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Akira Oyama and Kozo Fujii 
Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency 

Japan 

1. Introduction    

Most of real world design optimization problems in space engineering are multiobjective 

design optimization problems that simultaneously involve several competing objectives 

(Oyama et al., 2002) (Tani et al., 2008) (Oyama et al., 2009) (Oyama et al., 2010). For example, 

design of a turbopump for liquid rocket engine involves maximization of total head, 

minimization of input power, minimization of weight, minimization of manufacturing cost, 

and so on. Another example is trajectory design of a spacecraft where payload weight 

should be maximized, time required to reach the target point should be minimized, distance 

from the sun should be maximized (or minimized), and manufacturing cost should be 

minimized.  Many other multiobjective design optimization problems can be easily found, 

such as reusable space transportation system design, spacecraft design, and Mars airplane 

design. 

While a single objective design optimization problem may have a unique optimal solution, 

multiobjective design optimization problems present a set of compromised solutions, 

largely known as Pareto-optimal solutions or non-dominated solutions. Each of these 

solutions is optimal in the sense that no other solutions in the search space are superior to it 

when all objectives are considered (Fig. 1). Therefore, the goal of multiobjective design 

optimization problems is to find as many non-dominated solutions as possible to provide 

useful information of the problem to the designers. 

Recently, idea of multiobjective design exploration (MODE) (Obayashi et al., 2005) is 

proposed as a framework to extract essential knowledge of a multiobjective design 

optimization problem such as trade-off information between contradicting objectives and 

the effect of each design parameter on the objectives. In the framework of MODE, non-

dominated solutions are obtained by multiobjective optimization using, for example, a 

multiobjective evolutionary computation (Deb, 2001), and then design knowledge is 

extracted by analysing the values of objective functions and design parameters of the 

obtained non-dominated solutions. There, data mining approaches such as the self-

organizing map (SOM) (Kohonen, 1998) and analysis of variance (ANOVA) (Donald, 1998) 

are used. Recently, MODE framework has been applied to a wide variety of design 

optimization problems including multidisciplinary design of a regional-jet wing (Chiba et 

al., 2007a) (Chiba et al., 2007b), aerodynamic design of multi-element airfoil (Kanazaki et al., 

2007), and car tire design (Shimoyama, 2009).  
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Fig. 1. The concept of Pareto-optimality. This is an example of multiobjective design 
optimization problems, which minimizes two conflicting objectives f1 and f2.  Gray-colored 
area is feasible region where solutions can exit. This problem has innumerable compromised 
non-dominated solutions such as solutions A, B, and C on the edge of the feasible region 
(Pareto-front). These solutions are optimal in the sense that there is no better solution in 
both objectives. One cannot say which is better among these non-dominated solutions 
because improvement in one objective degrades another. 

Although the MODE framework is useful for real-world designs, analysis of design 
parameters and objective functions values of the non-dominated solutions is not sufficient 
for design exploration in space engineering. For example, for a wing shape design 
optimization problem, design knowledge one can obtain depends on how the shape is 
parameterized. If an airfoil (i.e., wing profile) shape is represented by B-spline curves and 
the coordinates of the B-spline curves are considered as the design parameters, it is difficult 
to obtain design knowledge related to leading edge radius, maximum thickness, or trailing 
edge angle (Fig. 2). Another reason is that data mining of the objective function and design 
parameter values does not lead to understanding of the physics behind the design problem. 
For example, if only the design parameter and objective function values of non-dominated 
airfoils were analysed, it would not be possible to clarify the relation between shock wave 
generation and aerodynamic characteristics of an airfoil. 
To solve such problems, it is necessary to analyse shape data and flow data of the obtained 
non-dominated solutions.  Fortunately, in the process of objective function value evaluation 
for aerodynamic optimization, such data is computed for each design candidate. For 
example, in an aerodynamic airfoil shape optimization, evaluation of objective function 
values requires 1) shape construction from the design parameter values, 2) computational 
grid generation around the shape, 3) flow computation using computational fluid dynamics, 
and 4) surface pressure and friction distribution on the shape (Fig.3). Therefore, analysis of 
the shape and flow data does not require any additional computation. What we should do is 
not to discard such data for data mining process after the optimization.  
However, analysis of shape and flow data is not straightforward because the data set can be 
very large. The number of the obtained non-dominated solutions is typically 100-10,000 
while each non-dominated solution has large data set (Table.1). Therefore, traditional 
approach such as analysis with SOM or ANOVA is not adequate any more. 
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Fig. 2. An example of airfoil shape parameterization 
 

Type of data 
Typical data set size that each non-dominated 

solution has 

two-dimensional shape data 
(such as airfoil) 

200-2,000 (x-y coordinates of 100 to 1000 points that 
define the shape) 

three-dimensional shape data
(such as wing) 

30,000-300,000 (x-y-z coordinates of 10,000 to 
100,000 points that define the shape) 

Two-dimensional flow data 
10,000-100,000(several types of flow property 
(density, velocity, pressure, etc.) at the points 
distributed in the x-y space) 

Three-dimensional flow data 
500,000-5,000,000(several types of flow property 
(density, velocity, pressure, etc.) at the points 
distributed in the x-y-y space) 

Table 1. Typical data set size that each non-dominated solutions has for an aerodynamic 
design 

This chapter introduces a new approach that enables analysis of large data such set as the 

shape and flow data of all non-dominated solutions. This approach bases on proper 

orthogonal decomposition, which decomposes large data into principal modes and 

eigenvectors. Feasibility of this method is shown though knowledge extraction from 

principal modes and eigenvectors of the shape data and flow data of non-dominated 

solutions of an aerodynamic transonic airfoil shape optimization problem. 

In section 3, characteristics of the non-dominated solutions are shown. Section 4 presents the 
POD-based data mining approach for analysis of non-dominated solutions. In section 5, an 
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application for analysis of airfoil shape data of the non-dominated solutions is presented. In 
section 6, flow data of the non-dominated solutions is analysed with POD. 
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Fig. 3. Objective function value evaluation process for aerodynamic airfoil design 
optimization problem 
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2. Nomenclature    

am(n) =   eigenvector of mode m of non-dominated solution n 
c =   airfoil chord length 
Cd =   drag coefficient 
Cl =   lift coefficient 
j =   index of grid points 
jmax =   number of grid points 
l/d =   lift-to-drag ratio (=Cl/Cd) 
m =   index of modes 
mmax =   number of modes (mmax=nmax) 
n =   index of non-dominated solutions 
nmax =   number of non-dominated solutions 
p(j,n) =   pressure of non-dominated solution n at grid point j 
q(j,n) =   data of non-dominated solution n at grid point j 
ql/d_max(j) =   data of maximum-lift-to-drag-ratio design at grid point j  
q’(j,n) =   fluctuation of data q(j,n) of non-dominated solution n at grid point j 
q’base(j,m) =   orthogonal base vector of mode m 
Sm1,m2 =   covariance of orthogonal base vectors of mode m1 and mode m2 
x(j,n) =   coordinate in chordwise direction of non-dominated solution n at grid point j 
y(j,n) =   coordinate in normal direction of non-dominated solution n at grid point j 

3. Non-dominated solutions 

The non-dominated solutions of the design optimization problem below are considered.  
Objective functions: lift coefficient (maximization) 
   drag coefficient (minimization) 
Constraints:  lift coefficient must be greater than 0 
   maximum thickness must be greater than 0.10 chord length 
Design parameters: coordinates of 6 control points of the B-Spline curves 
                                               representing an airfoil shape  (Fig. 4) 
Flow conditions:  free stream Mach number of 0.8 
   Reynolds number of 106 (based on the chord length) 
   angle of attack of 2 degrees. 
The non-dominated solutions are obtained by a multiobjective evolutionary algorithm 

(MOEA) used in (Oyama et al., 2009). The present MOEA adopts real number coding, which 

enables efficient search in real number optimizations compared with binary or gray coding. 

The population size is maintained at 64 and the maximum number of generations is set to 

60. The initial population is generated randomly so that the initial population covers the 

entire design space presented in Table 2. The fitness of each design candidate is computed 

according to Pareto-ranking, fitness sharing, and Pareto-based constraint handling (Oyama 

et al., 2007) based on its objective function and constraint function values. Here, Fonseca and 

Fleming’s Pareto-based ranking method (Foncesa et al., 1993) and the fitness sharing 

method of Goldberg and Richardson (Goldberg et al., 1987) are used for Pareto-ranking 

where each individual is assigned a rank according to the number of individuals 

dominating it. In Pareto-based constraint handling, the rank of feasible designs is 

determined by the Pareto-ranking based on the objective function values, whereas the rank  
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Fig. 4. Parameterization of the airfoil shape. The coordinates of six control points of the B-
Spline curves representing an airfoil shape are considered as design parameters. 
 

Design parameter Lower bound Upper bound 

x1 0.66 0.99 

x2 0.33 0.66 

x3 0.01 0.33 

x4 0.01 0.33 

x5 0.33 0.66 

x6 0.66 0.99 

y1 -0.10 0.10 

y2 -0.10 0.10 

y3 -0.10 0.10 

y4 0.00 0.20 

y5 0.00 0.20 

y6 0.00 0.20 

Table 2. Search range of each design parameter 

of infeasible designs is determined by the Pareto-ranking based on the constraint function 
values. The parents of the new generation are selected through roulette selection (Goldberg, 
1989) from the best 64 individuals among the present generation and the best 64 individuals 
in the previous generation. A new generation is reproduced through crossover and 
mutation operators. The term “crossover” refers to an operator that combines the genotype 
of the selected parents and produces new individuals with the intent of improving the 
fitness value of the next generation. Here, the blended crossover (Eshlman et al., 1993), 

where the value of α is 0.5, is used for crossover between the selected solutions. Mutation is 
applied to the design parameters of the new generation to maintain diversity. Here, the 
probability of mutation taking place is 20%; this adds a random disturbance to the 
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corresponding gene of up to 10% of the given range of each design parameter. Present 
MOEA used to find quasi-optimal solutions has been well validated (Obayashi et al., 2004) 
(Oyama et al., 2002). 
Lift and drag coefficients of each design candidate are evaluated using a two-dimensional 
Reynolds-averaged Navier-Stokes solver. This code employs total variation diminishing 
type upwind differencing (Obayashi et al., 1994), the lower-upper symmetric Gauss-Seidel 
scheme (Obayashi et al., 1995), the turbulence model of Baldwin and Lomax (Baldwin et al., 
1985) and the multigrid method (Brant, 1977) for the steady-state problems. 
All the design candidates and non-dominated solutions are plotted in Fig. 5. The number of 
non-dominated solutions obtained is 85. A strong trade-off between lift maximization and 
drag minimization is observed. This figure also indicates that there are two groups in the 
obtained non-dominated solutions; low drag design group (roughly, Cl <0.75) and high lift 
design group (roughly, Cl  > 0.75).  
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Fig. 5. Distribution of the non-dominated solutions and other design candidates with the 
pressure distribution around the minimum-drag, maximum-lift-to-drag-ratio, and 
maximum-lift airfoils. 

4. Data mining approach based on POD 

Proper orthogonal decomposition (POD, known as the Karhunen-Loeve expansion in 
pattern recognition, and principal component analysis in the statistical literature) is a 
statistical approach that can extract dominant features in data by decomposing the data into 
a set of optimal orthogonal base vectors of decreasing importance. These base vectors are 
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optimal in the sense that any other set of orthogonal base vectors cannot capture more 
information than the orthogonal base vectors obtained by POD as long as the number of 
base vectors is limited. The POD has also been extensively used in image processing, 
structural vibration, analysis of unsteady flow data and so on. 
In this study, airfoil shape and flow data of the non-dominated solutions are analyzed using 
the snapshot POD proposed by Sirovich (Sirovich, 1987). The non-dominated solutions from 
the minimum drag design to the maximum-lift design are numbered as shown in Fig. 6. 
Each non-dominated solution has large scale data such as shape and flow defined on all grid 
points (Fig.7). 

n=85

n=1

Dominated solutions
Non-dominated solutions

C
d

C
l  

Fig. 6. Index of the non-dominated solutions. For the minimum-drag design, n=1;  
for the maximum-lift design, n=nmax=85. 
 

 

Fig. 7. Computational grid around an airfoil shape. The number of grid points is 9,849 (201x49) 
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In the original snapshot POD, the data to be analyzed are decomposed into the mean vector 
and the fluctuation vector, which is defined from the mean vector. It is known that analysis 
of the fluctuation from the mean vector maximizes variance of the data. However, for 
analysis of non-dominated solutions, it would be reasonable to define the fluctuation from 
one representative design, for example, the median design. Here, the fluctuation from the 
l/d-maximum design is analyzed. The data of the non-dominated solutions are decomposed 
into the data of the maximum-lift-to-drag-ratio design and fluctuation data as follows: 
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The fluctuation vector is then expressed by the linear sum of normalized eigenvectors and 
orthogonal base vectors as follows: 

 1 max
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where each eigenvector is determined so that the energy defined by Eq. (3) is maximized: 
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( , )
j
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j

q j m
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′∑ , m = 1, 2, …, mmax (3) 

The eigenvectors that maximize the energy defined by Eq. (3) can be obtained by solving the 
eigenvalue problem of the following covariance matrix: 
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where 

 
max
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1
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=

′ ′= ∑  (5) 

5. Data mining of airfoil shape data 

The shape data analysed here are the y coordinates defined on the grid points along the 
airfoil surface as shown in Fig. 8 where the number of grid points is 137. The energy ratios of 
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10 principal orthogonal base vectors (principal POD modes) to the total energy are shown in 
Fig. 9. While the fluctuation from the airfoil shape data of the l/d maximum design is 
analysed, principal modes are successfully extracted. The first mode is dominant (more than 
83%) and the first two modes represent more than 94% of the total energy. 
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Fig. 8. Definition of the shape data. Shape data analyzed here are y coordinates defined on 
grid points along the airfoil surface. 
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Fig. 9. Energy ratio of the top ten principal modes of the airfoil shape. 

Figure 10 shows the components of the eigenvectors of the first and second modes with 

respect to the index of the non-dominated solutions n (left) and the lift coefficient Cl(n) 

(right), respectively. Obtained non-dominated airfoil shapes are categorized into three 
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groups, i.e., low drag design group (roughly 1≤n≤39 and Cl <0.65), high l/d design group 

(40≤n≤52 and 0.65< Cl <0.75), and high lift design group (53≤n≤85 and Cl >0.75). As for the 

low drag design group, the second mode is dominant and the eigenvector of the first mode 

is approximately zero. Among the high lift design group, the first mode is dominant and the 

eigenvector of the second mode is small. The non-dominated solutions in the high l/d design 

group have no significant difference in the shape. A large jump in the first mode is observed 

between n=52 and n=53. This jump indicates a significant change in the shape between the 

high l/d designs and high lift designs.  
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(a) Components of the eigenvectors with 
respect to n 

(b) Components of the eigenvectors with 
respect to Cl (n) 

Fig. 10. Components of the eigenvectors of the first and second modes. 

Figure 11 presents the l/d-maximum airfoil shape and orthogonal base vectors of the first 

and second modes. This figure indicates that the mode 1 mainly contributes to the most part 

of the lower surface change. The base vector of the mode 1 also indicates that thickness near 

the leading edge should be increased as the camber is increased. This comes from the 

constraint on the maximum thickness imposed on the design optimization problem. The 

base vector of the second mode indicates that the second mode mainly contributes to the 

camber near the trailing edge.  

Recalling the shapes of the non-dominated solutions are represented by equations (1) and 

(2), Figures 10 and 11 indicate that the low drag design group increase lift by changing the 

camber near the trailing edge while the other part of the airfoil shape is almost fixed. As for 

the high lift design group, lift is increased by moving the lower surface upward without 

significant change in the trailing edge angle. This movement of the lower surface 

corresponds to camber increase. The thickness near the leading edge is increased as the 

lower surface moves upward to satisfy the constraint applied to the airfoil maximum 

thickness near the leading edge. 
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(a) Base vector of the first mode (b) Base vector of the second mode 

Fig. 11. Shape of the maximum-lift-to-drag-ratio airfoil design and the orthogonal base 
vectors of the first and second modes. 

To identify the advantage of the present approach over the conventional approach, design 

parameters of the non-dominated designs are analysed. Figure 12 presents scatter plots of 

the design parameters of the non-dominated solutions against the lift coefficient (upper) and 

the drag coefficient (lower). These plots give us some ideas such as 1) the non-dominated 

solutions may be categorized into two groups (see for example Cl against y2 or y4), and 2) 

airfoil camber increases as the lift increases. However, analysis of this figure hardly leads to 

the design knowledge we obtained in this section such as 1) the non-dominated solutions 

can be categorized into three groups, 2) Among the low drag designs, lift is increased by 

changing the camber near the trailing edge and 3) Among the high lift designs, the lift is 

increased by moving the lower surface upward. The reason for that is these features are 

represented by multiple design parameters. For example, camber near the trailing edge is 

mainly represented by x1, y1, x6, and y6. 

6. Data mining of flow data 

Here, as an example of flow data, static pressure data defined on all grid points of the non-

dominated solutions are analysed, where the number of the grid points is 9,849 (201x49) 

(Fig.7). The energy ratios of the 10 principal orthogonal base vectors are presented in Fig. 13. 

The first mode is dominant (more than 79%) and the first two modes represent more than 

92% of the total energy. These results are qualitatively the same as the airfoil shape data 

mining results. 
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Fig. 12. Scatter plot matrix of the design parameters with respect to the lift or drag 
coefficients. 
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Fig. 13. Energy ratio of the top 10 principal modes of the pressure field distribution. 

Figure 14 plots the components of the eigenvector of the first four modes with respect to the 

index of the non-dominated solutions (left) and the lift coefficient (right). This figure 

indicates that the pressure field of the non-dominated solutions can be categorized into 

three groups as the result of the shape data mining, namely, low-drag designs (1 ≤ n ≤ 39), 

high-lift-to-drag-ratio designs (40 ≤ n ≤ 52), and high-lift designs (53 ≤ n ≤ 85). Among the 

low-drag designs, the components of the first and second modes increase monotonically to 

zero as n or Cl (n) increases. Among the high-lift-to-drag-ratio designs, the first mode 

increases monotonically as n or Cl (n) increases, whereas the second mode is approximately 
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Fig. 14. Eigenvectors of the first four modes of the pressure field distribution. 
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zero. Among the high-lift designs, the first mode increases monotonically as n or Cl (n) 
increases, whereas the second mode decreases monotonically as n or Cl (n) increases. In this 
figure, a large jump in the components of the eigenvectors is also observed between n = 52 
and n = 53. This jump indicates a significant change in the flow field between the high-lift-
to-drag-ratio designs and high-lift designs.  
The orthogonal base vectors of the first and second modes are shown in Fig. 15. These 
vectors indicate that the major changes among the pressure fields of the non-dominated 
solutions are 1) on the lower surface side near the trailing edge (region 1), 2) on the lower 
surface side near the leading edge (region 2), and 3) on the upper surface (region 3). These 
vectors also indicate that the pressure on the lower surface side near the leading and trailing 
edges decreases as the pressure on the upper surface side decreases. 
 

-1.8193 2.26865

region 1
region 2

region 3

Base vector of the mode 1

  
-1.4349 1.07802

Base vector of the mode 2

region 1
region 2

region 3

 

Fig. 15. Orthogonal base vectors of the first and second modes of the pressure field. 

Recalling that the pressure fields of the non-dominated solutions are represented by Eqs. (1) 
and (2) and that the first and second modes are dominant (more than 92%), the eigenvectors 
(Fig. 14) and base vectors (Fig. 15) of the first and second modes and the pressure field of the 
maximum-lift-to-drag-ratio design (Fig. 16) provide the following observations: 
1. In region 1, the second mode is dominant because the base vector of the first mode is 

approximately zero. Since the base vector of the second mode in region 1 is positive, the 
eigenvector of the second mode indicates that the high-lift-to-drag-ratio designs have 
the highest pressure near the trailing edge on the lower surface and that the pressure in 
region 1 increases monotonically as n (or lift) increases among the low-drag designs. 

2. In region 2, the base vector of the first mode is negative, whereas that of the second 
mode is positive. The absolute value of the second mode is approximately half that of 
the first mode. Among the low-drag designs, the eigenvectors of the first and second 
modes increases monotonically as n (or lift) increases, and the absolute value of the 
second mode is approximately double that of the first mode. These facts indicate that 
the pressure field in region 2 does not change much among the low-drag designs 
because the first and second modes cancel out. Among the high-lift-to-drag-ratio 
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designs, the eigenvector of the first mode increases monotonically, whereas that of the 
second mode is approximately zero, which indicates that pressure in this region 
decreases as n (or lift) increases. Among the high-lift designs, the pressure in this region 
decreases drastically as n (or lift) increases. 

3. In region 3, as in region 2, the pressure field does not change much among the low-drag 
designs because the first and second modes (the first and second terms of the right-
hand side of Eq. (2)) approximately cancel out. Among the high-lift-to-drag-ratio 
designs and high-lift designs, the pressure in region 3 increases as n (or lift) increases. 
The jump in the components of the eigenvectors of the first and second modes is due to 
strong shock wave generation on the upper surface. 

 

region 1
region 2

region 3

 

Fig. 16. Pressure field of the maximum-lift-to-drag-ratio design 

7. Conclusion 

A new approach for knowledge extraction from large data set of the non-dominated 
solutions is presented and applied to the non-dominated solutions of an aerodynamic 
transonic airfoil shape optimization. This approach decomposes the data of all non-
dominated solutions into principal modes and base vectors using POD. One can discover 
knowledge from large data set of the non-dominated solutions by analysing the principal 
modes and base vectors. One of the advantages of this method is that the knowledge one 
can obtain does not depend on how the shape is parameterized for design optimization. 
Another advantage is that data mining of flow data leads to understanding of the physics 
behind the design problem.  
This chapter demonstrated knowledge extraction from shape and static pressure data of 
non-dominated solutions of an aerodynamic transonic airfoil shape design optimization 
problem. The present result showed feasibility and benefit of data mining of such data. 
Though the application of the POD-based data mining method was limited to the non-
dominated solutions of a two-objective aerodynamic shape optimization problem in this 
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chapter, its application is not limited to two-objective aerodynamic optimization problems. 
Application of this method to design optimization problem in other research field such as 
structure and heat transfer is straightforward. Application to non-dominated solution of a 
three or more objective design optimization problem is also possible if it is coupled with 
other visualization methods and/or data mining methods such as scatter plot matrix and 
SOM.  The POD-based data mining method has strong potential for innovation in design in 
space engineering. 
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