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1. Stochastic modelling, temporal and spatial data and graphical models

Markov models represent a powerful way to approach the problem of mining time and
spatial signals whose variability is not yet fully understood. Initially developed for pattern
matching (Baker, 1974; Geman & Geman, 1984) and information theory (Forney, 1973), they
have shown good modelling capabilities in various problems occurring in different areas
like Biosciences (Churchill, 1989), Ecology (Li et al., 2001; Mari & Le Ber, 2006; Le Ber et al.,
2006), Image (Pieczynski, 2003; Forbes & Pieczynski, 2009) and Signal processing (Rabiner
& Juang, 1995). These stochastic models assume that the signals under investigation have
a local property –called the Markov property– which states that the signal evolution at a
given instant or around a given location is uniquely determined by its neighbouring values.
In 1988, Pearl (Pearl, 1988) shown that these models can be viewed as specific dynamic
Bayesian models which belong to a more general class called graphical models (Whittaker,
1990; Charniak, 1991).
The graphical models (GM) are the results of the marriage between the theory of probabilities
and the theory of graphs. They represent the phenomena under study within graphs where
the nodes are some variables that take their values in a discrete or continuous domain.
Conditional –or causal– dependencies between the variables are graphically expressed. As
an example, the relation between the random variables U, V and W depicted by Fig. 1 expresses
that V and W are the reasons –more or less probable– of U. In a Bayesian attitude, the
uncertainty about this relation is measured by the conditional probability P(U/V,W) of
observing U given V and W.
In graphical models, (see Fig. 2-4), some nodes model the phenomenon’s data thanks to
adequate distributions of the observations. They are called “observable” variables whereas
the others are called “hidden” variables. The observable nodes of the graph give a frozen
view of the phenomenon. In the time domain, the temporal changes are modelled by the set
of transitions between the nodes. In the space domain, the theory of graphs allows to take
into account the neighbourhood relations between the phenomenon’s constituents.
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2 Data Mining

The mining of temporal and / or spatial signals by graphical models can have several
purposes:

Segmentation : in this task, the GM clusters the signal into stationary (or homogeneous) and
transient segments or areas (Jain et al., 1999). The term stationnary means that the signal
values are considered as independent outcomes of probability density functions (pdf).
These areas are then post-processed to extract some valuable knowledge from the data.

Pattern matching : in this task, the GM measures the a posteriori probability P(model =
someLabel/observedData). When there are as many GM as labels, the best probability
allows the classification of an unknown pattern by the label associated with the highest
probability.

Background modelling : in order to make proper use of quantitative data, the GM is used as
a background model to simulate an averaged process behavior that corrects for chance
variation in the frequency counts (Huang et al., 2004). The domain expert compares the
simulated and real data frequencies in order to distinguish if he / she is facing to over-
or under-represented data that must be investigated more carefully.

In this chapter, we will present a general methodology to mine different kinds of temporal
and spatial signals having contrasting properties: continuous or discrete with few or many
modalities.
This methodology is based on a high order Markov modelling as implemented in a free
software: CARROTAGE (see section 3). Section 2 gives the theoretical basis of the modelling.
Section 3 describes a general flowchart for mining temporal and spatial signals using
CARROTAGE. The next section is devoted to the description of three data mining applications
following the same flowchart. Finally, we draw some conclusions in section 5.

2. The HMM as a graphical model

The Hidden Markov Model is a graphical model which represents the sequence of
observations as a doubly stochastic process: an underlying “hidden” process, called the state
sequence of random variables Q1, Q2, ...QT and an output (observation) process, represented
by the sequence O1,O2, ...OT over the same time interval (see Fig. 2-3). The sequence (Qt) is a
Markov chain and represents the different clusters that must be extracted.

2.1 HMM definition

We define a hidden Markov model by giving:

– S = {s1, s2, . . . , sN} , a finite set of N states ;

– A a matrix defining the transition probabilities between the states:

V �� U

W

P(U/V,W)

��

Fig. 1. Conditional dependency of U with V and W in a Bayesian network. The probability
measures the confidence of the dependency
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Using Markov Models to Mine Temporal and Spatial Data 3

Q1

P(Q2/Q1) ��

P(O1/Q1)

��

Q2
P(Q3/Q2) ��

P(O2/Q2)

��

Q3
��

P(O3/Q3)

��

. . .
P(QT /QT−1)�� QT

P(OT /QT)

��
O1 O2 O3 . . . OT

Fig. 2. Conditional dependencies in a HMM1 represented as a Bayesian network. The hidden
variables (Qt) govern the observable variables (Ot)

A =
(

aij

)

for a first order HMM (HMM1) (Fig. 2),

A =
(

aijk

)

for a second order HMM (HMM2) (Fig. 3);

– bi(.) the distributions of observations associated to the states si. This distribution may be
parametric, non parametric or even given by an HMM in the case of hierarchical HMM (Fine
et al., 1998).

As opposite to a Markov chain where the states are unambiguously observed, in a HMM, the
observations are not uniquely associated to a state si but are drawn from a random variable
that has a conditional density bi(.) that depends on the actual state si (Baker, 1974). There is a
doubly stochastic process:

– the former is hidden from the observer, is defined on a set of states and is a Markov chain;

– the latter is visible. It produces an observation at each time slot –or index in the sequence–
depending on the probability density function that is defined on the state in which the
Markov chain stays at time t. It is often said that the Markov chain governs the latter.

2.2 Modelling the dependencies in the observable process

Defining the observation symbols is the first step of a HMM data processing. In this chapter,
we will present our data mining work based on various GM applied on different kinds of
signals having contrasting properties:

– genomic data characterized by long sequences (several millions) of the 4 nucleotides A, C,
G, T (application 1);

– short temporal discrete sequences (around 10 value long) with a great number (around
50) of modalities like the temporal land use successions (LUS) of agricultural fields whose
mosaic defines a 2-D spatial territory (application 2);

Q1

P(Q2/Q1) ��

P(O1/Q1)

��

P(Q3/Q2,Q1)

��
Q2

P(Q4/Q3,Q2)

����

P(O2/Q2)

��

Q3
��

P(O3/Q3)

��

. . .

P(QT /QT−1,QT−2)

��
�� QT

P(OT /QT)

��
O1 O2 O3 . . . OT

Fig. 3. Conditional dependencies in a HMM2 represented as a Bayesian network. The hidden
variables (Qt) govern the observable variables (Ot)
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4 Data Mining

– continuous data like the values of a river width sampled from the river’s source up to its
end (application 3).

To take into account the correlations between successive or neighbouring observations, several
options are possible.

2.2.1 Continuous observations

The usual way to model continuous random observations is to consider them as Gaussian
distributed. When the observations are vectors belonging to R

d, multivariate Gaussian pdf

are used. The main reason of this consideration is that an unknown pdf can be approximated
by a mixture of multivariate Gaussian pdf. To take into account the correlations between
successive observations, first and second order regression coefficients (Furui, 1986) are stacked
over the observation vector:

R(t) =
∑

n0
n=−n0

nO(t + n)

∑
n0
n=−n0

n2
(1)

where O(t + n) is the observation (frame) t + n. The 2n0 + 1 frames involved in the
computation of the regression coefficient R(t) are centered around frame t. By this way, the
vector at time t models the shape of the observation variations and incorporates information
about the surrounding context.

2.2.2 Categorical observations

When the observations are discrete and belong to a finite set C = {c1, c2, ...cM}, it is convenient
to represent this correlation by adding new dependencies between the current observation
and the previous observations. In the particular case shown in Fig. 4, the observation
distribution is a conditional pdf biuv(ot) that represents the conditional probability of
observing ot assuming the state si and the observations u and v that occured respectively
at indices t − 1 and t − 2:

ot−1 = u, ot−2 = v u,v ∈ C.

In the temporal domain, this leads to the definition of a Mp-Mq HMM where p is the order of
the hidden Markov process and q refers to the dependencies in the observable process.
Another way to take into account the correlations between successive (neighbouring)
observations, is to consider composite observations drawn from the n-fold product Cn =
C × C . . . C. The elementary observation (for example, a nucleotide, a land use . . . ) is
considered together with its context. This leads to the definition of k-mer (see section 4.1.1)
in biology or land use succession in agronomy (see section 4.2.1.3). As a direct consequence,
the pdf size will be changed from |C| to |C|n where |C| denotes the cardinality of C. It is

Q1

P(Q2/Q1) ��

P(O1/Q1)

��

P(Q3/Q2,Q1)

��
Q2

P(Q4/Q3,Q2)

����

P(O2/Q2,O1)

��

Q3
��

P(O3/Q3,O1,O2)

��

. . .

P(QT /QT−1,QT−2)

��
�� QT

P(OT /QT ,OT−1,OT−2)

��
O1

�� ��O2
�� ��O3

�� . . . ��
		 OT

Fig. 4. Conditional dependencies of a M2-M2 HMM represented in a Bayesian network
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Using Markov Models to Mine Temporal and Spatial Data 5

then possible to control the balance between the parameter number assigned to the hidden
variables and to the observable ones in the model.

2.3 Automatic estimation of a HMM2

The estimation of an HMM1 is usually done by the forward backward algorithm which is related
to the EM algorithm (Dempster et al., 1977). We have shown in (Mari et al., 1997) that an HMM2
can be estimated following the same way. The estimation is an iterative process starting with
an initial model and a corpus of sequences of observations that the HMM2 must fit even when
the insertions, deletions and substitutions of observations occur in the sequences. The very
success of the HMM is based on their robustness: even when the considered data do not suit a
given HMM, its use can give interesting results. The initial model has equi-probable transition
probabilities and a uniform distribution in each state. At each step, the forward backward
algorithm determines a new model in which the likelihood of the sequences of observation
increases. Hence this estimation process converges to a local maximum. Interested readers
may refer to (Dempster et al., 1977; Mari & Schott, 2001) to find more specific details of the
implementation of this algorithm.
If N is the number of states and T the sequence length, the second-order forward backward
algorithm has a N3 × T complexity for an HMM2.
The choice of the initial model has an influence on the final model obtained by convergence.
To assess this last model, we use the Kullback-Leibler distance between the distributions
associated to the states (Tou & Gonzales, 1974). Two states that are too close are merged and
the resulting model is re-trained. Domain experts do not interfere in the process of designing
a specific model, but they have a central role in the interpretation of the results that the final
model gives on the data.

3. CARROTAGE a general framework to mine sequences

We have developed a knowledge discovery system based on high-order hidden Markov
models for analyzing temporal data bases (Fig. 5). This system, named CARROTAGE1, takes
as input an array of discrete or continuous data –the rows represent the individuals and
the columns the time slots– and builds a partition together with its a posteriori probability.
CARROTAGE is a free software 2 under a Gnu Public License. It is written in C++ and runs
under Unix systems. In all applications, the data mining processing based on CARROTAGE is
decomposed into four main steps:

Model specification. Even if CARROTAGE may use models of any topology, we mainly use
two different graph topologies: linear and ergodic. In a linear model, there is no circuit
between the nodes except self loops on some nodes. Whereas in an ergodic model,
all the nodes are inter connected; a node can reach all the others. The first HMM2 that
CARROTAGE has to estimate is linear with equi-probable transitions from each state and
uniform distributions of observations in every states. The only parameter let to the user
is the number of states.

1CARROTAGE is a retro acronym that comes from the word carrot that can be translated by Markov in
Russian and age to refer to the temporal component of the data. It is also a technique which consists in
drilling a hole in some material (a tree or the ice of the Antarctic) to withdraw a cylinder that allows to
date the process of creation

2http://www.loria.fr/˜ jfmari/App/

565Using Markov Models to Mine Temporal and Spatial Data

www.intechopen.com
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Iterative estimate of the model parameters. The parameter estimation of the model is
performed by the forward backward algorithm for M2-Md HMM. Basically, given a
sequence of symbols

(

oT
1

)

= o1,o2, . . . oT the second-order forward backward algorithm
computes the expected count of the state transition si1

→ si2
→ si3

ηt(i1, i2, i3) = P(Qt−2 = si1
, Qt−1 = si2

, Qt = si3
/OT

1 = oT
1 ) (2)

at index t − 2, t − 1, t.

The first parameter estimate is performed on a linear model to acquire a segmentation
of the sequence into as many homogeneous regions than there are states in the specified
model.

Linear to ergodic model transform. The estimated linear model is transformed into an
ergodic one by keeping the previously estimated pdf and interconnecting the states.
This allows the stochastic process to re-visit the states and, therefore, segment the data
into an unconstrained number of homogeneous regions, each of them associated to a
state.

Decoding. The decoding state uses the last iteration of EM algorithm to calculate the a
posteriori probability of the hidden states. It is possible to compute three types of a
posteriori probability. In all the following definitions, we assume that the hidden state si

is attained at time t and that we have a T length observation sequence
(

oT
1

)

.

type 0
P0(i, t) = ∑

i1,i2

ηt(i1, i2, i) (3)

Linear HMM specification

EM estimation (second-

order forward backward)
Linear to ergodic

model transform

Decoding

Post processing

Fig. 5. General flow Chart of the data mining process using CARROTAGE
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Using Markov Models to Mine Temporal and Spatial Data 7

The a posteriori probability of the state si at index t assuming the whole sequence
(

oT
1

)

.

type 1
P1(i, t) = ∑

i1

ηt(i1, i, i) (4)

The a posteriori probability of the 2 state transition si → si at index t assuming the
whole sequence

(

oT
1

)

. This probability can be computed either by a HMM1 or by a
HMM2.

type 2
P2(i, t) = ηt(i, i, i) (5)

The a posteriori probability of the 3 state transition si → si → si at index t assuming
the whole sequence

(

oT
1

)

. This probability is typical of a HMM2.

In some applications, as the mining of crop successions (see section 4.2), the a posteriori
transition probability (type 1) between 2 states can be used and gives an interesting
information. In such a case, we use:

P1(i, j, t) = ∑
i1

ηt(i1, i, j) (6)

Post processing: The post processing is application dependent and involves mostly a
classification step of the different segments. Further ad-hoc treatments must be
performed in order to extract valuable information as shown in the application section.

4. Applications

4.1 Mining genomic data

In this section, we describe a new data mining method based on second-order HMM and
combinatorial methods for Sigma Factor Binding Site (SFBS) prediction (Eng et al., 2009) and
Horizontal Gene Transfer (HGT) (Eng et al., 2011) detection that voluntarily implements a
minimum amount of knowledge. The original features of the presented methodology include
(i) the use of the CARROTAGE framework, (ii) an automatic area extraction algorithm that
captures atypical DNA motifs of various size based on the variation of the state a posteriori
probability, and (iii) a set of post processing algorithms suitable to the biologic interpretation
of these segments. On some points, our data mining method is similar to the work of Bize et
al. (Bize et al., 1999) and Nicolas et al. (Nicolas et al., 2002). All the methods use one HMM to
model the entire genome. The parameter estimation is done in all cases by the EM algorithm.
All the methods look for attributing biological characteristics to the states by analyzing the
state output a posteriori probability. But our method differs on the following points: we use
(i) an HMM2 that has proved interesting capabilities in modelling short sequences, and (ii)
depending on the modelled dependencies in the genomic sequence, we can locate either short
nucleotides sequences that could be part of SFBS (box1 or box2) or more generally regulation
sites for gene expression –Transcriptional Factor Binding sites (TFBS)– or even wider areas
potentially acquired by HGT. These sequences are post processed to assess the exact nature of
the heterogeneities (SFBS, TFBS or HGT).

567Using Markov Models to Mine Temporal and Spatial Data
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8 Data Mining

4.1.1 Data preparation

In this application, the genome is modelled as an ordered nucleotide sequence whose
unknown structure is represented by the state Markov chain. The index t in equation (2)
refers to the nucleotide index in the ordered sequence of nucleotides. In a genome sequence,
two templates must be considered depending upon the strength of the compositional biases.
To incorporate the biased base composition of DNA strands relative to the position of the
replication origin when a marked GC skew3 is observed, as in the case of Streptococcus
thermophilus, a sequence is constructed in silico by concatenating the two leading strands from
the origin to the terminus of replication. Its reverse complement is also considered. In contrast,
when the genome does not show a marked GC skew, as in Streptomyces coelicolor, the 5’ to 3’
sequence of the linear chromosome and its reverse complement are considered. In both cases,
these two sequences are used for training purposes and specify two HMM2 named HMM2+
and HMM2-. The best decoding state is identified for both models.
We have also investigated the use of k-mer (Delcher et al., 1999) as output symbols instead
of nucleotides. A k-mer may be viewed as a single nucleotide yt observed at index t with a
specific context yt−k+1, . . . yt−1 made of k − 1 nucleotides that have been observed at index
t − k + 1, . . . , t − 1. Similarly, a DNA sequence can be viewed as a sequence of overlapping
k-mer that an HMM analyzes with a consecutive shift of one nucleotide. For example, the
seven nucleotide sequence TAGGCTA can be viewed as a sequence of seven 3-mer: ##T - #TA -
TAG - AGG - GGC - GCT - CTA, where # represents an empty context.

4.1.2 a posteriori decoding

The mining of irregularities follows the general flow chart given in figure 5. The a
posteriori probability variations look very different depending on the dependencies that are
implemented in the genomic sequence. When modelling the k-mer sequence using a M2-M0

HMM, the decoding stage locates atypical short DNA segments (see Fig. 6) whereas the
modelling of the nucleotide sequence using a M2-M2 HMM exhibits wider atypical areas (see
Fig.7).

4.1.3 Post processing

The atypical regions extracted by the stochastic models must be processed in order to extract
valuable information. A specific suite of algorithms has been designed and tuned in the two
applications: TFBS and HGT detections.

4.1.3.1 TFBS retrieval

Our bacterial model is the Gram-positive actinomycete Streptomyces coelicolor whose genome
is 8.7 Mb long. The streptomycetes are filamentous bacteria that undergo complex
morphological and biochemical differentiation, both processes being inextricably interlinked.
The purpose of the TFBS application is to retrieve composite motifs box1-spacer-box2 involved
in the Streptomyces coelicolor regulation. The two boxes can be part of the intergenic peak
motifs (see Fig. 6). The spacer ranges from 3 to 25 and is tuned depending on the type of
the investigated TFBS. The basic idea of the mining strategy is to cluster the set of intergenic
ipeak motifs located by a M2-M0 HMM modelling 3-mer, select a cluster having a well defined
consensus, extend all the sequences belonging to this cluster and look for over-represented
motifs by appropriate software (Hoebeke & Schbath, 2006). The consensus of the cluster acts

3the GC skew is a quantitative feature that measures the relative nucleotide proportion of G versus C
in the DNA strand

568 New Fundamental Technologies in Data Mining
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Using Markov Models to Mine Temporal and Spatial Data 9

Fig. 6. A posteriori probability variation of a M2-M0 HMM hidden state as a function of the
3-mer index in the Streptomyces coelicolor genome. The top graph shows the a posteriori
probability together with the annotated physical sequence (using the EMBL file). As an
example, among the intergenic peak motifs, the -35 box (GGAAT) and -10 box (GTT) motifs
recognized by the sigma factor SigR are detected. Peak characteristics (peak-variation and
length) are marked in the figure. The biological interpretation of the peaks inside the coding
regions is not yet fully established (Eng et al., 2009)

for box1, the shorter motifs spaced with appropriate spacer value(s) act for box2. Interested
readers will find in (Eng et al., 2009) an extensive description of this data mining strategy
based on stochastic and combinatorial methods.

4.1.3.2 Horizontal gene transfer detection

Our bacterial model is the Gram-positive bacteria Streptococcus thermophilus which is a lactic
acid bacteria carrying a 1.8 Mb genome and having a considerable economic importance. It
is used as starter for the manufacturing of yogurts and cheeses. Streptococcus thermophilus is
assumed to have derived very recently at the evolutionary time-scale (3,000-30,000 years back:
the beginning of the pastoral epoch) from a commensal ancestor which is closely related to

569Using Markov Models to Mine Temporal and Spatial Data
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10 Data Mining

Fig. 7. A posteriori probability variation of a M2-M2 HMM hidden state as a function of the
nucleotide index in the Streptococcus thermophilus genome. The additional dependencies in
the nucleotide sequence dramatically smooth the state a posteriori probability

the contemporary oral bacterium Streptococcus salivarius to adapt to its only known ecological
niche: the milk. HGT deeply shaped the genome and played a major role in adaptation to its
new ecological niche.
In this application, we have observed that the M2-M2 HMM modelling nucleotides performs
better than M1-M2 HMM as implemented in SHOW software 4 (Nicolas et al., 2002) and M2-M0

HMM modelling 3-mer (see section 4.1.3.1).
After tuning the HMM topology, the decoding state that captures the highest heterogeneities
is selected by considering the distances between all states according to the Kullback-Leibler
distance. The state which is the most far away from the others is selected. On this state, the
variations of the a posteriori probability as a function of the index in the nucleotide sequence are
analyzed. The positions having a posteriori probabilities higher than the mean over the whole
genome are considered. Regions enriched in these positions through at least 1000 nucleotide
length were extracted and named atypical regions. A total of 146 atypical regions were
extracted. If a gene were at least half included in these regions then it was considered. A total
of 362 genes of 1915 (the whole gene set of the bacterium), called “atypical”, were retrieved
from these regions. Based on their functional annotation and their sporadic distribution
either at the interspecific level (among the other genomes belonging to the same phylum:
the Firmicutes) or at the intraspecific level (among a collection of 47 strains of Streptococcus
thermophilus), a HGT origin can be predicted for a large proportion (about two thirds) (Eng,
2010).

4.2 Mining agricultural landscapes

In agricultural landscapes, land-use (LU) categories are heterogeneously distributed among
different agricultural fields managed by farmers. At a first glance, the landscape spatial
organization and its temporal evolution seem both random. Nevertheless, they reveal the
presence of logical processes and driving forces related to the soil, climate, cropping system,
and economical pressure. The mosaic of fields together with their land-use can be seen as a
noisy picture generated by these different processes.
Recent studies (Le Ber et al., 2006; Castellazzi et al., 2008) have shown that the ordered
sequences of LU in each field can be adequately modelled by a high order Markov process.
The LU at time t depends upon the former LU at previous times: t − 1, t − 2 . . . depending on

4http://genome.jouy.inra.fr/ssb/SHOW/

570 New Fundamental Technologies in Data Mining

www.intechopen.com



Using Markov Models to Mine Temporal and Spatial Data 11

Case study

Niort Plain Yar watershed

Data source Land-use surveys Remote sensing

Surface (sq. km) 350 60

Study period 1996 to 2007 1997 to 2008

Number of LU modalities 47 6

Spatial representation Vector Raster (converted to vector)

Elementary spatial entities Elementary plots (polygons) Pixels (20 x 20 sq. m)

Data base format ESRI Shapefile ESRI Shapefile

Table 1. Comparison between 2 land-use databases coming from two different sources:
land-use surveys and remote sensing

the order of the Markov process. In the space domain, the theory of the random Markov
fields is an elegant mathematical way for accounting neighbouring dependencies (Geman
& Geman, 1984; Julian, 1986). In this section, we present a data mining method based on
CARROTAGE to cluster a landscape into patches based on its pluri annual LU organization.
Two medium-size agricultural landscapes will be considered coming from different sources:
long-term LU surveys or remotely sensed LU data.

4.2.1 Data preparation

For CARROTAGE, the input corpus of LU data is an array in which the columns represent the
LU year by year and the rows represent regularly spaced locations in the studied landscape
(e.g. 1 point every 20 m). Data preparation aims at reducing the requirement of the memory
resources while putting the data in the appropriate format required by CARROTAGE. The data
preparation process must tackle several issues: (i) to regroup into LU categories the different
LU when there are too many observations, (ii) to define the elementary observation for the
HMM, and (iii) to choose the sampling spatial resolution.
The corpus of spatiotemporal LU data is generally built either from long-term LU surveys
or from remotely sensed LU data. Depending on the data source, several differences in the
LU database may exist. These differences are mostly regarding the number of LU modalities
and the representation of the spatial entities: polygons in vector data or pixels in raster data.
In the following, the first data source (long-term LU field surveys) is illustrated by the Niort
Plain case study (Lazrak et al., 2010), and the second (remotely sensed LU) is illustrated by the
Yar watershed case study. Principal characteristics of the two case studies are summarized in
table 1.

4.2.1.1 The agricultural landscape mosaic

The agricultural landscape can be seen as an assemblage of polygons of variable size where
each polygon holds a given LU. When data derives from LU surveys, the polygons are fields
bounded by a road, a path or a limit of a neighbouring field. The polygon boundaries can
change every year. To take into account this change, the surveyors update each year the
boundaries of fields in the GIS database. For remotely sensed images, the polygons are
obtained by grouping similar pixels in the same class and are represented in vector format.
In the two cases, the list of the polygon boundaries –that change over the time– led to the
definition of the elementary polygon –the plot– as the result of the spatial union of previous
polygon boundaries (Figure 8). Each plot holds one LU succession during the study period.
There are about 20,000 elementary plots in the Niort study area over the 1996 – 2007 period.

571Using Markov Models to Mine Temporal and Spatial Data
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12 Data Mining

The corpus of land-use data is next sampled and is represented in a matrix in which the
columns are related to the time slots and the rows to the different grid locations.
Following Benmiloud and Pieczynski (Pieczynski, 2003), we have approximated the Markov
random field (MRF) by sampling the 2-D landscape representation using a regular grid and,
next, defining a scan by a Hilbert-Peano curve (figure 9). The Markov field is then represented
by a Markov chain. Two successive points in the Markov chain represent two neighbour
points in the landscape but the opposite is not true, nevertheless, this rough modelling of
the neighbourhood dependencies has shown interesting results compared to an exact Markov
random field modelling (Benmiloud & Pieczynski, 1995). To take into account the irregular
neighbour system, we can also adjust the fractal depth to the mean plot size. The figure 9
illustrates this concept.

4.2.1.2 LU categories definition

When LU derive from LU surveys, there is often a great number of LU modalities which
must be reduced by defining LU categories. For the Niort Plain case study, the 47 LU have
been grouped with the help of agricultural experts in 10 categories (see Tab. 2) following an

Fig. 8. An example of field boundary evolution over three successive years. The union of
field boundaries during this period leads to the definition of seven plots
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Fig. 9. Variable depth Hilbert-Peano scan to take into account the field size. Two successive
merging in the bottom left field yield to the agglomeration of 16 points

approach based on the LU frequency in the spatiotemporal database and the similarity of crop
management.
For the Yar watershed case study, only six LU have been distinguished: Urban, Water, Forest,
Grassland, Cereal and Maize. There was no need of grouping them into categories.

4.2.1.3 Choice of the elementary observation

An elementary observation can range from a LU (such as Cereal in the Yar watershed case
study) or a LU category (such as Wheat in the Niort Plain case study) to a LU succession
(LUS) spanning several years. For this latter, the length of the LU succession influences the
interpretation of the final model. However, the total number of LUS is a power function
of the succession length, and memory resources required during the estimation of HMM2
parameters increase dramatically.
To determine the succession length, we compared the diversity of LUS between field-collected
data (the Niort Plain) and randomly generated data for different lengths of successions
(Fig. 10(a)). For this case study, 4-year successions begin to clearly differentiate the landscape
from a random landscape in which the LU are randomly allocated in the plots. Therefore,
4-year successions appear to be the shortest HMM2 elementary observation symbol suitable
for modelling LUS within the Niort Plain landscape. The choice for the elementary
observation can also be set by domain specialists based on previous works (Le Ber et al., 2006;
Mignolet et al., 2007). This was the case for the Yar watershed where we chose to model the
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LU category LU Frequency Cumul

Wheat Wheat, bearded wheat, cereal 0.337 0.337

Sunflower Sunflower, ryegrass followed by
sunflower

0.139 0.476

Rapeseed Rapeseed 0.124 0.600

Urban Built area, peri-village, road 0.096 0.696

Grassland Grassland of various types, alfalfa,... 0.078 0.774

Maize Maize, ryegrass followed by maize 0.076 0.850

Forest Forest or hedge, wasteland 0.034 0.884

Winter barley Winter barley 0.034 0.918

Ryegrass Ryegrass, ryegrass followed by ryegrass 0.024 0.942

Pea Pea 0.022 0.964

Others Spring barley, grape vine, clover, field
bean, ryegrass, cereal-legume mixture,
garden/market gardening,...

0.036 1.000

Table 2. Composition and average frequencies of adopted LU categories (Lazrak et al., 2010)

agricultural dynamics through 3-year LUS.

4.2.1.4 Choice of the spatial resolution

For medium-size and large landscapes, a high-resolution sampling generates a large amount
of data. With such amount, only rough models can be tested. On the other hand, with a
coarse resolution sampling, small fields are omitted. In order to have an objective criterion
for choosing the optimal spatial resolution, we can estimate information loss in terms of LUS
diversity for increasingly coarse resolution samplings. Figure 10(b) shows the obtained curve
for the Niort Plain case study. The tested resolutions were: 10, 20, 40, 80, 160, 320 and 640 m.
Irregularity in sampling intervals is dictated by an algorithmic constraint: the resolution must
be proportional to a power of 2. The most precise resolution is considered as the reference

(a) Compared diversity of LUS between
field-collected data and 10 random generated
data sets for different succession lengths

(b) Information loss in terms of LUS diversity
in relation to sampling resolutions for 4-year
LUS

Fig. 10. Relations between LUS diversity and sampling rates

574 New Fundamental Technologies in Data Mining

www.intechopen.com



Using Markov Models to Mine Temporal and Spatial Data 15

Fig. 11. Seeking the best temporal segmentation of the Yar watershed study period by using 5
growing state number linear HMM2. The line width is proportional to the a posteriori
transition probability (Eq. 6). The 6 state HMM2 segments the study period into 6
non-overlapping periods

(100%). As a compromise, we chose the 80 m x 80 m resolution that led to a corpus 64 times
smaller than the original one, with only a loss of 6% in information diversity.
For the Yar watershed landscape, which has a surface roughly 7 times smaller than the Niort
Plain landscape and has few LU modalities, we were not constrained by the corpus size. Thus,
we chose a 20 m x 20 m resolution which was the original resolution of satellite images used
to identify the LU.

4.2.2 a posteriori decoding

We propose to build a time spatial analysis through spatial analysis of crop dynamics. This
data mining method is a time x space analysis where a temporal analysis is performed in
order to identify temporal regularities before locating these regularities in the landscape by
means of a hierarchical HMM2 (HHMM2). The HHMM2 allows segmenting the landscape
into patches, each of them being characterized by a temporal HMM2.

4.2.2.1 Mining temporal regularities

Depending on the investigated temporal regularities, we can either use a linear HMM2 or a
multi-column ergodic HMM2 (Fig. 12). Linear models allow segmenting the study period into
homogeneous sub-periods in terms of LUS distributions (see Figure 11).
Multi-column ergodic models (Mari & Le Ber, 2006; Le Ber et al., 2006) (Fig. 12) have been
designed for measuring the probability of a succession of land-use categories. Actually,
we have defined a specific state, called the Dirac state, whose distribution is zero except
on a particular land-use category. Therefore, the transition probabilities between the Dirac
states measure the probabilities between the land-use categories. Figure 12 shows the
topology of a HMM2 that has two kinds of states: Dirac states associated to the most frequent
land-use categories (wheat, sunflower, barley, . . . ) and container states associated to uniform
distributions over the set of observations. The estimation process usually empties the
container state of the land-use categories associated with Dirac states. Therefore this model
generalises both hidden Markov models and Markov models.
The model generation follows the same flowchart given in figure 5. When it is needed, the
Dirac states can be initialized by some search patterns for capturing one or many particular
observations.
Agronomists interpret the resulting diagrams to find the LU dynamics. Figure 13 shows a
quasi steady agricultural system. The crop rotations involve Rapeseed, Sunflower and Wheat.
In order to determine the exact rotations (2-year or 3-year), it is necessary to envisage the
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Fig. 12. Multiple column ergodic model: the states denoted 2, 3 and 4 are associated to a
distribution of land-use categories, as opposite to the Dirac states denoted with a specific
land-use category. The number of columns determines the number of time intervals
(periods). A connection without arrow means a two directional connection

modelling of 4-year LUS (Lazrak et al., 2010). Note the monoculture of Wheat that starts in
2004.

4.2.2.2 Spatial clustering based on HMM2

We model the spatial structure of the landscape by a MRF whose sites are random LUS. The
dynamics of these LUS are modelled by a temporal HMM2. This leads to the definition of

Fig. 13. Markov diagram showing transitions between LU categories in the Niort Plain. The
x-axis represents the study period. The y-axis stands for the states of the ergodic one-column
HMM2 used for data mining. Each state represents one LU category. The state ’?’ is the
container state associated to a pdf. Diagonal transitions stand for inter-annual LU changes.
Horizontal transitions indicate inter-annual stability. For simplicity, only transitions whose
frequencies are greater than 5 % are displayed. The line width reflects the a posteriori
probability of the transition assuming the observation of the 12-year LU categories (Eq. 6)
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Fig. 14. Example of hierarchical HMM2. Each spatial state a, b, c, d of the master HHMM2
(ergodic model) is a temporal HMM2 (linear model) whose states are 1, 2, 3

a hierarchical HMM2 (Figure 14) where a master HMM2 approximates the MRF. Then, the
probability of LUS is given by a temporal HMM2 as fully described in (Fine et al., 1998; Mari
& Le Ber, 2006; Lazrak et al., 2010). This hierarchical HMM is used to segment the landscape
into patches, each of them being characterized by a temporal HMM2. At each index l in the
Hilbert-Peano curve, we look for the best a posteriori state in the HHMM2 (Maximum Posterior
Mode algorithm). The state labels, together with the geographic coordinates of the indices l,
determine a clustered image of the landscape that can be coded within an ESRI shapefile. An
example of this segmentation for the Yar watershed case study is given in Figure 15.

4.2.3 Post processing

For the Yar watershed case study, we have performed preliminary temporal segmentation
tests with linear models having an increasing number of states (Figure 11). This led us to use a
6-state HMM2 to segment the study period into 6 sub-periods characterized by different pdf.
Plotting together the 6 sub-periods gives a global view on the LU dynamics (Figure 15).
In figure 15, the Yar watershed is represented by a mosaic of patches of LU evolutions. These
patches are associated to a 5-state ergodic HHMM2. States 1 and 2, respectively represent
Forest and Urban and are steady during the study period. The Urban state is also populated
by less frequent LU that constitute its privileged neighbours. Grassland is the first neighbour
of Urban, but it vanishes over the time. The other 3 states exhibit a greater LU diversity and a
more pronounced temporal variation. In state 3, Grassland, Maize and Cereal evolve together
until the middle of the study period. Next, Grassland and Maize decrease and are replaced by
Cereal. This trend shows very likely that a change of cropping system was undertaken in the
patches belonging to this state.

4.3 Mining hydro-morphological data

In this section we describe the use of HMM2 for the segmentation of data describing river
channels. Actually, a river channel is considered as a continuum and is characterised
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Fig. 15. The Yar watershed seen as patches of LU dynamics. Each map unit stands for a state
of the HHMM2 used to achieve the spatial segmentation. Each state is described by a
diagram of the LU evolution. The 6 sub-periods are the time slots derived from the temporal
segmentation with the 6-state HMM2 describing each state of the HHMM2. Location of the
Yar watershed in France is shown by a black spot depicted in the upper middle box
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by its width or depth that is increasing downstream whereas its slope and grain size
decrease (Schumm, 1977). The segmentation of this continuum with respect to local
characteristics is an important issue in order to better manage the river channels (e.g.
protection of plant or animal species, prevention of flood or erosion processes, etc.). Several
methods have been proposed to perform such a segmentation. Markov chains Grant et al.
(1990) and HMM1 (Kehagias, 2004) are also been used.

4.3.1 Data preparation

The aim is to establish homogeneous units of the river Drome (South-East of France)
continuum according to its geomorphological features. First of all, the continuum has been
segmented within 406 segments of 250 meters length. Each segment is then described
with several variables computed from aerial photographs (years 1980/83 and 1994/96)
supplemented with terrain observations. Details about the computing of these variables can
be found in (Aubry & Piégay, 2001; Alber & Piégay, 2010; Alber, 2010). In the following, we
focus on the variable describing the width of the active channel (i.e. the water channel and
shingle banks without vegetation).

4.3.2 a posteriori decoding

The stochastic modelling follows the same flow chart given in Fig. 5. Both linear and ergodic
models have been used. The pdf associated in the M2-M0 HMM are univariate Gaussian
N (µi,Σi).

bi(Ot) =N (Ot;µi,Σi) (7)

where Ot is the input vector (the frame) at index t and N (Ot;µ,Σ) the expression of the
likelihood of Ot using a gaussian density with mean µ and variance Σ. The maximum
likelihood estimates the mean and covariance are given by the formulas using the definition
of P0 (cf. Equ.3):

µi =
∑t P0(i, t)Ot

∑t P0(i, t)
(8)

Σi =
∑t P0(i, t)(Ot − µi)(Ot − µi)

t

∑t P0(i, t)
(9)

Specific user interfaces have been designed, in order to fit the experts’ requirements: the
original data are plotted, together with the mean value and the standard deviation of the
current (most probable) state.
The linear model (Fig. 16) allows to detect a limited number (due to the specified number of
states) of high variations, i.e. large and short vs narrow and long sections of the river channel.
The ergodic model (Fig. 17) allows to detect an unknown number of small variations and
repetitions.

4.3.3 Post processing

The final aim of this study is to build a geomorphical typology based on the river
characteristics and to link it to external criteria (e.g. geology, land-use). The clustering is
useful to define a relevant scale for this typology. If the typology is limited to the Drome river,
the linear HMM allows to detect a set of segments that can be characterised by further variables
and used as a basis for the typology. Ten segments for 101.5 kilometres appeared to be a good
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Fig. 16. Clustering the active channel width of the Drome river: linear HMM2 with 10 states

scale. On the contrary, if a whole network is considered -with several rivers and junctions-,
the segmentation performed by the ergodic HMM would be more interesting since it allows
to segment the data with less states than the linear model and to reveal similar zones (i.e.

Fig. 17. Clustering the active channel width of the Drome river: ergodic HMM2 with 6 states
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belonging to the same state) in the network. The probability transitions between states can
also be exploited to reveal similar sequences of states along the network and thus to perform
nested segmentations. Furthermore, transition areas appearing as significant mixtures of
several states may be dealt with separately or excluded from a typology. Specific algorithms
have to be designed and tuned to deal with these last questions.

5. Conclusions

We have described in this chapter a general methodology to mine temporal and spatial
data based on a high order Markov modelling as implemented in CARROTAGE. The data
mining is basically a clustering process that voluntary implements a minimum amount of
knowledge. The HMM maps the observations into a set of states generated by a Markov chain.
The classification is performed, both in time domain and spatial domain, by using the a
posteriori probability that the stochastic process stays in a particular state, assuming a sequence
of observations. We have shown that spatial data may be re-ordered using a fractal curve that
preserves the neighbouring information. We adopt a Bayesian point of view and measure the
temporal and the spatial variability with the a posteriori probability of the mapping. Doing so,
we have a coherent processing both in temporal and spatial domain. This approach appeared
to be valuable for time space data mining.
In the genomic application, two different HMM (M2-M0 HMM and M2-M2 HMM) have extracted
meaningful regularities that are of interest in the area of promoter and HGT detection. The
dependencies in the observation sequence smooth dramatically the a posteriori probability. We
put forward the hypothesis that this smoothing effect is due to the additional normalisation
constraints used to transform a 64 bin pdf of 3-mer into 16 pdf of nucleotides. This smoothing
effect allows the extraction of wider regularities in the genome as it has been shown in the
HGT application.
In the agronomic application, the hierarchical HMM produces a time space clustering of
agricultural landscapes based on the LU temporal evolution that gives to the agronomist a
concise view of the current trends. CARROTAGE is an efficient tool for exploring large land
use databases and for revealing the temporal and spatial organization of land use, based on
crop sequences (Mari & Le Ber, 2003). Furthermore, this mining strategy can also be used to
investigate and visualize the crop sequences of a few specific farms or of a small territory. In a
recent work (Schaller et al., 2010) aiming at modelling the agricultural landscape organization
at the farm and landscape levels, the stochastic regularities have been combined with farm
surveys to validate and explain the individual farmer decision rules. Finally, the results of our
analysis can be linked to models of nitrate flow and used for the evaluation of water pollution
risks in a watershed (?).
In the mining of hydro-morphological data, the HMM have given promising results. They
could be used to perform nested segmentations and reveal similar zones in the hydrological
network. We are carrying out extensive comparisons with other methods in order to assess
the gain given by the high order of the Markov chain modelling.
In all these applications, the extraction of regularities has been achieved following the same
flowchart that starts by the estimation of a linear HMM to get initial seeds for the probabilities
and, next, a linear to ergodic transform followed by a new estimation by the forward
backward algorithm. Even if the data do not suit the model, the HMM can give interesting
results allowing the domain specialist to put forward some new hypothesis. Also, we have
noticed that the data preparation is a time consuming process that conditions all further steps
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of the data mining process. Several ways of encoding elementary observations have been tried
in all applications during our interactions with the domain specialists.
A much discussed problem is the automatic design of the HMM topology. So far, CARROTAGE

does not implement any tools to achieve this goal. We plan to improve CARROTAGE by
providing it with these tools and assess this new feature in the numerous case studies that
we have already encountered. Another new trend in the area of artificial intelligence is the
clustering of both numerical and symbolic data. Also, based on their transition probabilities
and pdf, the HMM could be considered as objects that have to be compared and clustered by
symbolical methods. The frequent items inside the pdf can be analyzed by frequent item
set algorithms to achieve a description of the intent of the classes made of the most frequent
observations that have been captured in each state in the HMM. These issues must be tackled if
we want to deal with different levels of description for large datasets.
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Quaternaire 55(2): 115–133.

Baker, J. K. (1974). Stochastic Modeling for Automatic Speech Understanding, in D. Reddy
(ed.), Speech Recognition, Academic Press, New York, New-York, pp. 521 – 542.

Benmiloud, B. & Pieczynski, W. (1995). Estimation des paramètres dans les chaı̂nes de Markov
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