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1. Introduction  

The technology of high throughput screening is nowadays widely available in life science 
especially in the fields of molecular diagnosis and drug discovery. This is due to the 
establishment of microarray procedure, which deals with huge number of genes at one time. 
Cluster analysis is usually performed on the results of DNA microarray experiments. 
However, the routine procedure of data mining dealing with the huge number of signal 
information obtained from microarray is not fixed yet. We can find various way of 
clustering in hierarchical and non-hierarchical methods, which are applied for the analyses. 
The most popular ones appear non-hierarchical clustering such as k-means (MacQueen, 
1965), partitioning around medoids (Kaufman and Rousseeuw, 1990) and cluster affinity 
search technique (Ben-Dor et al., 1999). 
We have employed spherical self organizing map (sSOM), which is also a non-hierarchical 
clustering, to cluster genes by gene expression profiles of cells and tissues (Tuoya et al., 
2008). Analyzing various types of carcinoma cells and normal tissues, we could find 
interesting cell surface molecules, which should serve as the molecular markers. This 
procedure, which we are demonstrating, is rather new to the data analyses of gene 
clustering from the gene expression profiles obtained from DNA microarray technique. 
Flexible arrangement of the data obtained allows us to cluster cells and tissues as well as 
genes to find definitely fantastic direction of further advancement of study.  
Furthermore, we applied sSOM to classify bioactive chemical compounds by their 
mechanism of action (MOA), which should enable us virtual screening in silico (Reddy et 
al., 2007). In recent years, many intriguing methods for virtual screening have been 
developed in this field (Gasteiger et al., 2003; Melville et al., 2009). Especially, ligand-based 
method is suitable for selecting drug candidates from enormous compounds library because 
it simply requires computational resources, which are less expensive. Although SOM has 
partly been used as a tool of ligand-based methods to classify compounds by their 
properties in chemoinformatics, spherical SOM has not been used in chemoinformatics to 
the best of our knowledge (Brüstle et al., 2002; Schneider & Nettekoven, 2003; Schneider & 
Schneider, 2003; Wang et al., 2005; Kaiser et al., 2007; Renner et al., 2007; Li & Gramatica, 
2010). We propose here the extended application of sSOM to classify bioactive compounds 
by their MOA together with their structural information. In the future this procedure should 
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be extremely helpful in the field of drug discovery as well as those of molecular biology and 
oncology.  
This chapter is dedicated to introduce our concept of the application of sSOM procedure. 

2. Materials, methods and tools 

2.1 Cell lines and cell culture 
Human breast cancer derived cell lines Hs-578T, MCF-7, MDA-MB-134, MDA-MB-231, SK-
BR-3, T-47D and ZR-75-1 were obtained from American Type Culture Collection (ATCC, 
VA). Hs-578T cells were cultured in DMEM containing 10 % fetal bovine serum (FBS),  10 
µg/mL insulin and 2 mM L-glutamine. MCF-7 cells were cultured in MEM containing 10 % 
FBS, 10 µg/mL insulin and 2 mM L-glutamine. MDA-MB-134 cells were cultured in 
Leibovitz-15 containing 10 % FBS, 2 mM L-glutamine buffered with 10 mM HEPES. MDA-
MB-231 cells were cultured in DMEM containing 10 % FBS and 2 mM L-glutamine. SK-BR-3 
cells were cultured in RPMI 1640 containing 20 % FBS and 2 mM L-glutamine. T-47D cells 
cultured in RPMI 1640 containing 10 % FBS, 2 mM L-glutamine, 10 µg/mL insulin and  30 
ng/mL EGF. ZR-75-1 cells were cultured in RPMI 1640 containing 10 % FBS. All cells were 
maintained at 37 ˚C in a humidified 5 % CO2 atmosphere except MDA-MB-134 cells, which 
were maintained in 100 % air.  

2.2 Preparation of total RNA and cDNA synthesis 
Total RNA was extracted from the cells used in this study. Cells were harvested at a 
confluence of 80% for preparation using RNeasy Mini kits (Qiagen), following the 
manufacturer’s instructions. Total RNA from human normal breast and mouse normal 
tissues was purchased from Stratagene (CA). RNA integrity and purity were assessed by 
OD260/280 measurements and by the ratio of 28S and 18S rRNA with Experion system 
(BioRad Labs, VA). The total RNA was further treated with DNase and purified. The 
integrity of template RNA was assessed by OD260/280 measurements. Twenty micrograms of 
total RNA was used to synthesize cDNA in the presence of aminoalkyl-dUTP. To monitor 
the efficiency of cDNA synthesis and hybridization control RNAs were added in the 
reaction as describe previously (Tuoya et al., 2008; Abou-Sharieha et al. 2009). Cy3-labeled 
cDNAs were prepared by indirect labeling method adapted from the Brown Web site 
(http://cmgm.stanford.edu/pbrown/protocols). 

2.3 Microarray analysis 
We originally proposed DNA microarray, which focused cell membrane-bound proteins to 
identify cell surface marker specific to the cells or tissues of interest (Tuoya et al., 2008; 
Abou-Sharieha et al. 2009). Two different microarrays were designed to contain 1,795 
oligonucleotide probes corresponding to human genes and 1,405 corresponding to mouse 
genes, respectively. These genes were limited to those coding membrane-bound proteins so 
as to cover cell surface proteins. To avoid the effect of alternative splicing, the coding 
sequence for the membrane-bound region or GPI-anchor modified region was focused to 
design the oligonucleotide probes. The probes were conjugated on the slide glass coated 
with diamond-like carbon as described previously (Tuoya et al., 2005). 
The Cy3-labeled cDNA synthesized above was hybridized to the cell surface marker DNA 
microarray in 5x SSC/0.5 % SDS solution at 55 °C for 15 h. After washing, arrays were 
scanned on a FLA8000 scanner (Fuji Film, Japan). Intensity for each spot of the array was 
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captured by GenePix® Pro5.1 image analysis software (Axon Instrument). The fluorescent 
intensity of each spot referred as ‘‘relative fluorescent intensity (RFI)’’, which represented 
the expression level of each gene. Gene expression levels were compared to one another by 
RFI value to identify differentially expressed genes. 

2.4 Data filtering in breast cancer cell  
In order to eliminate genes that did not change significantly between cancer cell lines and 
normal tissue, each gene was given a score S by a formula: 

CS N C V= − −  

, where N, C and VC denote the expression level of the gene in normal breast, the average of 
the expression levels of the gene in the seven cancer cell lines and the standard deviation of 
the gene expression level in the seven cancer cell lines, respectively. Genes were eliminated 
from further consideration when S<0 or S=0, since only the genes with a score greater than a 
threshold (i.e., zero) are deemed potentially significant (Tuoya et al., 2008).  

2.5 sSOM analysis of gene expression 
The expression levels of each gene were normalized among the breast cancer cell lines and 
normal breast tissue and among mouse normal tissues. First, the maximal RFI value of each 
gene was taken as 1, the minimum RFI was taken as 0 and other RFI values were linearly 
calculated into the values between 0 and 1. Secondly the average expression levels of each 
gene were calculated and each average was divided by the maximal average value. The 
resultant values were further multiplied to each normalized value calculated above. The 
normalized data were clustered and displayed by sSOM software Cluster Blossom (Ver. 
1.0.2, SOM Japan Co-Ltd., http://www.somj.com/). The training of Cluster Blossom were 
performed 50 times. Other parameters were automatically set by the software. Then the 
dendrograms were drawn from the final map after training by group average method with a 
glyph value 1.0. 

2.6 Datasets for chemicals 
The dataset analyzed in this study was taken from the previous report, in which 131 
compounds were classified by the self organizing map with screening data against the 60 
human cancer cell lines as input vectors (van Osdol et al., 1994). All these compounds 
structure data were downloaded from NCI databases by using Enhanced NCI Database 
Browser (http://129.43.27.140/ncidb2/). The names of compounds analyzed in this study 
are listed in Table 2 with NSC Nos. and MOA. 

2.7 Descriptors of chemicals 
All downloaded structures were submitted to the chemical descriptor calculation software, 
CDK Descriptor Calculator GUI (ver. 1.0.5; http://rguha.net/code/java/cdkdesc.html) to 
calculate 283 theoretical descriptors, including molecular descriptors, bond descriptors and 
atom descriptors (Steinbeck et al., 2003). 

2.8 Descriptor scaling and selection 
All above calculated descriptors were normalized by each row that they have mean 0 and 
variance 1 by the function of “normalize” in the “som package" of statistical software R 
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(Windows Ver. 2.9.0; “Self-Organizing Map” R package Version 0.3-4, URL http://cran.r-
project.org/; R Development Core Team, 2007, http://www.R-project.org/). All errors were 
deleted from this dataset and normalized dataset (116 compounds-by-215 descriptors 
matrix) was obtained. 

2.9 sSOM analysis of chemicals 
Clustering were performed with the software Cluster Blossom (Ver. 1.0.3, SOM Japan Co-
Ltd.). The trained sSOM was developed using the dataset above mentioned as input vectors. 
The same training parameters of Cluster Blossom  were used as described above. Similarly, 
the dendrogram was drawn from the trained map as described above. The accuracy of 
clustering  A was calculated as following. 

A= NtGi / NGi x100 

where NtGi is the number of compounds correctly assigned  in cluster Gi and NGi  is the 
number of compounds assigned in cluster Gi  where i depicts the number of cluster. 

3. Results and discussion 

3.1 sSOM clustering of human breast cancer cell lines 
We performed DNA microarray gene expression analysis in order to screen genes 
commonly and specifically expressed in the seven cell lines derived from breast cancer 
when compared to normal breast. As the result of data filtering, 840 genes were found to 
suffice the criteria described in “2.4 Data filtering in breast cancer cell”. The expression 
levels of these genes were then normalized and clustered by sSOM. The gene expression 
profiles were visualized on the sphere surface map and the dendrogram indicating 
themselves classified by the origin of the cells (Fig. 1). It is interesting to note that Hs-578T 
and MDA-MB-231 cells, which are derived from basal-like breast cancer known to have 
poor prognosis, are clustered in the same group (Ray et al., 2010). T-47D, ZR-75-1, MCF-7 
and MDA-MB-134 cells, which are derived from luminal breast cancer, are well known to 
have good prognosis. Since SK-BR-3 cells are Her2 positive, which is an efficient target for 
the cancer therapy, and derived from breast cancer of medium level of prognosis. Thus, the 
gene expression profiles were successfully visualized by the sSOM clustering, suggesting 
the clusters of prognosis. From the patterns, cells derived from luminal breast cancer appear 
to be clustered into three groups of “close to normal”, “medium” and “poorer”. Namely, it 
might be possible to diagnose SK-BR-3 cells as “close to normal” while MDA-MB-134 as 
poorer than the other luminal derived cells.  
In order to find genes highly expressed in all the seven cancer cell lines, sSOM was performed 
with an assumptive gene inserted into the dataset of the 840 genes. The assumptive gene stood 
for an ideal point IP, which was supposed to be expressed in all the breast cancer cell lines 
analyzed in this study but not in the normal breast tissue, so that the genes clustered close to 
IP should be potential diagnostic markers of breast cancer. In the result of sSOM clustering, IP 
was mapped in the red part of the pattern in all the seven cancer cell lines (Fig. 1) but blue in 
normal breast tissue. Since this mapped position of IP is consistent with the assumption, the 
genes close to IP should be selected as candidates of cancer-specific genes on the sSOM. Each 
spot on the surface of sSOM contains a group of clustered genes (Fig. 2). The spots mapped 
close to IP are shown in Fig. 2 and the candidate genes clustered in each spot are listed in Table 
1. It is noteworthy that ErbB3 and ROBO2 have been nominated as potential diagnostic 
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markers here and some reports are found describing their relationships with breast cancers 
(Lemoine et al., 1992; Gasparini, 1994; Quinn et al. 1994 Travis et al., 1996; Naidu et al., 1998; 
Fogel et al., 1999; Holbro et al., 2003; Barnes et al., 2005; Schabath et al., 2006; Shiau et al. 2008). 
MUC1 is also known as a diagnostic marker in various cancers including breast cancers (Singh 
et al., 2008). Considering the results that contain these potential candidates, the other genes 
listed in Table 1 could be a potential candidate for the diagnostic marker of breast cancers still 
unknown. 
 

 

Fig. 1. The gene expression profiles analyzed by sSOM for cancer derived cell lines and 
normal breast. The normalized data set was clustered and visualized by Cluster Blossom. 
Each position of genes is fixed on the global surface. The colors indicate the expression level 
for each gene. Red, high; yellow, slightly high; white, median; light blue, slightly low; deep 
blue, low. See text for the names of cell lines and diagnostic levels. The alignment of cells is 
the result of sSOM clustering, which was drawn by dendrogram 
 

Gene No. 
GenBank 

Accession No.
Gene Name 

1586 NM_032038 spinster-like protein 

1423 NM_016372 seven transmembrane domain orphan receptor 

1784 AH006947 vitelliform macular dystrophy protein 2 

1777 M29366 v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (ErbB3) 

1682 NM_012471 transient receptor potential cation channel, subfamily C, member 5 

734 NM_002099 glycophorin A (includes MN blood group) 

1399 AF040991 roundabout, axon guidance receptor, homolog 2 (ROBO2) 

163 NM_001188 BCL2-antagonist/killer 1 

247 NM_001218 carbonic anhydrase XII 

1699 NM_003271 transmembrane 4 superfamily member 7 

241 NM_022131 calsyntenin 2 

1015 NM_002456 mucin 1, transmembrane (MUC1) 

Table 1. Candidate genes for the potential diagnostic marker for breast cancer as picked up 
from genes commonly expressed in all the cancer derived cells studied in this paper 
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Fig. 2. The locations of ideal point IP (white spot) clustered by sSOM. This global surface is 
the same with those in Fig. 1 without colors. Each gray spot on the surface of sSOM contains 
a group of clustered genes, which were depicted with the gene numbers in red. The genes 
clustered close to IP are summarized in Table 1 

3.2 sSOM clustering of mouse normal tissues 
In this section, gene expression profiles of normal tissues in mouse were clustered by sSOM. 
Since the breast cancer cell lines were successfully clustered, we expected normal tissues 
should be also clustered with the features of each tissue. Clustering of brain, colon, heart, 
kidney, liver, lung, muscle, small intestine, spleen, stomach, testis and thymus was 
performed and the resultant gene expression profiles were aligned on the anatomical sketch 
of mouse body (Fig. 3). The relationship between each tissue was shown in a global map 
obtained by sSOM (Fig. 4). In this map, each distance between the nodes was not adjusted to 
a sphere surface (glyph =0) but reflected the distance when calculated by SOM (glyph =1.0) 
resulting in a meteoritic form of map.  
The alignment of gene expression profiles around the body sketch reveals some similarities 
between the tissues. The similarity of the profiles between colon and intestine appears 
consistent. The similarity of profiles between spleen and thymus also sounds reasonable 
because of the deep relationship of these tissues with immunological system. The similarity 
is also found in heart, liver and lung. Although it is difficult to explain their close 
relationship from the embryonic development of tissues in mouse, it might be important to 
try to make viewpoints shared in these three tissues but not in other tissues  as suggested by 
the sSOM clustering. Further application of sSOM on the gene expression profiles 
comparing with normal tissues and diseased tissues would lead to a challenging 
opportunity to find novel diagnostic markers in the future. 
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Fig. 3. Gene expression profiles of mouse normal tissues clustered by sSOM. The normalized 
data set was clustered and visualized by Cluster Blossom. Each position of genes is fixed on 
the global surface. See Fig. 1 for the colors indicating the expression level for each gene. 
Views of clustered global map from front side (A) and back side (B) 
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Fig. 4. Meteoritic map clustering normal mouse tissues (A) and dendrogram of clustered 
normal mouse tissues (B). Each distance between the nodes were calculated with glyph 
value 1.0. (A) Views from three different sides of the map. Tissues depicted in red letters are 
on the front side and those in orange letters are on the other side. The farther the 
relationship between the tissues, the darker the shadow is. (B) Dendrogram was calculated 
from the results of clustering by sSOM 

3.3 sSOM clustering of bioactive chemicals 
The bioactive compounds previously screened for anti-cancer reagents were evaluated for 
clustering in this study. The compounds were clustered by sSOM. The dendrogram was 
drawn based on the trained map by group average method to obtain 9 clusters of compounds, 
which were colored by their clusters on the surface of global map (Fig. 5). The compounds in 
the dataset are summarized in Table 2 with their assigned MOA and the cluster groups. 
Table 3 shows the clustering results of compounds. The accuracy of clustering was overall 
86.2%, ranging from 60 to 100% in each cluster. The alkylating agents, AC, A7, and AI, are 
misclassified relatively in higher frequency than other agents. It is interesting to note the 
anti-DNA agents, DI, DP, and DR, and the inhibitors of nucleotide synthesis, RI, RO, and R, 
are clustered into the same group. This might be the result due to the character of these 
agents associating with the enzymes associated with nucleotide metabolisms. 
In this study, 16 compounds (ID 5, 17, 29, 33, 44, 46, 52, 64, 81, 86, 88, 92, 93, 96, 99) were 
misclassified. These results suggest that they might have another activity other than those 
experimentally defined because small organic compounds frequently exhibit 
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polypharmacology. In fact, trimetrexate (ID 88) and DUP785 (ID 96) might have 
topoisomerase inhibiting activity because both of them have resemble planar heteroaromatic 
ring, which is the feature of topoisomerase inhibitor. Additionally, mitzolamide (ID 89) has 
also heteroaromatic ring implying DNA interacting ability. The chemical structures of these 
three compounds are shown in Fig. 6. Currently, exploring new targets and activity of 
already approved drugs is fascinating strategy to develop novel therapeutic drugs with less 
risks of the clinical trial (Keiser et al., 2009). Although further investigation is needed, sSOM 
would be a comprehensive and useful tool to classify the compounds and to find novel 
activities in themselves.  
 

ID NSC No. Drug Name MOA cluster 

1 NSC740 Methotrexate RF G1 

2 NSC750 Busulfan A7 G6 

3 NSC752 Thioguanine DI G7 

4 NSC755 Thiopurine DI G7 

5 NSC757 Colchicine TU G9 

6 NSC762 Mechlorethamine A7 G6 

7 NSC1895 Guanazole DR G7 

8 NSC3088 Chlorambucil A7 G6 

9 NSC6396 Thiotepa A7 G7 

10 NSC8806 Melphalan A7 G6 

11 NSC9706 Triethylenemelamine A7 G7 

12 NSC19893 Fluprouracil R G7 

13 NSC25154 Pipobroman A7 G6 

14 NSC26980 Mitomycin A2 G7 

15 NSC27640 Floxuridine DP G7 

16 NSC32065 Hydroxyurea DR G7 

17 NSC33410 Colchicine derivative TU G9 

18 NSC34462 Uracil mustard A7 G6 

19 NSC49842 Vinblastine sulfate TU G3 

20 NSC51143 Pyrazoloimidazole DR G7 

21 NSC56410 Porfiromycin A2 G7 

22 NSC63878 Cytarabine DP G7 

23 NSC67574 Vincristine sulfate TU G3 

24 NSC71261 beta-2'-Deoxythioguanosine DI G7 

25 NSC71851 alpha-2'-Deoxythioguanosine DI G7 

26 NSC73754 Fluorodopan A7 G6 

27 NSC79037 Lomustine AC G6 

28 NSC82151 Daunorubicin T2 G2 
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29 NSC83265 Trityl cysteine TU G9 

30 NSC94600 Camptothecin T1 G9 

31 NSC95382 Camptothecin derivative T1 G9 

32 NSC95441 Semustine AC G6 

33 NSC95466 PCNU AC G7 

34 NSC95678 3-Hydroxypicolinealdehyde thiosemicarbazone DR G7 

35 NSC100880 Camptothecin derivative T1 G9 

36 NSC102627 Yoshi-864 A7 G6 

37 NSC102816 Azacytidine RO G7 

38 NSC107124 Camptothecin derivative T1 G9 

39 NSC107392 5-Hydroxypicolinaldehyde thiosemicarbazone DR G7 

40 NSC118994 Inosine glycodialdehyde DR G7 

41 NSC122819 Teniposide T2 G2 

42 NSC123127 Doxorubicin T2 G2 

43 NSC125973 Paclitaxel derivative TU G3 

44 NSC126771 Dichloroallyl lawsone RO G6 

45 NSC127716 5-Aza-2'-deoxycytidine DI G7 

46 NSC132313 Dianhydrogalactitol A7 G7 

47 NSC132483 Aminopterin RF G1 

48 NSC134033 Aminopterine derivative RF G1 

49 NSC135758 piperazinedione A7 G6 

50 NSC139105 Baker's soluble antifolate RF G5 

51 NSC141540 Etoposide T2 G2 

52 NSC142982 Hycanthone AI G9 

53 NSC143095 Pyrazofurin RO G7 

54 NSC145668 Cyclocytidine DP G7 

55 NSC14895 Ftorafur R G7 

56 NSC153353 L-Alanosine RO G7 

57 NSC153858 Maytansine TU G5 

58 NSC163501 Acivicin RI G7 

59 NSC164011 Zorubicin T2 G2 

60 NSC167780 Asaley A7 G5 

61 NSC172112 Spiromustine A7 G6 

62 NSC174121 Methotrexate derivative RF G1 

63 NSC176323 Camptothecin derivative T1 G9 

64 NSC178248 Chlorozotocin AC G7 
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65 NSC182986 Diaziridinylbenzoquinone A7 G7 

66 NSC184692 Aminopterin derivative RF G1 

67 NSC224131 
N-(phosphonoacetyl-L-aspartic acid, 
tetrasodium salt) 

RO G7 

68 NSC249910 Camptothecin derivative T1 G9 

69 NSC249992 Amsacrine T2 G9 

70 NSC264880 5,6-Dihydro-5-azacytidine RO G7 

71 NSC267469 Deoxydoxorubicin T2 G2 

72 NSC268242 N,N-Dibenzyl daunomycin T2 G2 

73 NSC269148 Menogaril T2 G2 

74 NSC295500 Camptothecin derivative T1 G9 

75 NSC295501 Camptothecin derivative T1 G9 

76 NSC296934 Teroxirone A7 G7 

77 NSC301739 Mitoxantrone T2 G2 

78 NSC303812 Aphidicolin glycinate DP G4 

79 NSC308847 Amonafide T2 G9 

80 NSC329680 Hepsulfam A7 G6 

81 NSC330500 Geldanamycin DP G9 

82 NSC332598 Rhizoxin TU G5 

83 NSC337766 Bisantrene T2 G9 

84 NSC338947 Clomesone AC G6 

85 NSC344007 Piperazine alkylator A7 G6 

86 NSC348948 Cyclodisone AC G7 

87 NSC349174 Oxanthrazole T2 G2 

88 NSC352122 Trimetrexate RF G9 

89 NSC353451 Mitozolamide AC G7 

90 NSC354646 Morpholino adriamycin T2 G2 

91 NSC355644 Anthrapyrazole derivative T2 G2 

92 NSC357704 Cyanomorpholinodoxorubicin AI G2 

93 NSC361792 Thiocolchicine TU G9 

94 NSC364830 Camptothecin derivative T1 G9 

95 NSC366140 Pyrazoloacridine T2 G9 

96 NSC368390 DUP785 (brequinar) RO G9 

97 NSC374028 Camptothecin derivative T1 G9 

98 NSC376128 Dolastatin 10 TU G5 

99 NSC406042 Allocolchicine TU G9 

100 NSC409962 Carmustine AC G6 
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101 NSC603071 Camptothecin derivative T1 G9 

102 NSC606172 Camptothecin derivative T1 G9 

103 NSC606173 Camptothecin derivative T1 G9 

104 NSC606497 Camptothecin derivative T1 G9 

105 NSC606499 Camptothecin derivative T1 G9 

106 NSC606985 Camptothecin derivative T1 G9 

107 NSC608832 Paclitaxel derivative TU G3 

108 NSC610456 Camptothecin derivative T1 G9 

109 NSC610457 Camptothecin derivative T1 G9 

110 NSC610458 Camptothecin derivative T1 G9 

111 NSC610459 Camptothecin derivative T1 G9 

112 NSC618939 Camptothecin derivative T1 G9 

113 NSC623017 an. Antifol II RF G1 

114 NSC629971 Camptothecin derivative T1 G9 

115 NSC633713 an. Antifol II RF G1 

116 NSC643833 Camptothecin derivative T1 G9 

Table 2. Compounds in the dataset and the result of clustering. Abbreviations in MOA are as 
following. DNA alkylating agents: A2, alkylating at N-2 position of guanine; AC, alkyl 
transferase-dependent cross-linkers; A7, alkylating at N-7 position of guanine; AI, DNA 
intercalators. Anti-DNA agents: DI, incorporated; DP, polymerase inhibitors; DR, 
ribonuclease reductase inhibitors. Nucleotide synthesis inhibitors: RF, antifolates; RI, 
irreversible inhibitors; RO, anti other precursors; R, unknown locus of inhibition. 
Topoisomerase inhibitor: T1, topoisomerase I inhibitors; T2, topoisomerase II inhibitors. 
Tubulin-active antimitotic agents: TU 

 

cluster group map color MOA Accuracy (%) 

G1 blue RF 100 

G2 yellow T2 92 

G3 gray TU 100 

G4 green DP 100 

G5 pink TU 60 

G6 cyan AC, A7 94 

G7 yellowish green DI, DP, DR, RI, RO, R 82 

G8 white A2, A7 100 

G9 red T1, T2 75 

Table 3. Summary of clustering compounds in this study. See Table 2 for the abbreviations 
for MOA. Accuracy was calculated as described in “2.9 sSOM analysis of Chemicals“ 
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Fig. 5. Projections of clustered bioactive compounds by sSOM. Cluster colors: G1, blue; G2, 
yellow; G3, gray; G4, green; G5, pink; G6, cyan; G7, yellowish green; G8, white; G9, red. 
Numbers at the nodes indicate the ID of compounds. Two views on a single global map are 
shown from the opposite directions 
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Fig. 6. Chemical structures of trimetrexate (ID 88), DUP 785 (ID 96), and mitozolamide (ID 
89) 

4. Conclusions 

In order to characterize cells and tissues, gene expression profiling is one of the most 
popular procedures nowadays. Through these procedures, identification of cell surface 
markers specific to some cells or tissues is a key for diagnosing and molecular targeting.  
DNA microarray is a high-throughput technology believed to be a powerful tool to find 
genes differentially expressed in the cells or tissues. Although it can provide critically 
important and useful information even from one experiment, the amount of data is usually 
too large to be handled. Therefore, highly sophisticated software is expected to support to 
transform the multidimensional datasets into simple dimensions or glyphs. For example, 
visual cues such as shape and color, which make it comprehensive for researchers to 
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recognize and analyze the patterns hidden in the datasets. Here we successfully 
demonstrated cell surface marker analyses using our DNA microarray coupled with novel 
sSOM clustering procedure. The cell surface markers, which are common and specific to 
cancer derived cells, are proposed in this study and further assessment is now underway. 
Here we have also examined sSOM for the classification of chemical compounds. sSOM 
successfully clustered 116 anti-cancer agents into 9 groups by their MOA using simple 
chemical descriptors as inputs. So we are now trying to apply this procedure to larger 
dataset for virtual screening.  
Thus, we conclude sSOM is a powerful tool for data mining, knowledge discovery and 
visualization of multi-dimensional data.  
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