
procedure is restricted to a fairly linear model in order to response on time. Other 
approaches, like (Wang W., et al., 2002) present a strategy based on robust control, which is 
feasible for highly non-linear models, although having a drawback of computational cost.  
On the other hand, the use of feature extraction by neural networks only presents the 
disadvantage of robustness in terms of inherent data uncertainties and large quantity of 
necessary data. Different authors have explored similar strategies previously, like (Abe S., 
2001) where feature extraction using local parametric models are proposed giving valuable 
results, however, with the drawback of bounded system response.  A strategy for fault 
diagnosis that integrates an ART2A network and a Kohonen neural network can be feasible 
since the objective is to combine both strategies in order to generate two subsystems capable 
to overcome glitches and redundant data representations (Abe S., 2001). The attention and 
oriented subsystems, following the ART2A topology and the Kohonen Neural Network, are 
used to perform a learning strategy from the evaluation result of the Kohonen Network. 
This strategy allows diagnosing faults on-line with the inherent uncertainty to SOM 
variation due to the plasticity-stability dilemma. A fundamental work has been introduced 
by (Kiviluoto, 1995) where an extended review is given about topics related to sensors 
patterns and stability-plasticity trade-off inherent to the ART2A network.  Interesting 
comments are included in here on how time window data can be monitored in order to 
identify abnormal situations, as well as, how data should be treated in terms of 
normalization, time scaling and filtering and their comparison prior to declare a winner 
selection. Further developments are addressed (García H. & Machón G. I. 2004) focusing on 
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the use of a parallel ART2A network approach based on wavelet decomposition where 
clustering is defined on wavelet domain although it is not proposed for a dynamical system. 
A complementary strategy for fault diagnosis is based on feature extraction following 
wavelets decomposition. Feature extraction based upon wavelets for dynamical systems 
presents the advantage of scales decomposition allowing several possibilities of fault 
detection depending on the scale of the fault. Similarly, fault detection can be easily engage 
if a source of information is decomposed in several fruitful components. These components 
can be taken as parameter vectors where several signal conditions are highlighted 
depending on the resolution. Moreover, these need to be combined in a fair strategy in order 
to classify similar behaviors. To do so, these are classified using a Self Organizing Map 
(SOM) where each vector is processed as consecutive input. The result of this classification 
would give a number of selected patterns depending on the learning rate with respect to a 
time window. Nevertheless, the plasticity-stability is not overcome by this technique 
(Benítez P. H. &  Benítez P. A. 2010).   
Following this review this work is focused on load systems modeling and nonlinear 
classifiers. The objective of this work is to define a different approach to combine 
knowledge-based methods and analytical redundancy for on-line classification, using non-
supervised neural networks and a bank of unknown input observers (UIO’s) for self-
diagnosis of autonomous elements. The novelty of this approach is the classification of non-
well defined fault scenarios during on-line performance of an autonomous element. In order 
to locate unknown scenarios, input and output data is periodically sampled from the 
autonomous element, using a bank of unknown input observers, which generate residual 
data. Two neural networks are used to process data, input output and residual, in order to 
determine the autonomous element’s behaviour. As this is inherently time varying, the 
signature of its faults may also change over time. Hence, one neural network is proposed to 
cope with changes in the signature of autonomous element’s faults, within certain boundary 
restrictions. The other neural network is used to classify autonomous element’s behaviour, 
according with a number of defined scenarios. Nevertheless, for detecting time varying 
faults, sampling time plays a key issue.  
This work is organized as follows: Section 2 describes the actual proposed approach for fault 
localization for an autonomous element, based on the integration of neural networks and 
unknown input observers. Section 3 presents a case study for testing the approach. Section 4 
presents some of the most valuable results, as well as the correspondent analysis. Finally, 
Section 5 presents the concluding remarks. 

2. Fault localization for an autonomous element 

2.1 General description of the approach 

The actual approach proposes an integration of two neural networks and a bank of 
unknown input observers for fault localization, as presented in Fig. 2.1. A non-supervised 
neural network samples the data from an element, processing it in order to obtain a pattern. 
Then, a second non-supervised neural network, using the winning weight vector (related to 
the winning pattern) classifies any abnormal situation.  
The idea of using two consecutive neural networks is to avoid miss-classification during the 
presence of unknown scenarios, using a self-organizing map (SOM) and adaptive resonance 
theory algorithms. SOM categorizes the behaviour of the monitored element. Then, the 
results are evaluated by a second neural network (an ART2A) in order to avoid glitches 
between similar categories. 
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Fig. 2.1. Process diagram for Fault Localization 

The data is divided into three types: input, output and residual data, this last one obtained 
from analytical redundancy. Data is used in two stages: an off-line stage in order to train 
both neural networks, and an on-line stage for testing this approach. During the first stage, a 
training matrix is build. Such a training matrix consists of three types of variables input, 
output and residual data, normalized between 0 and 1. In terms of scenarios, this matrix is 
divided into three areas. Each type of variable has M samples, organized as rows. The whole 
bunch of variables are integrated by three scenarios, organized as columns. 
During training stage, each sample time window is composed of M samples directly related 

to a time window (Δt). The frequency of the fault has a bottom boundary, shown in eqn. 2.1.  

 
4

frqfault Δt
≥  (2.1) 

where frqfault is the frequency of the monitored fault, and Δt is the sampled time window. 

Experimentally, a quarter of Δt has been chosen as the bottom boundary since this frequency 
is fast enough to distinguish sampled fault information between patterns. Therefore the 

frequency of the fault can be larger than this quarter of Δt. Alternatively, the top limit in 
terms of fault sampling is unlimited, although, the approach proposed here would be 

useless to classify a fault much faster than a Δt sampling window. At the time that this fault 
localization approach produces a result, it is highly possible that the current fault can be in 
another stage. This top bound is still open for further research and, in principle, is based on 

the relation between the frequency of case study and the Δt time window. Thus during on-
line stage, sampling time is reduced to one sample evaluated every time. 
Both neural networks are trained in cascade as shown in Fig. 2.1. Each has its own weight 
matrix, which are initialized randomly.  

www.intechopen.com



Fault Localization Upon Non-Supervised Neural Networks and 
Unknown Input Observers for Bounded Faults   

 

563 

For UIO design, formal knowledge of the element behaviour during fault scenarios is 
crucial, since these scenarios are defined in terms of element response during the presence 
of certain unknown input. Hence, it is necessary to have access to several sources of 
information from the monitored element. Notice that any fault localization approach relays 
on the dynamic characteristics of the monitored element.  

2.2 Integration of non-supervised neural networks 

Non-supervised Neural Networks are able to implement cluster algorithms. The main idea 
behind any cluster algorithm is to define centers as points within a data space. Centers serve 
as focal points for initial data representation. They are used for classifying non-linear 
behavior within non-supervised neural networks, such as SOM and ART2A. These 
networks present a fast response for non-linear and abnormal scenarios, although there is no 
guarantee for glitch presence in case of transitions. Therefore, the integration following a 
sequential mode allows the elimination of non-desirable transitions between scenarios due 
to “cluster” classification performed by SOM and pattern integration performed by ART2A. 
There are various methodologies to build clusters (Billings & Wei, 2005). Proposals such as 
an entropy-based fuzzy clustering method defines cluster based on the entropy of each 
point with respect to a center. In the case of SOM and ART2A, these have the peculiarity to 
classify unknown scenarios in a predictable behavior. In fact, the defined clusters are the 
representation of several scenarios (ART2-A results) whereas those classified patterns (SOM 
classified patterns) are the representation of the local behaviour of the element. The 
integration of UIO, SOM and ART2-A allows several advantages, such as availability of 
measured states and the capability to classify abnormal situation, avoiding undesired 
glitches during on-line performance.  
During the off-line stage, SOM is trained using fault and fault-free scenarios with certain 

frequency, using different parameters, which are tuned in order to produce a valid and 

unique response. An important assumption, which impacts on the structure of SOM, is the 

use of a rectangular grid for data classification. This has been chosen due to its regularity 

when comparing between patterns, even in case of unknown faults. The regular grid allows 

a distribution of winner patterns. However, when a scenario is classified between the 

winner pattern and other devious patterns, miss-classification is present. This sort of case is 

defined as “glitch”, and it is related as a transition from one scenario to another. There are 

various ways to avoid this behaviour like a better training procedure, or defining winner 

patterns during transitions. However, glitches are not completely and certainly classified by 

SOM. Hence, glitches are classified using an ART2A. This network is trained to identify the 

response of SOM during the evaluation of one scenario with one particular pattern. This 

means that one particular pattern (from ART2A network) represents those patterns from 

SOM related to the same scenario.  

The objective of this cascade is to eliminate miss-classification of time variant faults and 

transitions between fault-free scenarios. This approach relays on certain boundary with 

respect to the similitude between patterns from SOM and those from ART2A. 

2.3 The fuzzy evaluation module 

After defining the use of two neural networks as an approach to classify unknown scenarios, 
a heuristic measure is required as a final step to determine how a particular scenario has 
been degraded. This measure, known as confidence value, is generated by a fuzzy logic 
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module. This module evaluates the winning weight vector related to the classified pattern 
from ART2A, in order to produce a percentage representation of current behaviour.  
The confidence value classifies the behaviour of peripheral element under the presence of a 
fault. It shows the degradation of the element with respect to the output, input and 
residuals. The procedure by which the fuzzy logic acquires knowledge is a key issue. 
Different methodologies can be followed. The confidence value has a continuous range from 
zero (catastrophic situation) to one (fault-free scenario) (Fig. 2.2). 
 

 

Fig. 2.2. Confidence Value Representation 

2.4 Evaluation of the approach 

The evaluation of this approach is carried out using two scenarios: the first scenario is 

composed of four similar signals with different frequencies (Fig. 2.3). 

These four signals have different frequencies: 0.005 Hz (continuous line), 0.01 Hz (dotted 

line), 0.06 Hz (dash-dotted line), and 0.1 Hz (dashed line). This scenario has a time window 

of 1000 seconds. The evaluation of SOM+ART2A approach is performed every sample 

during this time window. First, a learning stage is accomplished by training both neural 

networks, using this scenario during 100 seconds (Fig. 2.3). During this learning stage, the 

parameters η and ρ are 0.02 and 0.021, respectively. These two parameters, η and ρ, 

correspond to SOM and ART2A networks respectively. During the next stage (classification 

stage) the SOM+ART2A approach is tested using the rest of the time window. In this case, 

the parameters η and ρ are changed, resulting in different numbers of patterns for the same 

evaluated scenario. 

In the classification stage, these patterns are considered as fail patterns (as extra patterns) 

because SOM and ART2A have failed to classify them as similar to the originally recognized 

patterns, as shown in Table 2.1. 

www.intechopen.com



Fault Localization Upon Non-Supervised Neural Networks and 
Unknown Input Observers for Bounded Faults   

 

565 

0 10 20 30 40 50 60 70 80 90 100
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

 

Fig. 2.3. First scenario used to evaluate the approach (a section of first 100 seconds) 

 

 SOM ART2A 

η 
(Parameter 
related to 

SOM) 

ρ 
(Parameter 
related to 
ART2A) 

New 
Patterns 

Number of 
Fail Patterns 

New 
Patterns 

Number of 
Fail Patterns 

0.011 0.011 424 - 135 - 

0.015 0.015 424 - 135 - 

0.02 0.02 432 - 135 - 

0.07 0.07 450 378 135 369 

0.1 0.1 480 477 140 463 

0.12 0.12 463 480 142 463 

0.15 0.15 450 378 140 380 

0.18 0.18 455 380 141 385 

Table 2.1. Evaluation using the First Scenario 
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These results suggest that the increment on both parameters permit the increment of fail 
patterns. However, the number of patterns from both neural networks does not suffer a 
substantial increase. The meaning of this failure is that some patterns are miss-classified 
within different scenarios.  
In the second scenario, the approach is evaluated keeping both weight matrices. In this case, 
signals are conformed by the element’s response during different situations, such as 
transitions from different operating points. The case study, presented in Section 4, is used to 
generate these signals. Fig. 2.4 shows the initial 1000 seconds of the second scenario. The 
continuous line is referred to the output temperature, the dashed-dotted line is the response 
of pressure, and the dotted line is the residuals. 
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Fig. 2.4. Second scenario used to evaluate the approach 

The response of this evaluation is shown in Table 2.2. During this scenario the number of 
new patterns is increased by SOM. Nevertheless, this behaviour is not presented in ART2A. 
Thus, this result confirms one of the goals of this paper, which is defining a strategy capable 
to cope with unknown scenarios without further appearance of new patterns. However, the 
number of fails patterns considerably increases. 

For this scenario, the best η and ρ for unknown scenarios are 0.015 and 0.014 respectively. In 
order to confirm this result, a validation measure (Wang X., et al., 1999) (Li D., et al., 2005) 
has been performed, obtaining a topographic error calculated as follows (eqn. 2.2).  
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 SOM ART2A 

Number 
of 

Scenarios 

η 
(Parameter 
related to 

SOM) 

ρ 
(Parameter 
related to 
ART2A) 

New 
Patterns 

Number 
of Fail 

Patterns 

New 
Patter

ns 

Number of 
Fail Patterns 

1 0.011 0.011 457 - 135 - 

2 0.015 0.014 465 451 135 462 

3 0.02 0.02 465 451 135 462 

4 0.07 0.07 617 472 135 479 

5 0.1 0.1 658 470 139 483 

6 0.12 0.12 658 470 139 483 

7 0.15 0.15 618 472 138 479 

Table 2.2. Evaluation using the Second Scenario 
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Fig. 2.5. Error Measure Performance with respect to η and ρ numbers  
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where N is the number of samples, xk is the kth sample of the data set, and u(xk) is 1 if the 

first and second best matching patterns are not adjacent units, otherwise zero. The error is 

evaluated with respect to classified patterns from SOM. This error shows how separate are 

classified patterns between each other (Fig. 2.5). Every scenario presented has a very low 

error performance, such as scenarios 6 and 7, where error is neglected. However, the 

number of patterns during these scenarios considerably increases. This is an undesirable 

response for on-line performance, due to the increase of time consumption during the 

classification stage. Alternatively, second scenario has the largest error, but the number of 

patterns has not presented the previously referred increase. The conditions presented in 

second scenario for η and ρ are preferable for classification stage, rather than any other 

respective value. 

3. Case-study  

In order to validate the present fault localization approach, this section introduces an 

example related to a basic implementation of the autonomous element (Fig. 3.1). This case 

study is based on a pressure sensor composed of three similar transducers, which have been 

linearised to a nominal value. The dynamic model is presented in eqn. 3.1. It consists of a 

bank of UIO’s, an Intelligent Fault Localization Module, a local control law, and a Fuzzy 

Evaluation Module. 

 

[ ]

1.1 0.0
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1.8 2.1
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B

C

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
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⎣ ⎦

=

 (3.1) 

 
 

 
 

 

Fig. 3.1. Pressure Sensor divided in Three Modules 
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The input vector is composed of data from pressure demand and temperature. The output 

signal presents the delivery pressure. Based upon these available measures, the feedback 

relation is proposed in order to attenuate some disturbances. The proposed control is based 

upon the PI architecture (Su T., et al., 2008). The dynamics of spare transducers are not 

modeled. Two additive faults are considered. Both injected faults are related to a backlash, 

variable time delays, and a dead zone (Table 3.1). 

 

Fault I 
Backlash=0.01, 
Dead Zone= (-0.01, 0.01), 
Time Delay = 0.001 

Fault II 
Backlash=0.09, 
Dead zone= (-0.051, 0.032), 
Time Delay = 0.012 

Table 3.1. Fault Scenarios  

The presence of the faults is established in two injection points at the output of case study. 
These are present during specific times in order to demonstrate the proposed approach. 
Hence, it is necessary to implement two UIO’s, sensible to each fault. Both observers 
conform their matrices as follows (Eqn 3.2). 

 First Observer 

0
H

1

1.1 0.1
F

0.0 20.0

0.0001
K

0.0001

1.8 2.1
G

0.0 0.0

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

    Second Observer 

0
H

1

1.21 0.1
F

0.0 20.0

0.0001
K

0.0001

1.91 2.1
G

0.0 0.0

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (3.2) 

Each observer responds to a particular fault. Furthermore, fault scenarios not considered for 

both observers are classified as different patterns by the fault localization module. In the 

case of glitches and transitions, SOM classifies this behaviour as “weak” patterns, meaning 

patterns that belong to a certain cluster in a distance manner. If this behaviour keeps its 

presence, a new cluster is declared. Current values of local PID control law are k1=0.91, 

k2=0.05 with respect to following equation (3.3). 

 
0 1

1 2

0

t .

t

pid k * e k * edt
=

=

= + ∫  (3.3) 

where e corresponds to current error, and pid current control output. 

The characteristics for both neural networks are selected as shown in Table 3.2. Specifically, 

the sampling window is equal to 100 samples. Therefore detectable fault have a minimum 

frequency equal to 100 Hz. 
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Size of Sampling data (M 
samples) 

100 samples 

Size of Initial Output vector  4 data 

Input Vector 4 data 

Initial Population of Neurons 76 neurons 

SOM 

Learning Value 0.015 

Input Vector 4 data 

Size of Initial Output vector 4 data 

Initial Number of Neurons 100 

Vigilance Parameters 0.014 

ART2A 

Learning value 0.02 

Table 3.2. Technical Characteristics of Neural Networks 

4. Results and analysis 

This section presents the results related to fault and fault-free scenarios. Three different 

scenarios are considered, two known scenarios (Fault and Fault-Free) and one unknown 

scenario (Unknown Fault). For the fault-free scenario both neural networks and UIO have 

been already trained and designed. The element response is presented in Table 4.1, where 

time delay gives an approximation of how long it takes to obtain a trustable response. 

 

Name of Scenario 
Number of Selected Patterns from 

ART2A (New Patterns) 
Response Time Delay 

Known Fault-Free 
Scenario 

5 Immediate Response 

Table 4.1. Fault Free Scenario 

For the case of second known scenario, where a fault is present, the selected patterns and 

time delay response are shown in Table 4.2 

 

Name of Scenario 
Number of Selected Patterns from 

ART2A (New Patterns) 
Response Time Delay 

Known Fault Scenario 7 100 seconds 

Table 4.2. Known Fault Scenario 

Alternatively, an unknown scenario is used for fault localization procedure. This scenario 

consists of saturation at the output of case study. Therefore it is expected an increment in the 

number of patterns and time delay. Table 4.3 shows this behaviour, taking into account 

starting time and detection time. 
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Name of Scenario 
Number of Selected Patterns from 

ART2A (New Patterns) 
Response Time Delay 

Unknown Fault Scenario 60 200 seconds 
 

Table 4.3. Unknown Fault Scenario 

The graphical representations of these results are presented in Fig. 4.1 for fault-free scenario. 

Four different graphs are shown: current input, its respective output, the injected fault 

according to the decision making module, and the number of patterns selected as result of 

this evaluation. This fault-free scenario has a time variance of sin(0.5*t). This time variance 

behaviour is depicted as current output of case study. The selected patterns are presented in 

a consecutive manner with respect to the horizontal axis. Although, the number of patterns 

increased to 70 (vertical axis), those selected are no more than 10. The first 20 patterns have 

been selected as part of the setting of both neural networks. From the final 50 patterns, two 

are predominant. These are pattern number 70 and pattern number 45. Both patterns are the 

representation of this fault-free scenario with a limited time variance. The number of 

patterns is related with the final position within the weight matrix from ART2A. An 

important issue with respect to the number of patterns is the very low number of fail 

patterns. 

 

 
 
 

Fig. 4.1 Fault-Free Scenario with Time Variance Behaviour 
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Fig. 4.2. Fault Scenario without Residual Evaluation 

 

  

Fig. 4.3. Fault and Fault-Free Scenarios with Residual Evaluation and Time Invariant 
Behaviour 
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In the case of a fault scenario (Fig. 4.2), the response of the element presents a small 

perturbation due to an increment of time delay (Table 3.1, Fault II). The number of patterns 

increases to 25. There is no predominant pattern during this test. However, some patterns 

have been already selected during fault-free scenario. 

The fault scenario takes into account a time variance of 0.12s as well as confidence value 

responses (Fig. 4.3). In this case, the fault is a time delay at the output of case study. This 

fault modifies the residual value at the output of UIO, therefore the behaviour of selected 

patterns is modified. This results in a decrement of the confidence value, keeping a response 

of 82% during fault free scenarios, and a response of 19% and 41% during fault scenario. 

In the fault-free scenario (Fig. 4.4), several types of patterns are classified. However, confidence 
value keeps a regular result, around 80%. In this case, 100% trust has not been achieved due to 
inherent time variant. As expected, residual value remains null during this scenario. Although, 
element response has not been accurately controlled by the local control law. 
 
 
 
 

 
 
 
 

Fig. 4.4. Fault-Free Scenario with Time Variance Input Behaviour with Residual Evaluation 
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5. Conclusions 

The combination of neural networks and analytical redundancy enhances the capabilities for 

fault localization. The key issue here is how data tends to be processed by the neural 

networks, in order to classify patterns. The integration of two neural networks in cascade 

allows the classification of time variant behaviour even during fault presence. This is 

possible due to an ART2A is used to determine the boundary between clusters from SOM 

output. 

An important restriction of this approach is the sampling time window. This is inherent to 

the sampling technique. It is necessary to define a lower bound in terms of the number of 

samples, which is stated here as M. This value has a direct effect over Δt and frqfault. 

However, in terms of sampling, there is no restriction regarding an upper bound. Its only 

practical restriction has to do with the response time. In such a case, faults that occur faster 

than this fault localization approach give a useless classification. Moreover, there is another 

clear restriction regarding to the possible explosion of the number of patterns. 

The use of a bank of observers presents a formal approach in order to determine an isolated 

fault. This allows the isolation of fault-free and fault-specific scenarios, with very low time 

consumption for on-line performance. However, when an unknown scenario appears, it 

cannot declare a specific performance. Thus, neural networks represent an advantage as 

geometric classifiers. The integration of both, bank of observers and non-supervised neural 

networks, enhances the classification of abnormal scenarios such as unknown faults even 

with time variation. 
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Benítez-Pe ́rez H. and Ortega-Arjona J. L. (2011). Fault Localization upon Non-Supervised Neural Networks

and Unknown Input Observers for Bounded Faults, Self Organizing Maps - Applications and Novel Algorithm

Design, Dr Josphat Igadwa Mwasiagi (Ed.), ISBN: 978-953-307-546-4, InTech, Available from:

http://www.intechopen.com/books/self-organizing-maps-applications-and-novel-algorithm-design/fault-

localization-upon-non-supervised-neural-networks-and-unknown-input-observers-for-bounded-fault



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


