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1. Introduction  

This work provide a proof-by-example of the ability of harmonic potential fields (HPF) to 
exhibit a self-organizing behavior that can be utilized in building decentralized, 
evolutionary, multi-agent systems. It is shown that the strong relation the single agent HPF 
approach has to the evolutionary artificial life (AL) approach may be utilized at the multi-
agent level to synthesize decentralized controllers that can be applied to a large variety of 
practical problems.  We first provide a background of the single agent HPF approach along 
with its relation to the AL approach. Different multi-agent, HPF-based methods are 
presented  along  with  simulation examples  to demonstrate the utility of these techniques. 
Humans have long attempted to bridge the gap between actions under their direct 
command (control variables) and directly inaccessible desired aspects of the environment 
they want to influence. This is carried-out by constructing a chain of causality linking the 
two together; hence making those directly inaccessible aspects indirectly accessible to the 
human operator. The process that realizes this chain of causality is called a servo-process.   
There are more than on type of problems that a servo-process have to rectify in order to 
enable causality to flow from the control side to the desired outcome side. The failure could 
be caused by insufficient quantity of effort that is being exerted at the control variable side. 
It may be the result of incompatibility of the control effort with the aspects of the 
environment that is to be influenced. The lack of organization in terms of the proper spatial-
temporal distribution of the assets  comprising the servo-process is a serious and difficult to 
detect source of failure.  The sufficiency of the level of information available to constructor 
of the servo-process is also a fundamental cause of failure. Attention in this chapter is paid 
to the third type of failure concerning the faulty organization of the servo-process resources.  
Any servo-process must, among other things, regulate the interaction among its sensory, 
processing, communication and actuation components. There are a number of distinct 
modalities in which these components are governed each suited to tackle a certain situation. 
Each one of these modalities gives rise to a family of planners.  A planner is an intelligent, 
goal-oriented, context-sensitive controller that instructs the servo-process on how to deploy 
its actuators of motion so that a target situation may be reached in a constrained manner.  
Probably the most common modality used by a servo-process is the: know-plan-Act 
modality which is commonly called the:  model-based approach (figure 1). Here, the servo-
process uses its sensors to collect data about the situation it has to deal with. This data is 
converted into a representation. The representation is processed to generate a plan or sub-
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tasks that have to be sequentially executed. These tasks are in turn fed to an actuation stage. 
Despite the popularity of this approach, it was found to suffer from problems such as: slow 
reaction to changes in the environment, aging of information and outdated plans and issues 
in converting the generated plan into successful actions.  

 

 

Fig. 1. The model-based approach 

To solve the problems of slow reaction to changes in the environment and outdated plans, 
the sense-act modality was suggested (figure 2). This reactive modality proved to be highly 
practical; however, its applicability is limited to simple tasks.  

 

    

Fig. 2. The reactive approach 

With limited success, attempts to improve the robustness of the model-based approach were 
carried-out by hybridizing it with the reactive approach (figure 3).  

 

 

Fig. 3. The hybrid reactive – Model-based approach 

Hardwiring sensors to an algorithm that directly feeds an actuation stage was  found to be 
quite an effective modality for behavior generation (figure 4).  To best of this author’s 
knowledge, planning techniques based on this modality are difficult to adapt in situational 
spaces that have dimensionality more than two.  

 

 

Fig. 4. The algorithmic, sensor-based approach 

The subsumbtion architecture (figure 5) proved to be an effective modality for building 
servo-processes that have high chance of success operating in a realistic environment. This 
modality relies on direct sensory feed from the environment to a group of nested behaviors 
which the servo-process can project. These hierarchical behaviors can override each other 
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when the situation makes necessary to do so. The behavior of the resulting servo-process is 
situated, embodied, intelligent and emergent.  

 

 

Fig. 5. The subsumbtion architecture 

A belief-based approach (figure 6) is a powerful modality that allows a servo-process to act 
without the need for a common globally-agreed-on representation of the environment. 
Instead, the process forms its personal representation by continuously shaping its belief 
based on its experience of the environment.  

 

 

Fig. 6. Belief-based structures 

Servo-processes may be built for any task and in any environment physical and 
nonphysical. A modality that suits the nature of the task is crucial for success. Modern 
technology has made great advances in miniaturizing and replicating devices and processes. 
This has strongly brought forward the possibility of building a distributed systems that are 
actualized by a group of, usually, identical agents to collectively perform a task. There are 
many modes in which this group may function. A highly sought-after mode requires that 
the group be able to function without a central, omni-aware supervisor. The group must 
have distributed asynchronous processing, perception and actuation. Communication 
among the agents is also limited in terms of reach and connectivity. In other words, the 
group has to self-organize in order to carry-out the task. The belief-based modality which 
can only exist if the group is decentralized seems to best fit such situation.  

2. Centralized versus decentralized systems 

In the following, general properties of centralized and decentralized systems are discussed. 
A definition equating decentralization to self-organization in a collective of agents is 
proposed. The artificial life (AL) paradigm and the harmonic potential field approach are 
suggested to realize a planner that is based on this definition. 
Whether it is one or more agents, successful, context-sensitive, purposive behavior requires 
the presence of a process for generating a regulating control action. This process receives 
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data from the environment, the agent/s, the target/s, and the constraints on behavior, and 
converts them into a control action that will successfully propel the agents, in a constrained 
manner, towards their goals. There are two ways for generating such a regulating action: a 
centralized approach, and a decentralized approach.  
 

 

Fig. 7. Centralized approach to control 

The centralized approach (figure 7) has a holistic-in-nature, top-down view to the behavior 
synthesis process. Here, a central agent that has a duplex communication link to each 
member of the group simultaneously observes the states of the agents and the environment, 
and processes the database in a manner that is in accordance with the aim of the group and 
the constraints on behavior. It then generates synchronized sequences of action instructions 
for each member of the group. The instructions are then communicated to the respective 
agents for them to progressively modify their trajectories and safely reach their destinations. 
In this mode of behavior, the generation of the constraint-satisfying, goal-fulfilling, conflict-
free solution (i.e. sequence of state-control pair) begins by constructing the hyper action 
space (HAS) of the group. HAS houses the space of all admissible point actions which the 
agents may attempt to project. The HAS is then searched for a solution that is in turn 
communicated to the agents. The agents “blindly and mindlessly” execute the solution with 
a rigidity that is based on a trust that their actions will lead to the desired conclusion. It is a 
well-known fact that, in real life, any solution generated by a centralized mechanism is short 
lived. The dynamic nature of real environments will cause a mismatch between the 
conditions assumed at the time the controller begins generating the solution, and the actual 
conditions at the time the solution is handed to the agents for execution. Despite the attempt 
to alleviate this problem by equipping the agents with local sensory and decision making 
capabilities, centralized systems still suffer serious problems some of which are stated 
below:  
1. Almost all centralized planning and control problems are known to be PSPACE-

complete with a worst case complexity that grows exponentially with the number of 
agents. The large number of agents a realistic system contains will prevent the central 
controller from responding to environmental changes in a timely manner, if not cripple 
the control process altogether. 
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2. Centralized systems are inflexible in the sense that any changes to the characteristics of 
one or more agents may translate into a change in the whole HAS. This makes it 
necessary to repeat the expensive search for a solution. In turn, the desirable property 
that the size of the effort needed to adjust the control should be commensurate with the 
size of changes in the setting is not satisfied.  

3. Centralized systems are prone to problems in communication and action 
synchronization. This makes it difficult to reliably operate the system even if the central 
planner has the assets needed to meet the demands of a realistic environment.  

4. Centralized systems are not robust in the sense that the failure of one agent to fulfill its 
commitment towards the group could lead to the failure of the whole group.  

In real life, no agent, no matter how sophisticated it is, has omniscient awareness of its 
surroundings, let alone infinite resources to instantly store and process data. Sometimes, 
even reliable communication links between the central agent and the others is difficult to 
establish. It may even be impossible due to the lack of universally accepted technical 
language, even vocabularies,  for communication. The above are a few reasons why central 
planning strategies may not succeed in real life. Ruling out the feasibility of a central 
planning agent leaves only the option of the regulating control action arising from the 
agents themselves. The fact that the agents possess only local sensing, reasoning, and action 
capabilities makes it impossible to capture a complete spatial and/or temporal 
representation of the process. This, in turn, makes it impossible to build an HAS. As a result, 
the traditional way of control generation that first starts with a representation module 
followed by reasoning and control action generation can no longer be applied.  
A major departure from such a linear, traditional way of thinking is needed. Since any finite 
sensory data an agent acquires does not reflect the actual content of the environment, the 
representation based on such data can only be classified as a belief. Under the above 
described conditions, an agent starts from a “seed” belief about its environment. This belief 
is coupled to an experiential stage that requires a sensory action continuously engaging the 
environment.  Feedback is then applied to condition belief by experience. The control action 
is the outcome of this process.  
Unlike the traditional approach where representation is an a priori that is needed to generate 
the control action, the suggested approach has representation as a  posteriori, a byproduct of 
the action generation process. The local control synthesis modules based on the above 
approach are set to interact within the confines of their environment. From such nuclear 
activities of properly designed modules, a global regulating control action will emerge, and 
the group will “self-organize”.  
Obviously it is not feasible for agents in a large group with distinct goals to be a priori aware 
of each other’s presence, to communicate with each other  or with a central agent regarding 
advice on what action to take. As mentioned above, the only remaining option is for each 
agent to make its own decision on how to act based on the sensory data which the agent 
dynamically extracts from its local surroundings (Figure 8). Knowing that  there  is  more 
than one interpretation of  decentralization, the  author considers a multi-agent system  
decentralized if each agent in the group is independent from the others in sensory data 
acquisition, data processing, and action projection. In a decentralized system, these faculties 
are configured in a mode that would give rise to coordination in the group without a 
coordinator. In other words, the group is capable of self-organization. Unlike centralized, 
top-down approaches, self-organization is a bottom-up approach to behavior synthesis 
where the system designer is only required to supply the individual agents with basic, “self-
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control” capabilities. The overall control action that shapes the behavior of the agents 
evolves in space and time as a result of the interaction of the agents among themselves and 
with their environment.  

 

 

Fig. 8. Decentralized approach to control 

Some properties of decentralized systems that conform to the above definition are:  
1. There is no need to search or, for that matter, construct the HAS of the group in order to 

generate a solution. For a decentralized system, the solution emerges as a result of the 
agents interacting among themselves and with their environment.  

2. No inter-agent communication, or communication with a supervisory agent is required. 
All that an agent is required to do is to observe (not communicate with) other agents in 
its local neighborhood. No preexisting awareness of the whole group, or the whole 
environment is required.  

3. Synchronous behavior is an emergent phenomenon (instead of an imposed one) that 
results from asynchronous interaction.  

4. The complexity of control in the group grows linearly with the number of agents.  
5. Decentralized systems, where every one of  its member agents independently sense its 

environment,  process data,  and actuate motion,  form open systems that enable any 
agent to join or leave the group without the others having to adjust the manner in 
which they process information or project action.  

6. Unlike centralized systems which are informationally-closed, and organizationally-
open, decentralized systems are informationally-open and organizationally-closed. 

The difference between centralized and decentralized systems goes far beyond the manner 
in which the behavior generation faculties are related to the agents. They reach as deep as 
the process enabling the system to generate the information needed for behavior synthesis. 
Centralized systems use reasoning coupled with search as the driver of the action selection 
process (it ought to be mentioned that function/al minimization is a form of search). The 
search of the system’s space of possible actions for a feasible solution may be carried out in a 
brute force manner, or in an intelligent manner that utilizes heuristics and side information 
for speed.  No matter what form  the search assumes or how it is applied, systems relying on 
search have very serious problems, some of which are mentioned above,  if they operate in a 
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dynamic environment. On the other hand, the action selection driver in  decentralized  
systems that satisfies the above requirements is a synergy-driven evolution. In this mode of 
behavior information synthesis is the result of the synergetic interaction of the agents among 
themselves under the influence of their environment. The information that is  a priori 
encoded into each agent in the form of self-capabilities to project actions is usually simple 
and not adequate, on its own, to handle the usually complex planning task which faces the 
group. It is synergetic interaction within the context of the environment that augment the 
level of information which the group has to a level that is sufficient for the members to carry 
out the task at hand (an act of knowledge amplification).  

3. The artificial life approach 

Despite the abundance of evolutionary techniques (e.g. neural nets, genetic algorithms, 
reinforcement learning, Bayesian belief networks, etc.) a relatively new area in evolutionary 
behavior synthesis that is  called artificial life (AL) (Langton, 1988) seems to provide a 
powerful paradigm for explaining the behavior of decentralized systems. It also provides 
constructive guidelines for their synthesis. In an AL system, the members of the group are 
equipped with the proper elementary, a priori known capabilities for self-control which are 
called the Geno-type of behavior (G-type). On the other hand, the overall control action that 
actually governs the behavior of the whole group evolves in space and time as a result of the 
interpretation of the G-type in the context of a particular environment. The whole control 
action is called the Pheno-type (P-type) of behavior. This behavior cannot be, exactly, a priori 
predicted, only certain aspects of it can be a priori known. It is very flexible, highly adaptive, 
and far exceeds in complexity and informational content the G-type control. There are two 
requirements for constructing a proper G-type control action:  
1. Each agent must individually develop a control action to drive it toward its goal. Such a 

control need not take into consideration the control actions generated by the other 
agents of the group. 

2. Each agent must have the ability to generate a control that can resolve conflict with 
other agents through bilateral interaction.  

Despite being an inherently multi-agent approach, the AL approach is applicable to the case 
of an isolated agent trying to synthesize a regulating control action utilizing only finite 
sensory and data processing resources. This is possible despite the fact that  more than one 
agent is needed for synergetic interaction to take place. The agents needed to trigger 
synergy need not be physical, they can  be a virtual construction of the agent concerned. For 
this case, the agent starts by densely spreading micro-agents,  in  its own  image, all  over 
the situational space  the agent has the potential of  occupying  (Figure 9).  
The only difference between the “mother-agent” and a micro-agent is that the state of the 
former agent evolves in space and time, while the state of a micro-agent is stagnant and 
immobilized to only one a priori known point in state space. Only the control action 
associated with each micro-agent is allowed to evolve. The micro-agent concept is used to 
construct a control action group for the agent by first covering the state space with a 
manifold that has locally (point-wise) extractable vector features which homogeneously 
cover the domain on which the control is defined. The vector features are determined by the 
vector partial differential operator that is used to operate on the manifold  to induce a vector 
field that may be used to describe the action structure of the micro-agent group, therefore 
generating the action field of the agent. The second step is to provide each micro-agent with 
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the ability to generate a proper differential behavior. Differential behavior is a self-behavior 
where a micro-agent does not attempt to influence the other micro-agents with which it is 
directly interacting. Instead, it forms a soft informational coupling with them where it only 
observes their behavior and uses this information to derive a self-action that governs its and 
only its behavior in state space (figure 10). This may be achieved by constraining the vector 
partial differential operator that is used to emulate the actions of the micro-agents using 
another partial differential operator. This operator encodes how a micro-agent is going to 
constrain its behavior with respect to the behavior of the other micro-agents it is interacting 
with. The third step is to induce a proper action structure over the micro-agent group. In 
centralized approaches, each micro-agent has to search for the “correct” action in order to 
generate a group structure that unifies all the micro-agents in one goal-oriented unit. In the 
proposed approach, a micro-agent is only required not to exert the “wrong” actions that 
could result in the failure of the agent to reach the goal. 

 

 

Fig. 9. A dense matrix of interacting virtual agents 

Not selecting the wrong actions is not enough, on its own, for each micro-agent to restrict 
itself to one and only one admissible action that would constitute a proper building block of 
the global structure needed to turn the micro-agent group into a functioning unit. The 
additional effort needed to induce the global structure on the micro-agents is a result of the 
evolution of the behavior of the micro-agent group in time and space under the guidance of 
the environment (i.e. morphogenesis,( Thom, 1975)). This guidance is what eventually limits 
each micro-agent to one and only one action that is also a proper component in a 
functioning group structure. The environment guidance may be factored into the behavior 
generation process as state boundary conditions which play the role of self-preserving 
actions that the agent is a priori equipped with. The behavior of a micro-agent at a location 
which the agent believes to be harmful is constrained to an a priori known survival action 
that would drive motion away from it and towards a safe region. The environment guidance 
could also be in the form of instructions restricting the behavior of the agent at certain 
region in the admissible space (e.g. constraints on direction along which motion should 
proceed). The above approach was used to derive a new class of intelligent, emergent, 
situated, end embodied class of controller called evolutionary, hybrid, pde-ode controllers 
(EHPCs) that are suitable for constructing the self-control component (G-Type control) of a 
multi-agent system. the evolutionary, hybrid, PDE-ODE control (EHPC), Figure 11. An 
EHPC consists of two parts:  
1. a discrete time-continuous time system to couple the discrete-in-nature data acquisition 

process to the continuous-in-nature control action release process; 
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2. a hybrid, PDE-ODE controller (HPC) to convert the acquired data into in-formation that 
is encoded in the structure of the micro-control action group. For more details about 
this type of control see (Masoud &  Masoud, 2000a; Masoud &  Masoud,1998; Masoud 
&  Masoud, 1997; Masoud &  Masoud,1994; Masoud &  Masoud, 2000b; Masoud & 
Masoud, 2002).  

 

 

Fig. 10. Layers of functions in an interactive micro-agent 

 

 

Fig. 11. A structure for an EHPC 

4. The harmonic potential field approach: a background 

The HPF approach is a realization of EHPCs. It mathematically captures the behavior of an 
AL system by first emulating the dense collective of micro-agents using a situation space  
cover in the form of a potential field (V) that is acted on by a differential operator (usually 
the gradient operator, V∇ ). The vector differential elements, which may be perceived as the 

micro-agents, are sensitized to each other using a vector differential relation that locally 
imposes dependence on the behavior  of these vectors. The form to which the structure of 
the vector differential elements converge to (i.e the interpretation of the G-type action in the 
context of the environment) may be controlled by boundary conditions or by making G-type 
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action environment-dependant. Figure 12 shows an HPF-based group action evolving in 
space and time until it finally reaches a  form that allows it to function as desired.  
 

 

Fig. 12. Evolution of the control action in a PRF component 

The harmonic potential field approach is a powerful, versatile and provably-correct means 
of guiding motion in an N-dimensional abstract space to a goal state subject to a set of 
constraints.  The approach works by converting the goal, representation of the environment 
and constraints into a reference velocity vector field using the mechanism described above 
(figure 13). This reference field is usually generated from a properly conditioned negative 
gradient of an underlying potential field.  
 

 

Fig. 13. The velocity field from an HPF along with the resulting trajectory 

A basic setting of the HPF  approach (1) is: 

solve: 2V(X) 0        X∇ ≡ ∈Ω  (1)

subject to:   V(X) = 1 at X = ポ  and  V(XT) = 0 , 
A provably-correct  path may be generated using the gradient dynamical system (2):  

 X - V(X)= ∇$   (2)

where X is a point in an abstract  N-dimensional space (usually N=3),  Ω is the workspace,  ポ 
is its boundary  and XT is the target point.   
Many variants of the above setting were later proposed to extend the capabilities of the HPF 
approach. For example, it is demonstrated that the approach can be used for  planning in 
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complex unknown environment (Masoud & Masoud, 1997) relying on local sensing only 
(figure 14), 

 

A

 

Fig. 14. HPF-based planning in unknown environments  

The HPF approach can also incorporate directional constraints along with regional 
avoidance constraints (Masoud & Masoud, 2002) in a provably-correct manner to plan a 
path to a target point (figure 15), 

 

 

Fig. 15. HPF-based planning with directional and regional avoidance constraints       

The HPF approach may also be modified to deal with inherent ambiguity (Masoud, 2009a) 
that prevents the partitioning of an environment into admissible and forbidden regions 
(figure 16), 

 

 

Fig. 16. HPF-based planning in non-divisible environments 

It can also be adapted to deal with environments containing obstacles and a  drift field 
which suits planning for energy exhaustive missions (figure 17).  
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Fig. 17. HPF-based planning in the presence of drift fields 

It was demonstrated in (Gupta et al, 2006) that the HPF approach can  work with integrated 
navigation systems that can efficiently function  in a real-life situation (figure 18).  

 

 

Fig. 18. HPF-based integrated navigation system 

 

 

Fig. 19. HPF-based, nonholonomic, dynamical navigation 

Work on extending the HPF approach to work with dynamical and nonholonomic systems 
(figure 19) may be found in (Masoud, 2009b; Masoud, 2010).  

5. Decentralized multi-agent HPF planners  

The single-agent HPF approach has amassed and is still gaining a wide array of capabilities 
that makes it applicable to a large number of practical and challenging problems in 
planning. In the remainder of this chapter, it is demonstrated by examples that the HPF 
approach does extend to the multi-agent case while maintaining an adaptive, evolutionary, 
decentralized, self-organizing nature that is compliant with the AL paradigm to behavior 
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synthesis. It is shown that a single HPF planner by itself or slightly modified does play the 
role of the G-Type controller (self-control or control protocol) in a multi-agent system.  
Formally a multi-agent planner must maximize both the minimum inter-agent distance as 
well as the minimum distance between the agents and the clutter populating the 
environment while guaranteeing that each member reaches its destination in the desired 
manner. Unfortunately formulating the problem in this manner for a large group of agents 
leads to an intractable situation. Self-organizing optimization methods (Wu & Chow, 2007; 
Kohonen, 1997; Lampinen & Storn, 2004; Hao et al, 2007) may be used for such a purpose. 
They are known for their ability to handle nonlinear functions having large degrees of 
freedom. Neglecting the fact that these methods are not provably correct and cannot 
guarantee that a solution can be found if one exist, they do not provide acceptable transient 
behavior that allows them to serve online as trajectory controllers. Instead of seeking a 
formal and optimal solution to the problem, a practical solution with acceptable properties 
is suggested using the HPF approach. The solution sought is built around a decentralized 
paradigm that employs local interaction and sensing among agents (figure 20) in regulating 
the group’s motion. The artificial life paradigm to behavior synthesis does support this 
mode of operation. Therefore designing a controller for the collective reduces to designing 
the proper G-Type controller which  each agent must use. The controller should be designed 
such that for the overall system conflict is eliminated and goal for each member is attained 
while enforcing additional constraints on the individual trajectories if needed.   
 

 

Fig. 20. Overall, decentralized system 

5.1 The vector-harmonic multi-agent potential field approach 
This decentralized, self-organizing, multi-agent, HPF-based method relies on local 
information in de-conflicting the workspace.  Each agent, independently, uses an HPF 
method to guide it to its target in the desired manner. The control protocol individually 
used by the agents to reach their goals is constructed by augmenting the HPF controller 
with sensor-actuated, local vector potential fields. The HPF component of the protocol is 
called the purpose field (PRF) and vector potential component is called the conflict resolving 
field (CRF).  
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5.1.1 Formulation 
In this section the problem of decentralized, multi-agent motion planning in the face of 
incomplete information is formulated. An agent (Di(x)) is assumed to be massless, and 
occupy a multi-dimensional, hyper sphere (x∈RM) with a radius ρi and a center xi :   

 { }i i iD (x) x : x x   i=1,...,L,= − ≤ ρ  (3)

 

 

Fig. 21. Zones related to Di 

where L is the number of agents occupying the  workspace (figure 21).  An enlarged circular 
region (D`i(x)) with radius ρ`i ( ρ`i > ρi ) and center xi  is assumed to be surrounding Di(x):  

 
{ }i i i

i i

D (x) x : x x   i=1,...,L,

D (x) D (x)

= − ≤ ρ

′⊂
  (4)

The ring Si(x) (Si(x) = D`i(x) - Di(x))  surrounding Di(x) marks the region illuminated by the 
sensors of the i’th agent. The time between an agent sensing an event and releasing a control 
action (data processing and action release delay)  is assumed to be small enough to be 
neglected in practice. Therefore, this region is a dual sensory and action zone. Besides the 
agents, the environment is assumed to contain static, forbidden regions (O) which the agents 

must not occupy at any time (O∩ Di ≡ φ, ∀ t, i=1,..,L). The agents are  only allowed to  exist 
in the workspace Ω (Ω=RM -O). The boundary of the forbidden regions is referred to as ポ 

(ポ= ∂ O). The destination of  the i’th  a gent is  surrounded by the spherical region Ti (x) with 

a center Ci  (figure 22).  Ti`s are chosen so that:  

  (5) 

The last two conditions, respectively, mean that the goals of the different agents should not 
be conflicting, and should be attainable (i.e. lie inside Ω). The partial knowledge the i’th 
agent has about its stationary environment is represented by ポ`i ( ポ ⊇  ポ`i ⊇  φ, i=1,..,L). The 

binary variable Qi (Qi ∈  {0,1}) marks the event of an agent discovering part of the forbidden 
regions not previously known to it, i.e.    

 
 

 
(6) 
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If at any instant in time (tn), this condition becomes true, the content of  ポ`i is adjusted so 
that:  

  (7)

If such a situation transpires, Qi  is set to 1, otherwise, its value is set to zero. The i’th agent 
also actively monitors its immediate  neighborhood for  the presence  of other agents.  It 
forms the set:  

  (8)

where Ki is the number of agents lying in the proximity of the i’th agent at time t.   
 

 

Fig. 22. Goal oriented agents in a cluttered environment 

Designing the multi-agent controller requires the synthesis of the dynamical systems: 

  (9) 

such that the following constraints are satisfied for the overall system:    

  (10) 

where xi ∈  RM, X=[x1 ... xL]t, C= [C1 ... CL]t, Q=[Q1 ... QL]t, ポ`=[ポ`1...ポ`L ]t, H=[h1 ... hL]t . 

5.1.2 Controller design 
As  discussed earlier   an AL approach to behavior synthesis reduces the job of the designer 
to only constructing the self-controllers (G-type control) of the agents as individuals. The 
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overall control action that regulates the behavior of the agents as a group operating in the 
context of some environment (P-type control) evolves as a result of the constrained 
synergetic interaction among the agents. The designer is required to synthesize controls for 
the systems:  

  (11) 

The i’th self-control is divided into the following three components:  

  (12) 

where ugi is the PRF component of the i’th self-control, uci is the CRF component, and uoi is 
an optional control component that is included as an extra precaution against collision with 
stationary obstacles. It ought to be mentioned that ugi includes, among other things, the 
ability to avoid collision. Details about how to construct uoi may be found in (Khatib, 1985).  

5.1.2.1 The PRF control  

The PRF component of the multi-agent controller is required to guide a single agent in a 
stationary, cluttered environment assuming other agents are not present. In its simplest 
form, a PRF control assumes the form of simple vector fields that play the role of 
vocabularies for a language of behavior. For examples, the vector fields in figure 23 denote 
the behavioral vocabularies: “go to the center point”, “move right”, and “move right along a 
straight line” respectively.  
 

 

Fig. 23. Vector field-based behavioral primitives for a single agent 

Such fields can be useful in simple situations where the agent is operating in a lightly 
cluttered environment and there are few constraints on behavior.  In a realistic situation the 
environment may consist of heavy, irregular clutter that is not a priori known to the agent. 
The agent may also be required to constrain its behavior in the vicinity of the forbidden 
regions and inside the workspace. In such situations the approach of using behavioral 
primitives spatially and/or temporally foliated using a syntax that is determined by an 
algorithm or a human operator may lead to an undesired outcome. What is needed in such 
situations is the design of a goal-oriented, context sensitive, intelligent control action that 
can semantically embed the agent in the context of an environment that need not be a priori 

known. The approach adopted for PRF control synthesis is similar to the one described at 
the end of section 3. It assumes the lucidity of the control action. In this approach, state 
space is assumed to be covered with a dense set of freely-configurable control vectors. The 
structure that converts the individual micro-control actions into a group that can project the 
desired macro-control is induced on the substrate of micro-control actions using a 
decentralized, AL-based method (Figure 24).  
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Fig. 24. A PRF field generated for a geometrically complex environment 

The EHPC representing the i’th PRF control component is:  

  (13) 

so that for the gradient dynamical system:   

 (14)

where n represents the n’th instant at which condition (4) becomes valid (tn ) , Z is a finite, 
positive  integer,  and ∇  is the gradient operator.  At tn , which marks the  transition of  
Qi(tn)  from 0 to 1, first the contents of  ポ`i are adjusted according to (5). The boundary value 
problem (BVP) below is then used for synthesizing Vi:  

 (15)

It ought to be mentioned that the above BVP is not the only one that can be used for 
generating the gradient field. Many other BVPs such as the ones reported in section 4 may 
be used for such a purpose.  

5.1.2.2 The CRF control  

There are only two ways conflict could arise in a workspace occupied by more than one 
purposive, mobile agents, each of which is capable of reaching its target in the absence of 
other agents:   
1. Two or more agents may attempt to occupy the same space at the same time.  
2. Two or more agents may block each other’s way preventing the movement towards the 

targets.  
A conflict resolving control (uci) that can prevent the above two events from happening will 
enable the utilizing agent to reach its target. 
It is obvious that an agent can prevent another from moving towards it, hence occupying the 
same space it is using, by exerting a force that is radial (ucri) to its boundary (i.e. pushing 
the other agent away from it, figure 25). On the other hand, an agent can prevent others 
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from blocking its path by exerting a force that is tangential (ucti) to its boundary (i.e. moving 
out of the way, figure 25) 
 

 

Fig. 25. Radial and  Tangential components of the CRF 

The CRF component is the sum of the above two actions:  

   (16) 

The radial component of the control (ucri) may be constructed as:  

  (17)

where both the weighting function σ, and the scalar potentials Vr’s are positive, spherically 

symmetric, monotonically decreasing  functions whose values  are zero for '
i ix-x ≥ ρ . As  for 

ucti , it may be constructed as :  

  (18) 

where ∇ ⋅  is the divergence operator, and Ai is a vector potential field (Masoud &  Masoud, 

2000b) selected so that:  

 (19)

For the local tangent fields to form a continuous, global tangential action that has the 
potential to push the interacting agents out of each other’s way and prevent deadlock, all 
the individual tangent fields must circulate along the same direction (figure 26).  
 

 

Fig. 26. Same circulations guarantees a larger one circulation  along the same direction 
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The overall controller governing the i’th agent is described by the dynamical system:           

 (20) 

where uoi =∇ Voi(xi, ポ`i), and Voi is a scalar, repelling potential field that is strictly localized 

to the vicinity of the obstacles. The dynamical equation governing the behavior of the 
collective is:  

  (21) 

5.1.3 Motion analysis 
A detailed proof of the ability of the agents, individually, to reach their respective 
destinations in an unknown cluttered environment may be found in (Masoud & Masoud, 
2002; Masoud &  Masoud, 2000a). While it is not hard to see that the ability of the robots to 
avoid collision with each other and with the obstacles can be guaranteed by making the 
barrier controls (uoi , ucri) strong enough (some techniques set the strength of the control to 
infinity at the inner boundary of the robots (Khatib, 1985), their ability to converge to their 
respective destinations,  as a group,  needs careful examination.  In the following it is shown 
that the first order dynamical systems in (20) are potentially capable of driving the robots 
from anywhere in the workspace to their respective destinations provided that the 
narrowest passage in the workspace is wide enough to allow the largest two robots to pass 
at all times.  
Here, it is shown that under certain conditions the solution of the system in (21) is globally, 
asymptotically stable. The proof is dependent on a theorem by LaSalle (Theorem-3, (LaSalle, 
1960), pp. 524]. The theorem is restated below with minor changes to the notations.  
Theorem: Let  Ξ(X) be a scalar function with continuous first partials with respect to X.  
Assume that: 

 

 

 (22)

www.intechopen.com



 Self Organizing Maps - Applications and Novel Algorithm Design 

 

512 

Let E be the set of all points where 0Ξ =$ , and M be the largest invariant set in E. Then every 

solution of the system:      

  
 

 (23)

bounded for t ≥ 0 approaches M as t →∞  . 

Proposition-1: For the system in (21), ∃  a set of uct’s that can guarantee 

  
 

 (24)

provided that: 1- for the gradient dynamical systems:         

 (25)

where ξ = ρ`1 +  ρ`2 , where ρ`1 and  ρ`2 are the expanded radii of the two largest robots in 
the group. The third condition guarantees that nowhere in Ω will the geometry of the 
environment prevent the agents from resolving the conflict, and instead forces them to 
project motion along environmentally-determined degrees of freedom (Figure 27) that may 
not lend themselves to the resolution of the conflict (a restrictive environment).  
 

 

Fig. 27. Restrictive environments force a priori determined spatial movement patterns 

By guaranteeing that there always exists a local, simply-connected region that is large 
enough to enable any two robots to interact, guarantees that whatever pattern of motion 
which the agents arrive at to resolve the conflict can be realized.  
Proof: consider the following Liapunov function candidate (LFC):  

 
 

 (26)

where Vi (xi) is used to refer to '
i i i i n i nV (X ,C ,Q (t ), (t ))Γ , and  Voi (xi) refers to Voi (xi , ポ`i). It 

was shown in (Masoud & Masoud, 2002; Masoud & Masoud, 2000a) that harmonic potential 
fields are LFCs, i.e.  Vi(xi)=0 for   xi= Ci, and  Vi(xi)>0 for xi ≠ Ci.  Therefore the above sum is a 
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valid LFC, i.e.  (X) 0Ξ =  for   X= C, and   (X) 0Ξ > for X ≠ C . The time derivative of Ξ may be 

computed as:   

  (27)

The above expression is examined term by term to determine the nature of the time 
derivative of  Ξ.  It is obvious that the term:  

 
 

 (28) 

is negative definite with a zero value (stable global equilibrium) at and only at xi = Ci , 
i=1,..,L,  (X=C). As for the term:  

 
 

 (29) 

One must first notice that ∇Vo is a local field that is strictly limited to a thin narrow region 

surrounding ポ. Its value is zero everywhere else in Ω. By construction, the field lines of 

∇Voi emanate normal to ポ (in order to drive the robot away from the obstacles):  

  (30)

where n is a unit vector that is normal to ポ, and α is a smooth, positive, monotonically 
decreasing  scalar function with a value set to zero a small distance (ε) away from the 
boundary of the obstacles (xit n), i.e. α(xi)=0 for xit n > ε. The BVPs used for constructing the 
potential field associated with the PRF control (Vi) admits only two types of basic boundary 
conditions (BCs):  
1- homogeneous Neumann BCs: 

 (31)

2-homogeneous Dirichlet BCs:      i iV (x ) 1=  

which in turn makes:  
    

 (32)
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(i.e. the maximum of Vi is achieved at xi = ポ`i and  its value decreases with motion away  
from  xi = ポ`i ).  As a result the above term is in one of the two forms in (33):   

 (33) 

As for the second term of (27), it ought to be mentioned that forces surrounding the mobile 

agents (CRFs) have a local, reactive passive nature. In view of the above, this guarantees that 

no unbounded growth in the magnitude of the xi’s can occur. The worst case is for those forces 
to cause a deadlock in motion (i.e, X - C = constant, t →∞ ).  Since in the worst case scenario, 

motion will be brought to a halt (i.e, 0Ξ =$ ), also taking into consideration the negative 

definiteness of the other terms, the time derivative of Ξ is always less than or equal to zero:  

 0.Ξ ≤$   (34) 

If the i’th robot is in static equilibrium (assuming that the target was not reached), the 

following identity must hold:  

 

 

(35) 

Therefore, the set E is equal to:  

 

 

 (36)

 

(37)

The largest invariant set M⊂ E is the subset of E that satisfies the equilibrium condition on 

(21). Before computing M, let us first examine if E2 is an equilibrium set of system (21). For 

this case the system forces may be computed using the equation:  

 

 

(38) 

It should be noticed that if the second condition of (23) holds, the magnitude of the radial 

reaction forces (∇ Voi , and ∇ Vri) is determined by the self-forces (∇ Vi), and the geometric 
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configuration the robots assume during deadlock. On the other hand, the magnitude of the 

circulating forces (∇×Ai) is totally independent of the self-forces. Since the individual 

circulating forces are made to rotate in the same direction, such fields contain no 

singularities (Figure 28). In other words, the circulating forces never vanish, always 

guaranteeing that relative motion among the agents can be actuated. Hence, their strength 

can be independently set by the designer anywhere in the workspace. Since the goal is to 

eliminate E2 from M, this freedom is used to guarantee that ih 0≠ i ix C≠ , i=1,..L.  

 

 

Fig. 28. A global tangent field constructed by local tangent fields circulating in the same 
direction is free of singularities 

Since the self-forces are generated from the gradient flow of a harmonic potential, their 

magnitude in  Ω is bounded:  

 (39)

where Bi is a positive, and finite constant. Also notice that it is not possible for the 
magnitude of the passive reaction forces to exceed that of the self-forces. Therefore, a 
conservative choice of the magnitude of the circulating field that would guarantee that E2 is 
not an equilibrium set of (23) is 

  
 

 (40) 

It should also be noticed that if the third condition of (25) is not satisfied (i.e. there is not 

enough free space for the largest two robots to move at all times) and the circulating fields 

have to push against a static obstacle (a static obstacle can exert infinite reaction force), no 

realizable choice of Bi’s  would exist to satisfy condition (38).  The above treatment amounts 

to the simple physical fact that whenever the radial reaction forces of one or more robots are 

in equilibrium the circulating forces intervene to pull the system out of deadlock. If the 

above condition is satisfied, E2 is eliminated from M. Also, since the robots have convex 

geometry, no equilibrium paths can form trapping one or more robots in a limit cycle. As for 

E1, the fact that the Ti’s are taken so that D`i ⊂  Ti , guarantees that once the robots reach 

their  respective destinations, no interactions among their fields can happen (i.e uci = 0 , and  

∇ Voi = 0, i=1,..,L). Also since:  

www.intechopen.com



 Self Organizing Maps - Applications and Novel Algorithm Design 

 

516 

 ( ) 0, ,∇ = =
i i i i

V x x C  (41) 

system (21) reduces to:                   

 
 

 (42)

making the largest invariant set equal to: 

 (43) 

Therefore, according to LaSalle’s theorem, the robots will globally, asymptotically converge 
to their respective destinations, i.e.  

  (44) 

As mentioned earlier, the suggested planner is complete provided that conditions (25) and 
(40) hold. To examine why imposing the third condition of (25) is necessary for the 
suggested planner to guarantee completeness, begin by noting that behavior, in general, has 
two components: a spatial one that consists of a vector field that assigns to each point in the 
workspace a direction along which motion should proceed, and a temporal one which 
consists of a scalar field that assigns a speed to each point in the workspace. Therefore, 
completeness for a general class of workspaces implies the existence of a spatio-temporal 
pattern of behavior which, if executed by the agents, leads to the satisfaction of the goal. In 
general, tractable environments, where a solution exists provided that behavior be spatially 
and temporally manipulated, the environment may at one stage deprive the planner from 
the ability to fully manipulate spatial behavior by forcing one agent or more to follow 
predetermined spatial behavioral patterns that are set by the geometry of the workspace 
(figure 27). If such a situation occurs, the planner can only resolve the conflict by 
manipulating the temporal component of behavior  (i.e speed up or slow down the 
movements of the agents, as well as halt motion or reverse it). Since the suggested planner is 
totally reliant on manipulating spatial behavior only, it may fail if it encounters situations 
where both spatial and temporal behavior are to be manipulated. The third condition of (25)  
guarantees that the environment will never be able to prevent the planner from spatially 
manipulating behavior in order to resolve a conflict. In a recent work by the author (Masoud 
& Masoud, 2002; Masoud & Masoud, 2000a), a method for synthesizing a PRF control 
component that can jointly enforce regional avoidance, and directional constraints, may be 
used to guarantee that deadlock will not happen in environments with tight passages (see 
the last  example, figures-[39-44]). Unfortunately, this approach for avoiding deadlock may 
reduce the set of potential solutions to the multi-agent planning problem. In other words, 
the controller will no longer be complete.  

5.1.4 Results 
Several simulation experiments were conducted to explore the behavior of the suggested 
method. Each example is presented as a sequence of frames with each frame depicting the 
state of the robots at different instants of the solution. The notation used is the same as that 
in the theoretical development (i.e. Di represents the i’th robot, xi its center, and Ci the center 
of the target zone). 
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5.1.4.1 A basic example  

In figure 29 two robots sharing the same obstacle-free workspace are required to exchange 
positions. In doing so, each robot makes the simple, but naive, decision of moving along a 
straight line to the target. Despite the apparent conflict which each is heading towards, each 
robot proceeds with its plan as if the selected action is conflict-free. Once the conflict is in a 
phase that is detectable by the local sensors each robot has, corrective actions are taken by 
each to modify their behavior in order to resolve the conflict (i.e. the CRF control component 
is activated). As mentioned before, the “seed” CRF activities consist of a component to 
prevent collision, and another to move the agents out of each other’s way. Once the conflict 
is resolved, the behavior modification activities  dissipate and guidance is fully restored to 
the PRFs (figure 30).  
 

 

Fig. 29. Two robots exchanging positions 

In figure 31, three robots operating in an obstacle-free space, and initially positioned on the 
vertices of an equilateral triangle are required to proceed towards their symmetric targets. 
As in the two-robot example, each robot chooses to proceed along a straight line to its target 
ignoring the apparent conflict to which this choice leads. For this case the response of the 
robots, once a conflict is detected, exhibits an interesting emergent nature. By reducing the 
degrees of freedom of the system from six to one, the three robots act as one rotating body to 
position themselves where each can proceed unimpeded towards its target. It is interesting 
to note that without being a priori programmed to do so, the robots choose to cooperate in 
order to resolve the conflict. This cooperation is manifested as a reduction in the degrees of 
freedom of the system during the period of the conflict.  
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Fig. 30. CRF activities dissipate  after conflict  is resolved  (trajectory of D2) 

5.1.4.2 Fault tolerance  

 

      

Fig. 31. Three robots moving to their goals, all functioning  

In a centralized system the supervisory control assigns each agent the duties it has to fulfill 
for the whole group to avoid conflict. If one agent fails to fulfill its obligation towards the 
group, the whole group may be affected. In decentralized systems, conflict evasion has a 
lucid nature where conflict evasion activities dynamically shift from the unable, or 
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unwilling agents, to the remaining functional agents. Here, an agent’s role keeps adapting to 
the situation in a manner that would, to the best of the agent’s ability, enable all the agents 
(this includes the offending agents) to reach their targets. The following example examines 
this intriguing property of decentralized systems. In figure 32, a setting similar to the one in 
figure 31 is used. The only difference is that D2 refuses to participate in conflict resolution 
and, instead, follows the plan encoded by its PRF requiring it to move along a straight line 
to its target. As can be seen, the remaining two agents adjust their behavior to compensate 
for the intransigence of D2 in such a manner that allows all the agents to reach their 
destinations.  
 

 

Fig. 32. Three robots moving to their goals, D2 malfunction 

5.1.4.3 Morphogenesis of CRF activities  

The action of the controller may be mistaken with that of a controller equipped with simple 
reflexive capabilities. One should keep in mind that the simple actions of collision avoidance 
and tangent motion are nothing but the G-type of the control. The G-type control should 
only be viewed as the kernel of the global control action (P-type) which is the one actually 
controlling the systems. The, more complex, P-type control action  emerges from the seed G-
type control in a flexible, situation-responsive manner. Figure 33 shows the tangent 
circulating fields of ten agents approaching each other. As can be seen, once the agents start 
to get close to each other, the fields begin to interact and their structure begins to gradually 
mutate until it finally assumes a global form that is very different from the form of the 
individual fields.  
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Fig. 33. Context-sensitive evolution of CRF activities  

5.1.4.4: Self-organization 

In the following two examples the evolutionary, cooperative, self-organizing nature of the 
controller is clearly demonstrated. In Figure 34 two groups of four robots each are moving 
in opposite directions along a road with side rails blocking each other’s way. The goal is for 
the left group to move to the right side, and right group to move to the left side. The groups 
collectively solve the problem by forming right and left lanes and confining the motion of 
each group to one of the lanes. It should be noted that lane formation is a high-level, holistic 
organizational activity that fundamentally differs from the local capabilities with which 
each robot is originally equipped.  
 

 

Fig. 34. Two groups of robots passing  each other in a confined space 

In Figure 35 eight robots are confined in a box with very little room to move. The goal is for 
D1 to move to C9. The robots collectively reach a solution that efficiently utilizes free space. 
The robots solve the problem by keeping the center robot stationary, with the remaining 
robots rotating around it until D1 reaches its target. 
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Fig. 35. A group of robots self-organizing to allow D1 to reach C9 

5.1.4.5 CRF fields strength and deadlock prevention 

In the following example the importance of the circulating fields for conflict resolution is 
demonstrated. Here a group of eight agents each is required to hold its position, except for 
D8 which is required to move to C8. No circulating field are used in figure 36. As can be 
seen, while D8 managed to pass the first group of agents, it got trapped in a deadlock 
formation when it attempted to pass the second group. In figure 37 circulating fields are 
added. As can be seen D8 is able to reach its target, and the remaining agents maintained 
their original positions.  
 

 

Fig. 36. D1-D7 hold positions, D8 moves to C8, no Circulating fields  
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Fig. 37. D1-D7 hold positions, D8 moves to C8,  Circulating fields present 

5.1.4.6  All purposive agents in a congested space 

In Figure 38, the difficult planning task of exchanging positions in a confined area  is 
assigned to the robots. The order of the exchange is as follows D1↔ D6, D2 ↔ D5, D3 ↔D8, 

D4 ↔D7. As can be seen, the group successfully carried out the task.  
 

 

Fig. 38. A group of robots exchanging positions in a confined space 
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5.1.4.7 Environments with tight passages  

While the third condition of (25) is by no means stringent (after all, it is only reasonable for a 
two-way street to be wide enough to allow two vehicles to pass at the same time), there are, 
nevertheless, environments with tight passages that have only room for one robot at a time. 
In such a situation there are no guarantees that the multi-agent planner will function 
properly. One way to remedy this situation is to mark a tight passage as a one-way street 
(i.e. constrain motion in such passages to become unidirectional). This may be accomplished 
by using the NAHPF-based EHPC scheme in (Masoud & Masoud, 2002; Masoud & Masoud, 
2000a) for synthesizing the PRF control component of the multi-agent controller.  The 
following example illustrates the use of NAHPFs for such a purpose. 
Consider the workspace in figure 39. Two robots D1 and D2 are required to exchange 
positions. As can be seen, the passages in Ω are not wide enough for the two robots to pass 
at the same time. 
 

D1 D2

 

Fig. 39. A workspace with tight passages 

 

 

Fig. 40. PRF components  

Figure 40 shows the HPF-based PRFs for both D1 and D2. Figure 41 shows, using snapshots, 
the locations of the robots that are generated by the multi-agent controller at different 
instants of the solution. As can be seen, an unresolvable conflict arises between D1 and D2. 
Figure 42 shows the NAHPF-based PRFs for D1 and D2. Figure 43 shows the corresponding 
locations of the robots at different instants in time. As can be seen, conflict was resolved by 
marking the tight passages as one-way streets.  
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Fig. 41. Deadlock caused by a tight passage 

 

PRF-1, NAHPF

PRF-2, NAHPF

 

Fig. 42. PRF components, NAHPF-based EHPCs 

Unfortunately, using NAHPF-based EHPCs  to avoid conflict in environments with tight 
passages has some drawbacks.  Marking a passage as a one-way street leads to a loss in 
potentially realizable solutions.  Consider for example the environment in figure 44.  It is 
obvious that a solution exist to move D1 to the location of D2 and vice versa. Marking the 
tight passage as a one way street makes it impossible for D2 to move to the left. To solve the 
tight passage problem, the planner must jointly manipulate spatial and temporal behavior.  
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Fig. 43. NAHPF-PRF component can  resolve deadlock in spaces with tight passages 

 

 

Fig. 44. NAHPF-PRF could lead to a loss in potential solutions  

5.2 Individually-motivated, multi-agent, HPF-based planner 
The single agent HPF has a social nature that allows it to co-exist with other agents using a 
similar navigation procedure in the same cluttered space (a proof is also provided in section-
5.2.1).  This makes a single-agent, HPF planner a valid G-type controller (figure 45) in a 
multi-agent system.  The reason for that is: the HPF approach treats other agents as obstacles 
to be avoided. Hence the same procedure used to avoid clutter can also be used to 
accommodate the presence of the other agents.   

 

 

Fig. 45. The G-type controller 

The agent could use the basic BVP shown below (45) for generating the self-control action or 

a BVP corresponding to any of the HPF setting discussed earlier in this chapter. The 

trajectory can be easily generated by the gradient dynamical system resulting from the 

computed potential field (figure 46).   
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 (45)

 

 

Fig. 46. Potential and gradient guidance field for a goal-oriented, G-type controller 

5.2.1 Analysis: the goal-oriented case:  
In this section proofs of the ability of the goal-oriented multi-agent controller to avoid 
obstacles and steer each of its members to its  target are provided.  

Proposition: If xi(0)∈Ω , the motion steered by the gradient dynamical system in (45) will 
always remain inside Ω (i.e. xi ∩ Si≡φ  ∀ t, ∀ i) . 
Proof: Consider the part of Ω near a forbidden region (Si). Let n(xi) be a vector that is normal 
to the surface of the obstacle. Let Si’ be a region created by infinitesimally expanding the 
forbidden region Si such that Si⊂ Si’. The radial derivative of V(xi) along Si may be 
computed as:  

 
 

 (46) 

where xi’ is taken as the minimum distance between x and Si’ and ｠r is a positive differential 
element. Since by the maximum principle the value of the potential  in Ω is less than 1, and 
xi’ lies inside Ω,  the radial derivative of the potential along n(xi) is negative, i.e.  

   (47)

Since motion is steered using the negative gradient of V, the agent will be pushed away 

form Si and xi will remain inside Ω.  

Definition: Let V(X) be a smooth (at least twice differentiable), scalar function (V(X):  

RN →  R). A point Xo is called a critical point of V if the gradient vanishes at that point  

(∇V(Xo)=0); otherwise, Xo is regular. A critical point is Morse, if its Hessian matrix (H(Xo)) 

is nonsingular. V(X) is Morse if all its critical points are Morse (Milnor, 1963). 

Proposition:  If V(X) is a harmonic function defined in an N-dimensional space (RN) on an 
open set Ω, then the Hessian matrix at every critical point of V is nonsingular, i.e. V is Morse.  
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Proof: There are two properties of harmonic functions that are used in the proof:  

1. a harmonic function (V(X)) defined on an open set Ω contains no maxima or minima, 
local or global in Ω. An extrema of V(X) can only occur at the boundary of Ω,  

2. if V(X) is constant in any open subset of Ω, then it is constant for all Ω.  
Other properties of harmonic functions may be found in (Axler  et al, 1992).  
Let Xo be a critical point of V(X) inside Ω. Since no maxima or minima of V exist inside Ω, 

Xo has to be a saddle point. Let V(X) be represented in the neighborhood of Xo using a 

second order Taylor series expansion: 

  (48) 

Since Xo is a critical point of V, we have:  

  (49) 

Notice that adding or subtracting a constant from a harmonic function yields another 

harmonic function , i.e. V` is also harmonic. Using eigenvalue decomposition:  

  (50)

where U is an orthonormal matrix of eigenvectors, λ’s are the eigenvalues of H(Xo), and 

ξ=[ξ1 ξ2 ..ξN]T = U(X-Xo). Since V` is harmonic, it cannot be zero on any open subset Ω; 

otherwise, it will be zero for all Ω, which is not the case. This can only be true if and only if 

all the λi’s are nonzero. In other words, the Hessian of V at a critical point Xo is nonsingular. 

This makes the harmonic function V also a Morse function.  

Proposition: If the G-type controller of the multi-agent system in (1) is selected as the HPF 

planner in (45) then every agent is guaranteed to converge to the target (Ti),  

  (51)

Proof: Since Vi(xi) is shown to be a valid Liapunov function candidate (LFC) (Vidyasagar, 
1987). i.e.  

  (52)
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Their summation is also an LFC:  

   (53) 

where X=[x1 x2 ... xN]t, and T=[T1 T2 ...TN]t. The time derivative of V(X) is:    

  

 

(54)

Since harmonic functions are Morse, the stable equilibrium, target points (Ti’s) are the only 

points in the minimum invariant set of the system. By applying the LaSalle invariance 

principle (LaSalle, 1960) it can be easily shown that each agent will converge to its respective 

target.  

5.2.2 Results 
The ability of agents equipped with an HPF-based, G-type controller to cooperatively solve 

the planning problem while treating space as a scarce resource is tested. Five agents 

positioned opposite to each other are required to move to a specified target from a starting 

point selected so that a high probability of conflict scenario is established. In figure 47 the 

five agents utilizing a full communication graph attempt to solve the planning problem they 

are faced with. As can be seen, all agents reach their destination safely maintaining at all 

time a nonzero, minimum inter-agent distance (DM). 

 

     

Fig. 47. Goal-oriented mode, full  communication: a. trajectories, b. minimum distance 

In figure 48 the agents attempt to deal with the same situation. However, this time instead of 

using a full communication graph, each agent only communicates its position to its closest 
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neighbor. Again the agents were able to safely resolve the conflict and arrive at their 

destination. 

 

       

Fig. 48. Goal-oriented mode, nearest neighbor  communication: a. trajectories, b. minimum 
distance      

5.3 Multi-agent harmonic separation maintenance planner  
Sometimes a group of agents are required to operate in a flexible formation mode where the 
members distribute themselves within a confine whose shape and motion are determined by  
the leader agent (figure 49). The overall trajectory of the agent is constructed by 
superimposing the trajectory supplied by the leader on the trajectory the agents generate to 
avoid collision with the components of the environment and stay within the specified 
geometric confines.  

 

 

Fig. 49. Agents in separation mode  

Harmonic potential fields can provide the G-Type controller for a multi-agent formation 
separation mode controller. Unlike the goal-oriented mode where the target point is given 
and the group need only to lay a conflict-free path to it, the separation mode requires the 
group to jointly generate the target point for each agent as well as lay a safe trajectory to that 
point.  The HPF approach may still be used to generate a self-controller for this case. The 
BVP generating the potential is similar to the one in (45) with no target point having a 
potential preset to zero. The control action that dynamically distribute the agent in specified 
space may be derived from the BVP:  
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 (55) 

The above BVP may appear to be of little use since by the maximum principle, the solution 
of V in Ω is a constant.  This means that the gradient field degenerates everywhere in Ω. The 
potential field from an environment similar to the one in figure 46 is shown in figure 50. 

 

 

Fig. 50. Potential field degenerates in the formation case 

A careful examination of the solution of (55) reveals that only the magnitude of the gradient 
field (A(xi)) degenerates while the  phase field (Q(xi)) remains stable and computable. The 
component of the BVP in (55) that corresponds to the phase field may be derived as follows:   

 (56) 

The gradient of the magnitude of ∇V in (4) drops to an infinitesimally small positive 

constant ε while A converges to unity. In this case the laplacian becomes:  

 
 

 (57) 

Since the potential is restricted to a constant value at Si , Q will have no component tangent 
to Si (i.e. n×Q(xi)=0, xi∈Si), where n is a unit vector normal to Si. Therefore, the boundary 
value problem that may be used to generate Q is:          

  (58) 

where α is a positive constant. The field, Q, generated by solving the above BVP is 

observed to possess field lines that emanate normal to Si and move into Ω meeting at 
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critical points inside the region (figure 51). Among other things these points show the 

tendency to form  far from clutter and other agents occupying Ω. This makes it possible to 

utilize Q as the G-type separation control. As can be seen stable equilibrium points 

spontaneously form equally far from the obstacles in the environment. Figure 52 shows 

the separation field for another environment. The reason equilibrium points form inside Ω 

has to do with the fact that all the flows at the boundary are forced to be inside Ω, the 
continuity condition ( ⋅∇ Q=0) will fail at some areas in Ω. This results in stable and 

unstable equilibrium points being formed.  A Quantitative study of these points in terms 

of how far from the closest object they will form is expected to be mathematically 

involved and will be kept for future work. However, a qualitative examination (figure 53) 

show that these points are comparable to maximizing the minimum distance from the 

obstacles. 

 

Fig. 51. Separation G-type control, harmonic phase field and gradient guidance field 

 

 

Fig. 52. Guidance field, G-type controller, separation mode 
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Fig. 53. Workspace geometry versus stable equilibrium points, separation mode 

5.3.1 Results 
The planner is tested in the separation mode for both full communication graph (figure 54) 
and nearest neighbor communication (figure 55).  The five agents in the previous example 
were not provided with target points. As can be seen, in both cases, the agents managed to 
generate goal points that places them in a well-separated final configuration (better results 
were obtained in the case of the full communication graph). In addition to that, the 
decentralized controller was able to safely drive the agents from their initial positions to 
their respective target points, practically achieving a strictly increasing time - minimum 
separation distance profile. 
 

 
 

 

Fig. 54. Separation mode, full communication:  final constellation, trajectories, minimum 
distance 
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Fig. 55. Separation mode, nearest neighbour communication:  final constellation, trajectories, 
minimum distance 

In figure 56, the computational effort needed by the planner is examined in terms of the time 
needed to complete the steering process in the separation mode. The number of agents (Na) 
is varied from two to five and time needed to complete the steering process is recorded for 
each. Figure 16 shows the time needed to perform the steering process versus the number of 
agents. The time is normalized using that of the case Na=2. As can be seen, the 
computational time linearly grows with the number of agents. A full communication graph 
is used.      
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Fig. 56. Separation mode, final constellation versus number of agents  

 

 

Fig. 57. Simulation time versus number of agents 

In figure 58 the performance of the controller is examined in the presence of clutter for the 
separation mode. It is observed that all the attributes of the controller in the free space case 
were preserved when clutter is present. The agents distributed themselves in a final 
configuration that seems to maximize the minimum inter-agent distance as well as the 
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distance to the nearest obstacle. Also, a strictly increasing with time minimum separation 
distance profile is observed.  
 

 

 

Fig. 58. Separation mode in the presence of clutter: final constellation,  trajectories, minimum 
distance 

6. Conclusions 

This chapter demonstrates an important feature of harmonic potential field-based planners, 
that is: the social nature of such planners. This feature allows an agent steered  by such a 
method to share, in a conflict-free manner, the same space with other agents using the same 
planner. Constructing a multi-agent controller in this manner has many advantages.  While 
the system can operate in an asynchronous, decentralized mode, it can also operate in a 
centralized, synchronous mode that has a computational effort linear in the number of 
agents being controlled. The controller does exhibit an excellent ability to self-organize as 
well as a noncommittal planning action. This enables it to online generate the additional 
information needed to execute a successful action. It is also noted that the controller exhibits 
intelligent dispatching capabilities that enables it to redistribute the task of conflict evasion 
on the properly functioning agents. This property provides significant robustness in the case 
of sensor, or actuator failure. The controller employs an idea from the artificial life approach 
to behavior synthesis that is of central importance for the controller to achieve the above 
capabilities: i.e. the ability to project global useful activities through simple, local interacting 
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activities without the agents, necessarily, being aware of the generated global behavior. The 
artificial life G-type and P-type control modes do support such a behavior synthesis 
paradigm and may be considered as the backbone for building effective decentralized 
controllers. The HPF-based examples provided in this chapter are only a demonstration of 
the capabilities of this approach. The author believes that an HPF-based multi-agent 
controller does serve as a good basis for developing other multi-agent controllers that can 
effectively tackle challenging problems in many other areas such as decentralized routing in 
an ad hoc network (figure 59) that was suggested by (Masoud, 2008).   
 

 

Fig. 59. Discrete harmonic potential field for decentralized routing on a graph 
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