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1. Introduction 

In a deregulated electricity market, load forecasting is nowadays of paramount importance 

to estimate next day load resulting in energy save and environment protection. Electricity 

demand is influenced (among other things) by the day of the week, the time of year and 

special periods and/or days such as religious and national events, all of which must be 

identified prior to modelling. This identification, known as day type identification, must be 

included in the design stages either by segmenting the data and modelling each day type 

separately or by including the day type as an input, which implies data classification and 

cluster creation. 

Data classification consists in regrouping objects of a similar data set into homogenous 

classes. Two main types of classifications exist: supervised and unsupervised classification. 

Supervised classification is based on a set of objects L of known classes, called training set, 

with the main goal being to identify candidate objects into their belonging classes. Where, 

unsupervised classification consists in partitioning a set of data D into sub-sets of similar 

attributes called classes or clusters (Halgamuge, 2005). Unsupervised classification is termed 

clustering, and will be so in the remaining of the chapter. 

For clustering means, conventional research usually employs multivariate analysis 

procedures. However, it was found that clustering the data directly, becomes 

computationally heavy using statistical method as the size of the data set increases (Jain & 

Dubes, 1988; Xu & Wunsch, 2005). Despite this fact, many linear approaches such as 

Principal Component Analysis (PCA) (Jolliffe, 2002) and K-means were and remain, 

extensively used for classification and clustering purposes. 

Nonlinear classification and clustering approaches stand as a strong alternative in order to 

treat the complexity and visualisation problems issued from large multidimensional data 

sets. In recent years, due to their high performance in engineering, Artificial Neural 

Networks (ANN), more specifically Self Organising Maps (SOM), and fuzzy logic are now 

being used as alternate statistical tools.  Combining both paradigms in a two-level approach 

may be profitable to reduce significantly the computational cost as shown in (Khadir et. al., 

2010) where SOM and K-means were combined for time series clustering.  
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The idea behind the two level approach is to reduce the data dimensions using SOM finding 
the data quantization prototypes in the first stage. The second stage, then focuses on 
clustering the already obtained prototypes using, in this case, Fuzzy C-means (FCM) 
(Vesanto & Alhoniemi, 2000).  

2. The Kohonen self-organizing map 

The Kohonen self-organizing map (SOM) is an unsupervised classification method, which 
transforms a set of complex data to one or two dimensional vectors with a simple geometric 
relationships, and preserving the most important initial data metrics during the display, i.e. 
the close dataset of the input space will have close representations in the output space and 
thus will be classified in the same cluster or nearby clusters (Kohonen, 1990, Dreyfus et al., 
2004).  The self organizing map is suitable for data survey because it has prominent 
visualization properties; it is also a very effective tool for visualizing and exploring 
multidimensional data (Himberg, 2000; Vesanto, 1999). SOM has two layers, the input and 
the Kohonen or output layer, Figure 1. 
 

 

Fig. 1. Two dimensional Kohonen map 

The network consists in a grid of output nodes connected to the inputs via a set of weights. 
When presented with the kth input vector Pk ┺R1xn, the network calculates the activation of 
each node using Pk as: 

 i , j ,kÉÉ ,a Éi j kW P?  (1) 

where ai,j,k and Wi,j are the activation of, and weight ( R1 nŒ · ) connecting Pk to, node i, j 
respectively. Pk is said to be mapped onto the node with the highest activation. After several 
inputs have been presented, similar inputs are mapped to the same or adjacent nodes, i.e., 
within a small neighbourhood. A neighbourhood of size Nc around node i, j is defined as 
nodes i ± Nc to j ± Nc. Pk for the current study is formed in two steps.  
Each neuron of the topological layer is completely connected to the input layer neurons    Wi 
= (W1i… Wni), the weight vectors of these connections form the referent or prototype 
associated to each neuron, it has the same dimension as the input vectors. In each training 
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step, one sample vector x from the input data set is chosen and a similarity measure is 
calculated between it and all the weight vectors of the map. The Best-Matching Unit (BMU), 
is the unit whose weight vector has the greatest similarity with the input sample P. The 
similarity is usually defined by means of a distance measure; typically Euclidian distance. 
The use of neighbourhood concept introduces the topological constraints in the final SOM 
geometry.  
The weights may or may be not, initialised randomly. In some cases they are initialised 

around the mean of the inputs as the inputs are all similar and thus restricted to a small 

portion of the space.  

The neurons of the Kohonen map learn to recognize groups of similar input vectors. Thus, 

the neuron whose weight vector is closer to the input vector is then updated to be even 

closer. The result is that the winning neuron is more likely to win the competition next time 

if similar vector is presented, and less likely to win when a very different input vector is 

presented. The training stage stops when any of the following conditions are met: the 

maximum number of epochs is reached, the performance has been minimized to the goal, or 

maximum amount of time has been exceeded. 

During training the inputs are presented one by one and the weights of the triggered node 

(the node to which the inputs is mapped) and nodes in its neighbourhood are updated as in 

equation (2). 

 * + * + * + * +, , ,1 É É Éi j i j k i jW m W m m P W mc Ç ×- ? - /É Ú  (2) 

Where m is the adaptation gain, with 0 < m < 1, and m is the iteration number. This has the 

effect of increasing the activation of the triggered node and its neighbours. In a single 

iteration all the inputs are presented and the weights adapted. After several iterations, the 

neighbourhood size is reduced by one and so on until zero, i.e., the triggered node only is 

adapted. 

3. Fuzzy C-means clustering  

K-means and conventional clustering techniques are referred to as hard or crisp clustering, 

which means that each object is assigned to only one cluster. For fuzzy clustering, this 

restriction is relaxed, and the object can belong to all identified clusters with a certain degree 

of membership (Bezdek, 1981). This is particularly useful when the boundaries among 

clusters are not well separated and ambiguous. FCM is one of the most popular fuzzy 

clustering algorithms (Szilágyi, 2009), it attempts to find the most characteristic point in each 

cluster, which can be considered as the “centroid” of the cluster and then, the grade of 

membership for each object in the clusters. Such aim is achieved by minimizing an objective 

function. A commonly used objective function is: membership weighted within cluster error 

defined as follows:  

 * +
2

,
1 1

, É ( ) É
n c

m
m i j j i

i j

J U V u x v
? ?

? /ÂÂ  (3) 

Where n is the total number of patterns in a given data set and c is the number of clusters; 

} ’1 2É ,É ,.. É É s
nX x x x? ŁR   and  } ’1 2,É ,.. É É s

nV v v v? ŁR  are the feature data and É ij cxn
U uÇ ×? É Ú  is a fuzzy 
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partition matrix composed of the membership grade of pattern 捲珍 to each cluster i.  Éj ix v/  

is the Euclidean norm between jx  and iv  . 
The weighting exponent m is called the fuzzifier which influences the clustering 

performances of the FCM (Cannon, 1986; Bezdek and Pal, 1988; Yu et al., 2005). The cluster 

centroids and the respective membership functions that solve the constrained optimization 

problem in (3) are given by the following equations: 
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Equations (4) and (5) constitute an iterative optimization procedure. The goal is to iteratively 

improve a sequence of sets of fuzzy clusters until no further improvement in * +,mJ U V   is 

possible. 

3.1 The fuzzy C-means clustering algorithm 

The FCM algorithm is executed in the following steps: 

Step 1: Given a pre-selected number of cluster c, a chosen value of m, initialize memberships 

iju  of jx  belonging to cluster i such that  

 
1

1.
c

ij
i

u
?

?Â  (6) 

Step 2: Calculate the fuzzy cluster centroid iv  for 1,2, ,i c? ‰   using Eq. (4). 

Step 3:  Employ Eq. (5) to update the fuzzy membership iju . 

Step 4: If the improvement in * +,mJ U V  is less than a certain threshold ( g ), then halt; 

otherwise go to step 2. 
Numerous FCM variants and other fuzzy clustering algorithms have appeared as a result of 
the intensive investigation on the distance measure function, the effect of weighting 
exponent on fuzziness control (Hoppner, 1999; Eschrich et al., 2003). 

3.2 Cluster validity and validity indices in fuzzy environment 

The FCM clustering algorithm has been widely used to obtain a fuzzy c-partition. This 

algorithm requires the user to predefine the number of cluster (c) and the fuzzier parameter 

m. Since it is not always possible to know these parameters in advance, different fuzzy 

partitions are obtained for different values of c. An evaluation methodology is required to 

validate each of the fuzzy c-partitions and, once the c-partitions are established, an optimal 

partition (or optimal number of clusters) may be considered. This quantitative evaluation is 

the subject of cluster validity. The cluster validity may be an indicator on partition quality. 
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Consequently, the cluster validity index can also be used to search for the optimal number 

of clusters when the number of clusters in data set or prototypes is not known in advance. 

Among the most used validity indices, and the one used in the remainder of the chapter, 

one may cite the following: 

The Partition Coefficient (PC): measures the amount of overlapping between clusters. It is 

defined by (Bezdek, 1981) as follows:  

 2

1 1

1É É
c n

ij
i j

PC u
n ? ?

? ÂÂ  (7) 

The Partition Entropy (PE): measures only the fuzziness of the Partition, similarly to the 

Partition Coefficient (PC) (Bezdek, 1981). 
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The Partition Index (SC): It is the sum of the individual cluster validity measures normalized 

through division by the fuzzy cardinality of each cluster (Bensaid, et al., 1996). 
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The Xie and Beni’s index: aims to quantify the ratio of the total variation within clusters and 
the separation of clusters (Xie and Beni, 1991).  
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Both PC and PE possess monotonic evolution tendencies with c, and involve only the 
membership values. This may have some drawbacks cited as: Their monotonous 
dependency on the number of clusters, their sensitivity to the fuzzier parameter, m and the 
lack of direct connection to the geometry of the data or prototypes, since they do not use the 
data itself. SC is useful when comparing different partitions having equal number of 
clusters. A lower value of SC indicates a better partition. Xie and Beni’s validity function 
involves the membership values and the data or prototypes.  The validity XB index focuses 
on two properties: compactness and separation. 

4. A two level clustering approach 

The number of prototype vectors resulting from SOM clustering may be large, especially 

when dealing with highly multidimensional time series applications. Only one classification 

level can then be revealing. A high level is interesting because it provides more detailed 

quality analysis and less compresses the dataset if we summarize all days by representatives 
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of a small class’s number (Rousset, 1999). It also can be very difficult to attribute some units 

of the input vector to a given cluster given by the map. The problem lies in the selection of 

some clusters border, where a clear distinction between two clusters is impossible. A second 

clustering stage becomes then useful to remove ambiguity and validate the SOM results. 

 
 

 

 
 
 
 

Fig. 2. First abstraction level is obtained by creating a set of prototypes vectors using the 
SOM. Clustering of the SOM creates the second abstraction level 

The approach used in this chapter, is depicted in Fig. 2, the first abstraction level is achieved 
by creating a set of prototypes using SOM. These prototypes are then clustered in the second 
abstraction level using the fuzzy c-means clustering algorithm (Section 3). It was noticed 
that clustering a large multidimensional time series data using only fuzzy c-means or k-
means is computationally heavier than the two-level clustering approach. Another 
advantage of this approach is noise reduction (Vesanto & Alhoniemi, 2000), as the 
prototypes are local averages of the data and therefore less sensitive to random variations 
than the original data. 

5. Day type identification of electricity load 

As explained in Section 1, it is proven that the day types or daily consumer’s habits for 
different periods of time, such as working days, weekends, special holidays, etc affect 
heavily the load shape (Fay, 2004). Different prediction models may then be designed for 
each day type. A rigorous study of the load data is, therefore of paramount importance prior 
to any modeling stages. 

5.1 Overview of Algerian electricity load 

Electrical demand in Algeria from 01/01/2000 to 31/12/2004 is shown in Fig. 3. As can be 
seen there is an upward trend in the data reflecting increasing economic activity over this 
period, also the seasonal aspect of the time series is clearly highlighted. 
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Fig. 3. Algerian electricity load 2000-2004 

 

 

Fig. 4. Weekly load 

Daily load data can be disaggregated into distinct groups (called day-types) each of which has 
common characteristics. As can be seen in (Fig. 4.) there is, for example, an obvious difference 
between the shapes of the load on a typical weekend day, such as Friday and a working day 
such as Saturday or Sunday due to decreased economic activity and the weekly religious 
prayer on Friday. Note that in Algeria the weekend was on Thursdays and Fridays in those 
years. Furthermore, there is a distinct difference between the shape of a typical winter day and 
summer day. 
In addition to time, seasonal and economic activity, the regional aspect may strongly affect 
load characteristics. As such, the identification study has to address concerns for the load of 
four distinctive regions: Algiers (the capital), Oran, Hassi Messaoud and In Amenas. The 
two first regions are located in the north-west and north-center of the country. Their climate 
is Mediterranean with a complete seasonal cycle. The size of the population and the 
economic development are increasing significantly. The last two regions are located in the 
south of the country (Sahara). Their climate is very hot all year long; and the population 
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density is less than one inhabitant per Km2 which decreases considerably any economic 
activity. Fig. 5 shows the Saturday 18th

 
of March 2000, normalized load for all four regions. 

As it can be seen, the differences in characteristics, concerning the early, midway and late 
peaks are clearly highlighted. 
 

 

Fig. 5. Regional load differences 

5.2 Day type identification using Kohonen maps 

The existence of several different day types has been shown by several researchers 
(Bretschneider et al., 1999; Hsu and yang, 1991; Muller and Petrisch, 1998). However, the 
level of desegregation in day-type selection is, to a large extent, subjective and dependant on 
the judgment of the forecaster. As pointed out by (Hubele and Cheng 1990), the application 
of a separate load forecasting model for different seasons (for example summer, autumn, 
winter and spring) has the advantage that the models do not need to incorporate seasonal 
information. 
Further desegregation of the load by day of the week (for example Summer Sunday, Winter 
Sunday, Summer Monday etc.) reduces further the amount of information that the model 
needs to incorporate. Such approaches have been implemented successfully by (Srinivasan 
et al., 1999) and (Mastorocostas et al., 1999), to mention but a few. Where a single model is 
used for all the data, the day-type information is often incorporated as an additional input 
(two examples are (Chen et al., 1992) and (Lertpalangsunti and Chan, 1998). In either case 
the day-types must, however, be identified. The selection of day-types can be guided by 
analytical techniques. The self-organising feature map or Kohonen map (Kohonen, 1990) 
would appear ideal for day-type identification as the number and similarity between day-
types is not known a priori. The Kohonen map can be implemented for day-type 
identification in several different ways (Fay and Ringwood, 2003; Hsu and yang, 1991; 
Muller and Petrisch, 1998) however differences in the results are insignificant in most cases 
thus the algorithm used by Hsu and Yang (Hsu and yang, 1991) was chosen.  
For the present trials, the full years of data from 2003 and 2004 for two characteristic regions 
were used. In order to investigate the regional aspect of electricity load, data from Oran and 
Algiers representing northern large populated cities and Hassi Messaoud and In -Amenas 
southern ones were chosen. The Kohonen map was trained using the following parameters, 

0 10 20 30 40 50 60 70 80 90 100
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time in quarter of Hour

N
o

rm
a

lis
e

d
 L

o
a

d

 

 

Algiers

Oran

Hassi Mesaoud

In Amenas

548 Self Organizing Maps - Applications and Novel Algorithm Design

www.intechopen.com



Kohonen Maps Combined to Fuzzy C-means, a Two Level Clustering Approach.  
Application to Electricity Load Data 

549 

an initial neighborhood size of  Nc=1, adaptation gain equal to 0.003, a total number of 
iteration m=10 and a grid size 18*18 (324) in total.  
Initially, the daily load curve is extracted from each day to give a set of load curves that 
have a minimum value of zero and a maximum value of one (Hsu and yang, 1991). 

 * + * + kk

k
k k

Y i minY
Y i Éi 1,..,24

maxY minY

/
| ? ?

/
 (11) 

where Y ‘(i)k and Y (i)k are the ith elements (hour) of the load curve Y‘k ┺ R1×24, and actual 
load Yk ┺ R1×24 of day k  respectively. The load curves are then normalised to give them 
unity length: 

 * + * +

* +
i

k
1/2k 24 2

kj 1

Y i
P i É Éi 1,..,24

Y
?

? ?
|Â

  (12) 

where P(i) k is the ith element of Pk. The weights are initialised as: 

 * + * + * + * +, (1) , , (24) 5 (1) , , (24)i j p p p pW o o o t tÇ × Ç ×? -É Ú É Ú   (13) 

where ┤p(1) and ┩p(1) are the sample mean and standard deviation of P(i) over all k, u is a 
uniformly distributed random number between -0.5 to 0.5 and Wi,j is normalised to unit 
length as in (Hsu and yang, 1991). Weight update is then done following equation (14) 
repeated below for clarity: 

 * + * + * + * +, , ,1 É É Éi j i j k i jW m W m m P W mc Ç ×- ? - /É Ú  (14) 

Fig. 6 shows the triggered nodes identified for the years stating from 2000 until 2004. We 
notice that they are located in the map at the coordinates i, j with: i between 0 and 17 and j 
between 10 and 20. 
 

 

Fig. 6. Kohonen map results for Algiers load 
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Fig. 7 shows respectively the triggered nodes identified for 2003 until 2004 for Algiers, Oran, 
Hassi Messaoud and In Amenas. Clearly, according to their regional characteristics, 
northern cities exhibit similar behaviour.  
It can be seen, Fig. 8, that week days activate roughly the same map nodes where, the 
weekend activate different nodes for Algiers load. This is also true for Fridays which is the 
weekly prayer occurring from 12 to 2:30. Thursday and Friday are the day of the weekend in 
Algeria.  
 
 

 
 

 
 

Fig. 7. Nodes triggered for All the years from 2003 to 2004 for (Algiers, Oran, Hassi 
Messaoud and In-Amenas) 

 

 
 

 
 

Fig. 8. Nodes triggered for working days (Saturday to Wednesday) and Week days 
(Thursday and Friday) loads fort he region of Algiers 
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Fig. 9. Nodes triggered for working days (Saturday to Wednesday) and Week 
days(Thursday and Friday) loads for Hassi Messaoud 

Weekdays and weekends however appear differently on the map. The nodes that are 
triggered from Saturday to Wednesday occupy the same parts of the grid but Thursday and 
Friday (weekends) loads; trigger different parts of the grid showing the difference between 
these day types.  The figure shows the difference between these days for Algiers load, where 
the disparate distribution of Fridays appears clearly, and is heavily dependant on seasonal 
effect. 
For southern regions, nodes triggered from Saturdays to Fridays for Hassi Messaoud and 
In-Amenas are roughly the same, showing no difference between weekdays and weekend, 
characteristic of southern cities, with small economic activity and population (Fig. 8). 
The seasonal effect is clearly shown for northern cities, Fig. 10 for Algiers where peaks 
appear along the longitudinal axe of the SOM with respect to monthly (seasonal) load. Fig. 
11 shows seasonal day-type identification for a southern region. The number of visually 
seen clusters may be identified as 4 clusters for Algiers and Oran and 3 clusters for Hassi 
Messaoud and two clusters for In-Amenas (Benabbas et al., 2008). 
In the experiments, the cluster validity indices where tested for Algiers and Hassi Messaoud 
prototypes in Section 5.3. 
 

 
 

 

Fig. 10. Seasonal day-type identification for Algiers 

0

5

10

15

20

0

5

10

15

20
0

20

40

60

80

100

120

node i

All saturdays.

node j

#
 M

ap
p

ed

0

5

10

15

20

0

5

10

15

20
0

50

100

150

node i

All sundays.

node j

#
 M

ap
p

ed

0

5

10

15

20

0

5

10

15

20
0

20

40

60

80

100

120

node i

All mondays.

node j

#
 M

ap
p

ed

0

5

10

15

20

0

5

10

15

20
0

20

40

60

80

100

120

node i

All tuesdays.

node j

#
 M

ap
p

ed

0

5

10

15

20

0

5

10

15

20
0

20

40

60

80

100

120

node i

All wednesdays.

node j

#
 M

ap
p

ed

0

5

10

15

20

0

5

10

15

20
0

20

40

60

80

100

node i

All thursdays.

node j

#
 M

ap
p

ed

0

5

10

15

20

0

5

10

15

20
0

10

20

30

40

50

60

node i

All fridays.

node j

#
 M

ap
p

ed

0

5

10

15

20

0

5

10

15

20
0

20

40

60

80

node i

January.

node j

#
 M

ap
p

ed

0

5

10

15

20

0

5

10

15

20
0

10

20

30

40

50

60

node i

March.

node j

#
 M

ap
p

ed

0

5

10

15

20

0

5

10

15

20
0

20

40

60

80

node i

May.

node j

#
 M

ap
p

ed

0

5

10

15

20

0

5

10

15

20
0

20

40

60

80

100

120

node i

June.

node j

#
 M

ap
p

ed

0

5

10

15

20

0

5

10

15

20
0

50

100

150

node i

July.

node j

#
 M

ap
p

ed

0

5

10

15

20

0

5

10

15

20
0

20

40

60

80

node i

September

node j

#
 M

ap
p

ed

0

5

10

15

20

0

5

10

15

20
0

20

40

60

80

100

120

node i

October

node j

#
 M

ap
p

ed

0

5

10

15

20

0

5

10

15

20
0

20

40

60

80

100

node i

December

node j

#
 M

ap
p

ed

551Kohonen Maps Combined to Fuzzy C-means,
a Two Level Clustering Approach. Application to Electricity Load Data

www.intechopen.com



Self Organizing Maps - Applications and Novel Algorithm Design 552 

 
 

 

Fig. 11. Seasonal day-type identification for Hassi Messaoud 

5.3 Fuzzy C-means clustering of the SOM prototypes 

Table 1 lists the results of validity index for c=2,3,…..,13. For each"̊ 半 に, index values were 

computed for each of the four validity index considered (PC, PE, SC and XB given in 

equations 7, 8, 9 and 10 respectively). The optimal number of clusters is found to be, 4 for 

Algiers and 3 for Hassi Messaoud. 

As a second stage clustering technique, FCM is used to assign the already identified items to 

different clusters of electricity load (Jang et al., 1997). The fuzziness index m was set to a 

value of 2; the maximum number of iteration was set to 100. These values were selected after 

a number of simulations and were found most suited for clustering the data obtained from 

the first clustering stage. The minimal amount of improvement was initially set to 1e-5. The 

membership’s value in each group or cluster indicates the probability for a day to belong to 

that specific cluster. A sample of the membership’s values of each of the 731 days for each of 

the 4 group is presented in Table 2. The group which has the highest membership’s value 

among the 4 groups is the representative group for that day. 

 

DataSet PC PE SC XB 

Algiers 2 2 4 4 

Hassi Messaoud 3 3 3 3 

Table 1. Optimal cluster number according to each validity indices 

For the first day corresponding to the 1st January 2003, membership’s values for the 4 

groups are 0.0812, 0.0353, 0.2641 and 0.6192 respectively for groups 1 to 4. The sum of theses 

values should be equal to 1. The representative group for the day represented by item 1, is 

group 4 (having the maximum membership’s value of 0.6192). Similarly, all other days were 

analysed and grouped. It is observed that none of the 4 groups is empty. This may be due to 

the advantage of Fuzzy cluster analysis which allows each data set to have partial 

membership in all clusters. Table 3 shows the results of fuzzy clustering in three clusters for 

Hassi Messaoud. 
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Item number C1 C2 C3 C4 

1 0.0812 0.0353 0.2641 0.6192 

2 0.1012 0.0388 0.3516 0.5083 

3 0.0691 0.0341 0.2005 0.6960 

4 0.2288 0.0535 0.5690 0.1485 

5 0.7004 0.0675 0.1813 0.0505 

……     

……     

727 0.3198 0.4956 0.1209 0.0635 

728 0.4382 0.4055 0.1080 0.0481 

729 0.5729 0.3079 0.0864 0.0326 

730 0.4382 0.4055 0.1080 0.0481 

731 0.6134 0.2451 0.1013 0.0401 

Table 2. Obtained results for Algiers (four clusters) 

 

Item number C1 C2 C3 

1 0.0695 0.1092 0.8211 

2 0.0412 0.0476 0.9110 

3 0.2916 0.1350 0.5733 

4 0.0319 0.0658 0.9022 

5 0.1279 0.1038 0.7682 

6 0.0379 0.0938 0.8681 

……    

……    

726 0.0700 0.2241 0.7058 

727 0.0522 0.8123 0.1353 

728 0.0737 0.3281 0.5980 

729 0.0438 0.1481 0.8079 

730 0.0379 0.0938 0.8681 

731 0.0773 0.7364 0.1861 

Table 3. Obtained results for the southern city of Hassi Messaoud (three clusters) 

In Fig. 12.a and Fig.13.a the items data for Algiers and Hassi Messaoud (northern and 
southern city respectively) are presented according to their membership degrees in a 
graphical interpretation.  The horizontal axis in each subfigure represents the prototypes 
obtained by SOM, and the vertical axis in each subfigure represents their associated 
memberships. 
The visualization is obtained using PCA (Principal Component Analysis). The results 
presented in 3D and 2D are given for Algiers (Fig. 12.b) and (Fig. 12.c) and Hassi Messaoud 
(Fig.13.b) and (Fig. 13.c.), respectively. X and Y, being respectively, the first and the second 
component. 
The number of identified clusters is clearly shown, in 3-D Fig. 12(b) and 13(b) respectively for 
Algiers and Hassi Messaoud. For a clearer interpretation, Fig. 12(c) and 13(c) shows the 
clusters in a 2-D representation. Fig. 12(a) and 13(a), show the membership values for each 
identified cluster.  
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 (a) (b) (c) 

Fig. 12. Graphical results of Fuzzy Clustering for Algiers. (a) Four cluster from top to bottom 
(C1 to C4). The horizontal axis in each subfigure represents the prototypes obtained by SOM 
and the vertical axis in each subfigure represents the membership value. (b) and (c) are the 
visualisation of clusters using PCA respectively in 3D and 2D dimensions. X and Y are 
respectively the first and second component 

 

 
 

 (a) (b) (c) 

Fig. 13. Graphical results of Fuzzy Clustering for Hassi Messaoud. (a) Three cluster from top 
to bottom (C1 to C3). The horizontal axis in each subfigure represents the prototypes 
obtained by SOM and the vertical axis in each subfigure represents the membership value. 
(b) and (c) are the visualisation of clusters using PCA respectively in 3D and 2D dimensions. 
X and Y are respectively the first and second component 

The day with the highest membership value in a group is the representative day for that 
group. The representative day for each class for Algiers and Hassi Messaoud are 
summarised respectively in Table 4 and Table 5.  
Table 6 and Table 7 shows respectively the period and classes associated with each cluster 
coloured and visualized in figure 12 and 13.  
Table 8 and 9 indicate for each region and for each day type the level of memberships to the 
clusters. For example for Algiers, The day corresponding to 01 of July 2003 belongs with a 
confidence degree of 90,55%  to cluster C2 (Summer season) , 5,55 % to cluster C1(Winter 
season) 2,6 % to cluster C3 (Autumn season) and 1,3 % to cluster C4 (Spring season).  
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The day corresponding to the 31th January, a winter day belongs  with a confidence degree 
of 84,14 % to cluster C1 (Winter season), 8,87 % to cluster C2 (Summer season), 5,26 % to 
cluster C3 (Autumn season)  and 1,73 % to cluster C4 (Spring season). 
 

Representative Day 30 December 2003 27 march 2003 21 May 2003 25  june 2003 

Membership value 0.9099 0.926 0.8741 0.9352 

Table 4. Representative day per class for Algiers 

 

Representative Day 01 April 2003 27 May 2003 21 October 2003 

Membership value 0.9899 0.9881 0.9462 

Table 5. Representative day per class for Hassi Messaoud 

 

Season Classes Overlapping Period 

winter C1 (yellow) C2,C3,C4 Dec, Jan, Fev 

Summer C2 (green) C1,C3,C4 July et August 

Autumn C3 (red) C1,C2,C4 September, October and November 

spring C4 (blue) C1,C2,C3 March April May June 

Table 6. Classes identified for Algiers 

 

Season Classes Overlapping Period 

Autumn C1 (yellow) C2,C3 Feb March April 

Summer C2 (green) C1,C3 May June July August 

Spring C3 (red) C1,C2 Sept Oct Nov Dec, Jan 

Table 7. Classes identified for Hassi Messaoud 

 

Day C1 C2 C3 C4 

01/07/2003 0.0555 0.9055 0.026 0.013 

31/01/2003 0.8414 0.0887 0.0526 0.0173 

22/01/2003 0.7928 0.0799 0.0953 0.032 

21/10/2003 0.1645 0.056 0.5202 0.2594 

10/08/2003 0.208 0.6406 0.1072 0.0442 

10/05/2003 0.102 0.0497 0.3682 0.4802 

Table 8. Membership values per class per day for Algiers 

 

Day C1 C2 C3 

31/01/2003 0.07 0.2373 0.6927 

20/12/2003 0.0717 0.2314 0.6969 

Table 9. Membership values per class per day for Hassi Messaoud 
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6. Conclusion 

This chapter presents day type identification for regional Algerian electricity load using a 
combination of two of the most popular artificial intelligence paradigms, for instance 
Kohonen Maps and Fuzzy logic. The Kohonen map analysis allows a rough visual 
identification of the different existing classes, while the C-means clustering approach 
identifies existing clusters as well as providing each new day to identify, with a membership 
value. The choice of the optimal number of clusters is based on four fuzzy cluster validation 
measures (PC, PE, SC and XB). Four clusters are clearly identified for Algiers and three 
clusters for Hassi Messaoud, two large representative cities, respectively from northern and 
southern part of the country.  
Fuzzy clustering methods allow objects to belong to several clusters simultaneously, with 
different degrees of membership. This is more natural than hard clustering, as objects on the 
boundaries between several classes are not forced to fully belong to one of the classes, but 
rather are assigned membership degrees between 0 and 1 indicating their partial 
memberships. 
This is an important feature for day type identification to increase sensitivity, allowing a 
Neuro-Fuzzy forecasting approach, as existing clusters are already identified as potential 
models for each studied region (city). The subsequent combination between forecasting 
models may be given by the already determined membership functions. 
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