
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

21

Quality Model based on
Object-oriented Metrics and Naive Bayes

Sai Peck Lee and Chuan Ho Loh
University of Malaya

Malaysia

1. Introduction

Software quality engineering is a field in software engineering specializing on improving

the approach to software quality on different software artifacts such as object-oriented

analysis models, object-oriented design models, and object-oriented implementation

models. Software quality is the degree to which a software artifact exhibits a desired

combination of quality-carrying attributes (e.g. testability, reliability, reusability,

interoperability, and other quality-carrying attributes). This research specializes on

improving the code quality of object-oriented systems through a quality model that utilizes

a suite of object-oriented metrics and a machine learning technique, namely Naive Bayes.

Most of the existing object-oriented metrics and machine learning techniques capture similar

dimensions in the data sets, thus reflecting the fact that many of the object-oriented metrics

and machine learning techniques are based on similar hypotheses, properties, and

principles. Accurate quality models can be built to predict the quality of object-oriented

systems by using a subset of the existing object-oriented design metrics and machine

learning techniques. This research proposes a software quality model, namely QUAMO to

assess the quality of object-oriented code on-the-fly. The primary objective of the model is to

make similar studies on software quality more comparable and repeatable. The model is

augmented from five quality models, namely Boehm Model, McCall Model, FURPS, ISO

9126, and Dromey Model. The quality model specializes on Bayesian network classifier,

Naive Bayes. The Naive Bayes classifier, a simple classifier based Bayes’ law with strong

independence assumptions among features is comparable to other state-of-the-art classifiers,

namely ID3 Decision Tree, J48 Decision Tree, and C4.5 Decision Tree. Naive Bayes is very

effective in solving the classification problems addressed in this research, namely the

conditional maximum likelihood prediction of faults in object-oriented systems. Most of the

metrics proposed by other researchers mainly specialized at the class level such as CK

Metrics Suite and MOOD Metrics Suite (Chidamber & Kemerer, 1994). Fewer component

level metrics have been proposed such as Rate of Component Observability, Rate of

Component Customizability, and Self-Completeness of Component's Return Value. As such,

this research also proposes a suite of specialized object-oriented metrics that can be applied

at the class and component levels as some insights can be gained by examining the average

characteristics of both a class and a component. Each metric quantifies a particular feature of

an object-oriented system. In other words, each refers to a structural mechanism of the

www.intechopen.com

 New Fundamental Technologies in Data Mining

404

object-oriented paradigm such as inheritance is expressed as quotient. The numerator in the

quotient represents the actual use of a mechanism such as inheritance (Mi) on the object-

oriented design (OOD). The denominator, which acts as a normalizer, represents the

hypothetical maximum use for the mechanism, Mi on an OOD (i.e. it considers the number

of classes and their inheritance relations). The metrics are thus expressed as indexes, ranging

from 0 (e.g. indicating no use) to 1 (e.g. indicating maximum use).

2. Motivation

A principal objective of software quality engineering is to improve the quality of software
artifacts such as object-oriented analysis models, object-oriented design models, and object-
oriented implementation models. Quality in software artifacts is a composite of
characteristics such as portability, reliability, testability, reusability, and maintainability,
which are collectively known as quality-carrying attributes. The factors that affect software
quality can be categorized in two distinctive categories, namely factors that can be directly
measured (e.g. number of defects) and factors that can be measured only indirectly (e.g.
reusability). Generally, the notion of quality is usually captured in the form of a diagram,
function or equation, which is collectively known as a model. There are several types of
models, namely software process models, software maturity models, and software quality
models. Insights to quality can be gained in two ways: by examining quality-carrying
attributes through a software quality model, and by examining software artifacts through
software metrics (i.e. formulate a set of meaningful software metrics based on these
attributes, and to use the metrics as indicators that will lead to a strategy for software
quality improvement) and machine learning techniques (i.e. formulate a set of meaningful
machine learning techniques based on these attributes, and to use the machine learning
techniques as predictors that will lead to a strategy for software quality improvement). In
this research, quality is measured in terms of adherence of a set of metrics to a set of
attributes used to distinctively evaluate the quality of object-oriented systems by making
quality a quantifiable concept via a software quality model.

3. Related work

A number of software quality models have been proposed to evaluate the quality of a
software system. The best known software quality models in chronological order are Boehm
Model, McCall Model, FURPS, ISO 9126, and Dromey Model (Boehm et al., 1976; McCall et
al., 1977; Dromey, 1995, 1996; Ortega et al., 2003). Existing software quality models can be
distinguished based on number of layers (e.g. 2 layers as in Dromey model and 3 layers as in
Boehm and McCall models), number of relationships (e.g. 1:n relationship as in ISO 9126
model – every characteristic has its own set of subcharacteristics, and n:m relationship as in
Factor-Criteria-Model – every subcharacteristic is linked to one or more characteristics),
support for metrics (e.g. no support for metrics as in Dromey model and support for metrics
as in McCall model), and approach to software quality measurement (e.g. fixed quality
model approach as in Boehm, McCall, and ISO 9126 models, and “define your own quality
model” approach as in COQUAMO model) (Ortega et al., 2000, 2002, 2003; Callaos &
Callaos, 1996; Bansiya & Davis, 2002; Georgiadou, 2003; Khaddaj & Horgan , 2005; Côté et
al., 2007). Supervised learning can be formulated using either a discriminative approach
(e.g. Logistic Regression) or a generative approach (e.g. Naive Bayes). A number of

www.intechopen.com

Quality Model based on Object-oriented Metrics and Naive Bayes

405

supervised learning techniques have been introduced such as Neural Nets, Logistic
Regression, Naive Bayes, Decision Tree, and Support Vector Machine. There are three
methods to establish a classifier: model a classification rule directly (e.g. Decision Tree),
model the probability of class memberships given input data (e.g. Multilayer Perceptron),
make a probabilistic model of data within each class (e.g. Naive Bayes). The first and the
second methods are examples of discriminative classification. The second and the third
methods are both examples of probabilistic classification. The third method is an example of
generative classification.

4. Software quality model

4.1 Formulate the software quality model

In the absence of an agreed measure of software quality the number of software defects (e.g.
number of software faults and number of software violations) has been a very commonly
used surrogate measure. As a result, there have been numerous attempts to build models for
predicting the number of software defects. Quality in a typical software artifact is a
composite of quality-carrying attributes such as usability, portability, reliability, testability,
reusability, and maintainability. As a result, we do not adopt a given model’s
characterization of quality in QUAMO. We propose a “define your own quality model”
approach in QUAMO. In QUAMO, we need to formulate a composition in which we agree
specific measures for the lowest-level attributes and specific relationships between the
attributes apart from the Key Quality-carrying Attributes (KQA) described in Section 4.2
and Key Quality Metrics (KQM) described in Section 4.3. QUAMO is augmented from five
software quality models: Boehm Model, McCall Model, FURPS, ISO 9126, and Dromey
Model. In QUAMO, we measure the quality-carrying attributes objectively to investigate if
the quality-carrying attributes meet the specified, quantified targets via different object-
oriented metrics and Naive Bayes. QUAMO consists of 2 layers: the quality-carrying
attribute layer and the object-oriented metrics layer. The upper branches hold important
high-level quality-carrying attributes of object-oriented systems. Examples of such quality-
carrying attributes are flexibility (i.e. to evaluate the effort required in modifying an
operational class or component in an object-oriented system), maintainability (i.e. to
evaluate the effort required in maintaining an operational class or component in an object-
oriented system), reliability (i.e. to evaluate the extent to which an operational class or
component performs its intended functional requirements in an object-oriented system),
reusability (i.e. to evaluate the effort required in reusing an operational class or component
in an object-oriented system), testability (i.e. to evaluate the effort required in testing an
operational class or component in an object-oriented system), usability (i.e. to evaluate the
effort required in learning and operating an operational class or component in an object-
oriented system), and traceability (i.e. to evaluate the effort required in tracing an
operational class or component in an object-oriented system). Each quality attribute is
composed of lower-level criteria, namely object-oriented metrics (e.g. depth of inheritance
tree, class size, and number of children). QUAMO generally resembles a tree that illustrates
the important relationships between quality and its dependent criteria (i.e. quality-carrying
attributes) so that quality in terms of the dependent criteria can be measured. Table 1 depicts
a typical organization of input attributes, output attributes, and quality-carrying attributes
in QUAMO. IA, IAV, OA, IAOAV, QCA, and IAQCAV collectively denotes input attribute,
input attribute value (discrete value), output attribute, input attribute/output attribute

www.intechopen.com

 New Fundamental Technologies in Data Mining

406

value (discrete value), quality-carrying attribute, input attribute/quality-carrying attribute
value (discrete value). Examples of input attributes (i.e. effect/evidence) include KQM such
as class inherited index and lack of class inherited index, and other object-oriented metrics.
Examples of output attribute (i.e. cause) are number of software violations (i.e. compile-time
defects) and number of software faults (i.e. run-time defects). Examples of quality-carrying
attributes include KQA such as efficiency and reliability, and other quality-carrying attributes.

 OA1 OA2 … OAn QCA1 QCA2 … QCAn

IA1 IAV1 IA1OAV1 IA1OAV2 … IA1OAVn IA1QCAV1 IA1QCAV2 … IA1QCAVn

IA2 IAV2 IA2OAV2 IA2OAV2 … IA2OAVn IA2QCAV1 IA2QCAV2 … IA2QCAVn

IA3 IAV3 IA3OAV3 IA3OAV2 … IA3OAVn IA3QCAV1 IA3QCAV2 … IA3QCAVn

IA4 IAV4 IA4OAV4 IA4OAV2 … IA4OAVn IA4QCAV1 IA4QCAV2 … IA4QCAVn

…. … … … … … … … … …

IAn IAVn IAnOAVn IAnOAV2 … IAnOAVn IAnQCAV1 IAnQCAV2 … IAnQCAVn

Table 1. Input attributes, output atributes, and quality-carrying attributes in QUAMO

4.2 Formulate the key quality-carrying attributes

KQA are quality-carrying attributes that present in all the five models studied in this

research: Boehm Model, McCall Model, FURPS, ISO 9126, and Dromey Model. Table 2

depicts a comparison of the quality-carrying attributes in Boehm, McCall, FURPS, ISO 9126,

and Dromey models. Since efficiency, reliability, and maintainability quality-carrying

attributes present in all the models, they are considered essential in QUAMO. They are

collectively referred to as KQA in QUAMO, which are mandatory attributes in QUAMO.

4.3 Formulate the key quality metrics

We propose eight KQM to measure the quality of object-oriented systems through QUAMO,
namely Class Cohesion Index (CsCohI), Lack of Class Cohesion Index (LCsCohI),
Component Cohesion Average (CoCohA), Lack of Component Cohesion Average
(LCoCohA), Class Inherited Index (CsII), Lack of Class Inherited Index (LCsII), Component
Inherited Average (CoIA), and Lack of Component Inherited Average (LCoIA). Table 3 and
Table 4 depict the notations of CsCohI, CoCohA, LCsCohI, and LCoCohA, and the
properties of CsCohI, CoCohA, LCsCohI, and LCoCohA, respectively. Similarly, Table 5 and
Table 6 depict the notations of CsII, CoIA, LCsII, and LCoIA, and the properties of of CsII,
CoIA, LCsII, and LCoIA, respectively.

4.3.1 Class-based cohesion metrics

We propose two class-based cohesion metrics, namely Class Cohesion Index (CsCohI) and

Lack of Class Cohesion Index (LCsCohI) to measure the overall density of similarity and

dissimilarity of methods in a class. CsCohI measures the degree of similarity of methods in a

class. The CsCohI within a class Cs is expressed as:

www.intechopen.com

Quality Model based on Object-oriented Metrics and Naive Bayes

407

⎧ >⎪
⎨
⎪⎩

TCohM
,TCohM>0 and TM 0

CsCohI(Cs)= TM
0, otherwise

Each method within a class accesses one or more attributes (i.e. instance variables). CsCohI is
the number of methods that access one or more of the same attributes. If no methods access at
least one attribute, then CsCohI = 0. In general, low values for CsCohI imply that the class
might be better designed by breaking it into two or more separate classes. Although there are
cases in which a low value for CsCohI is justifiable, it is desirable to keep CsCohI high (i.e.
keep cohesion high). CsCohI < 1 indicates that the class is not quite cohesive and may need to
be refactored into two or more classes. Classes with a low CsCohI can be fault-prone. A low
CsCohI value indicates scatter in the functionality provided by the class. CsCohI is expressed
as a nondimensional value in the range of 0 ≤ CsCohI ≤ 1. Similarly, the overall degree of
dissimilarity of methods within a class Cs, LCsCohI(Cs), is expressed as:

⎧ >⎪
⎨
⎪⎩

TCohM
1- , TCohM>0 and TM 0

LCsCohI(Cs)= TM
0, otherwise

4.3.2 Component-based cohesion metrics
We propose two component-based cohesion metrics, namely Component Cohesion Average
(CoCohA) and Lack of Component Cohesion Average (LCoCohA) to measure the overall
density of similarity and dissimilarity of methods in the classes within a component.
CoCohA measures the degree of class cohesion indexes in a component. The CoCohA
within a component Co is expressed as:

⎧ >⎪
⎨
⎪⎩

TCsCohI
, TCsCohI>0 and TC 0

CoCohA(Co)= TC
0, otherwise

CoCohA is defined in an analogous manner and provides an indication of the overall degree
of similarity of methods in the classes within a component. CoCohA is based on the notation
that methods in the classes are similar if they share common instance variables. The larger
the number of similar methods in the classes within a component, the more cohesive the
component. Hence, CoCohA is a measure of the relatively disparate nature of the methods
in the classes within a component. The CoCohA numerator is the sum of class cohesion
indexes in a component, TCsCohI. The CoCohA denominator is the total classes in a
component. The CoCohA numerator represents the maximum number of similarity of
method situations in the classes for a component. CoCohA is expressed as a nondimensional
value in the range of 0 ≤ CoCohA ≤ 1. In general, a low value for CoCohA indicates a low
proportion of class cohesion indexes in a component, and a high value for CoIA indicates a
high proportion of class cohesion indexes in a component. A low value for CoCohA is
undesirable. Similarly, the overall degree of dissimilarity of methods in the classes within a
component Co, LCoCohA(Co), is expressed as:

⎧ >⎪
⎨
⎪⎩

TCsCohI
1- , TCsCohI > 0 and TC 0

LCoCohA(Co)= TC
0, otherwise

www.intechopen.com

 New Fundamental Technologies in Data Mining

408

Software Quality Models

Quality-carrying
Attributes

Boehm
Model
(1978)

McCall
Model
(1977)

FURPS

(1987)

ISO 9126

(1991)

Dromey
Model
(1995)

Testability x x x

Correctness x

Efficiency x x x x x

Understandability x x

Reliability x x x x x

Flexibility x x

Functionality x x x

Human Engineering x

Integrity x x

Interoperability x x

Process Maturity x

Maintainability x x x x x

Changeability x

Portability x x x x

Reusability x x

Table 2. Quality-carrying attributes in Boehm model, McCall model, FURPS, ISO 9126, and
Dromey model

4.3.3 Discussions

LCsCohI and LCoCohA are inverse metrics of CsCohI and CoCohA respectively. A high

value of CsCohI, and CoCohA, and a low value of LCsCohI and LCoCohA indicate high

cohesion and well-designed class and component. Similarly, a low value of CsCohI, and

CoCohA, and a high value of LCsCohI and LCoCohA indicate low cohesion and poorly

designed class and component. It is likely that the class and component have good

subdivision. A cohesive class tends to provide a high degree of encapsulation. A lower

value of CsCohI and CoCohA indicate decreased encapsulation, thereby increasing the

likelihood of errors. Similarly, a lower value of LCsCohI and LCoCohA indicate increased

encapsulation, thereby decreasing the likelihood of errors.

4.3.4 Class-based inheritance metrics

We propose two class-based inheritance metrics, namely Class Inherited Index (CsII) and
Lack of Class Inherited Index (LCsII) to measure the overall inheritance density in a class.

www.intechopen.com

Quality Model based on Object-oriented Metrics and Naive Bayes

409

CsII measures the degree of inherited attributes and methods in a class. The CsII within a
class Cs is expressed as:

⎧ + >⎪
⎨
⎪⎩

TIA+TIM
, TIA+TIM>0 and TM TA 0

CsII(Cs)= TM+TA
0, otherwise

CsII is defined in an analogous manner and provides an indication of the impact of
inheritance at the class level. The CsII numerator is the sum of inherited attributes and
methods in a class. The CsII demoninator is the total number of attributes and methods in a
class. The CsII numerator represents the maximum number of possible distinct inheritance
situations for a class. CsII is expressed as a nondimensional value in the range of 0 ≤ CsII ≤
1. In general, a low value for CsII indicates a low proportion of inherited attributes and
methods in a class, and a high value for CsII indicates a high proportion of inherited
attributes and methods in a class. A high value of CsII is undesirable. As the number of
inherited attributes and methods increases, the value of CsII also increases. Similarly, the
overall degree of non-inherited attributes and non-inherited methods within a class Cs,
LCsII(Cs), is expressed as:

⎧
⎪
⎨
⎪⎩

TIA+TIM
1- , TIA+TIM > 0 and TM+TA > 0

LCsII(Cs)= TM+TA
0, otherwise

4.3.5 Component-based inheritance metrics
We propose two component-based inheritance metrics, namely Component Inherited
Average (CoIA) and Lack of Component Inherited Average (LCoIA) to measure the overall
inheritance density in the classes of within a component. CoIA measures the degree of class
inherited indexes in a component. The CoIA within a component Co is expressed as:

⎧
⎪
⎨
⎪⎩

TCsII
, TCsCII>0 and TC > 0

CoIA(Co)= TC
0, otherwise

CoIA is defined in an analogous manner and provides an indication of the impact of
inheritance at the component level. The CoIA numerator is the sum of class inherited
indexes in a component. The CoIA denominator is the total classes in a component. The
CoIA numerator represents the maximum number of possible distinct inheritance situations
for a component. CoIA is expressed as a nondimensional value in the range of 0 ≤ CoIA ≤ 1.
In general, a low value for CoIA indicates a low proportion of class inherited indexes in a
component, and a high value for CoIA indicates a high proportion of class inherited indexes
in a component. A high value for CoIA is undesirable. As the class inherited indexes
increases, the value of CoIA also increases. Similarly, the overall degree of non-inherited
attributes and non-inherited methods in the classes within a component Co, LCoIA(Co), is
expressed as:

⎧
⎪
⎨
⎪⎩

TCsII
1- , TCsCII > 0 and TC > 0

LCoIA(Co)= TC
0, otherwise

www.intechopen.com

 New Fundamental Technologies in Data Mining

410

Notation Description C++ Java

CsCohI
class cohesion index
within a class

- -

CoCohA
component cohesion
average within a
component

- -

LCsCohI
lack of class cohesion
index within a class

- -

LCoCohA
lack of component
cohesion average within a
component

- -

TC
total number of classes in
a component

total number of classes in
a directive

total number of classes in
a package

TCsCohI
total of class cohesion
indexes in a component

- -

TCohM

methods declared and
inherited in a class
assessing at least one
instance variable

all function members
declared and inherited in
a class excluding virtual
(deferred) ones assessing
at least one instance
variable

all methods declared and
inherited in a class
excluding abstract
(deferred) ones assessing
at least one instance
variable

TM
methods declared and
inherited in a class

all function members
declared and inherited in
a class excluding virtual
(deferred) ones

all methods declared and
inherited in a class
excluding abstract
(deferred) ones

Table 3. Notations of CsCohI, CoCohA, LCsCohI, and LCoCohA

4.3.6 Discussions

LCsII and LCoIA are inverse metrics of CsII and CoIA respectively. A high value of CsII,
and CoIA, and a low value of LCsII and LCoIA indicate high inheritance. Similarly, a low
value of CsII, and CoIA, and a high value of LCsII and LCoIA indicate low inheritance. A
lower value of CsII and CoIA indicate decreased inheritance and complexity, thereby
decreasing the likelihood of errors. Similarly, a higher value of LCsII and LCoIA indicate
increased inheritance and complexity, thereby increasing the likelihood of errors.

4.4 Formulate the software quality prediction model

This research adopts supervised learning through Naive Bayes to formulate the software
quality prediction model. The primary objective of adopting supervised learning in
QUAMO is to infer a functional mapping based on a set of training examples to assess the
quality of object-oriented code. More specifically, the supervised learning in QUAMO can
be formulated as the problem of inferring a function y = f(x) based on a training set D = {(x1,

www.intechopen.com

Quality Model based on Object-oriented Metrics and Naive Bayes

411

y1), {(x2, y2), {(x3, y3), {(x4, y4),…, (xn, yn)}. The obtained function is evaluated by how well it
generalizes. This research uses Naive Bayes as the primary method to predict software
quality. Naive Bayes classifiers can be trained very efficiently in a supervised learning.

Properties for CsCohI and LCsCohI

Property 1
If n is a non-negative number, then there is only a finite number of
cohesive methods (i.e. number of methods assessing at least one
instance variable) TCohM for which TCohM = n.

Property 2
If n is a non-negative number, then there is only a finite number of
attributes declared and inherited in a class TCsA for which TCsA = n.

Property 3
If n is a non-negative number, then there is only a finite number of
methods declared and inherited in a class TCsM for which TCsM = n.

Property 4
There are distinct classes Cs1 and Cs2 for which Cs1 is the superclass of
Cs2.

Property 5
There are inherited attributes, IA1, IA2, IA3,…, IAn, for which IA1 ≠

IA2 ≠ IA3 … ≠ IAn

Property 6
There are inherited methods, IM1, IM2, IM3,…, IMn, for which IM1 ≠

IM2 ≠ IM3 … ≠ IMn

Properties for CoCohA and LCoCohA

Property 1
If n is a non-negative number, then there is only a finite number of
classes TCs for which TCs = n.

Property 2
If n is a decimal number, then there are total class inherited indexes
TCsCohI for which TCsCohI = n.

Table 4. Properties of CsCohI, CoCohA, LCsCohI, and LCoCohA

Naive Bayes also generally gives better test accuracy than any other know machine learning

techniques such as ID3 Decision Tree, C4.5 Decision Tree, and J48 Decision Tree. We can

greatly simplify learning in software quality prediction by assuming that quality-carrying

features are independent of each other through Naive Bayes. Naive Bayes assumes that the

presence or absence of a particular feature of a class is unrelated to the presence or absence

of any other feature. Naive Bayes learning gives better test set accuracy than any other

known method, including Backpropagation and Decision Trees. Naive Bayes classifier can

also be learned very efficiently. We have selected Naive Bayes as the primary technique to

assess software quality in object-oriented code through a 2-layer “define your own quality

model” based on a suite of object-oriented metrics.

The Naive Bayes classifier in QUAMO learns the conditional probability of each quality-
carrying attribute QAi given the class label C (i.e. a discretized value of an object-oriented
metric). Classification is performed by applying Bayes rule to compute the
probability of C given the particular instance of QA1, QA2, QA3, QA4, QA5, …, QAn, and
then predicting the class with the highest posterior probability. This computation is possible
by making a strong independence assumption that all the quality attributes QAi are

www.intechopen.com

 New Fundamental Technologies in Data Mining

412

conditionally independent given the value of the class C. We refer independence as
probabilistic independence (i.e. X is independent of Y given Z when P(X | Y, Z) = P(X | Z)
for all possible values of X, Y, and Z when P(Z) > 0. When X is a vector of discrete-valued

object-oriented metrics (e.g. binary, X ∈ {low, high}), we adopt a 2-step approach: learn

Notation Description C++ Java

CsII class inherited index - -

LCsII lack of class inherited index - -

CoIA component inherited average - -

LCoIA
lack of component inherited
average

- -

TC total classes
total number of classes
in a directive

total number of classes
in a package

TCsII total class inherited indexes - -

TM
Methods declared and
inherited

all function members
declared and inherited
in a class including
virtual (deferred) ones

all methods declared
and inherited in a class
including abstract
(deferred) ones

TA
attributes declared and
inherited

all data members
declared and inherited
in a class

all attributes declared
and inherited in a class

TIM methods inherited
all function members
inherited and not
overridden

all methods inherited in
a class and not
overridden

TIA attributes inherited
all data members
inherited in the class

all attributes inherited
in a class

Table 5. Notations of CsII, CoIA, LCsII, and LcoIA

and test. When X is a vector of continuous-valued object-oriented metrics, we adopt a 3-step

approach: discretize, learn, and test. Figure 1 depicts a typical Naive Bayes classifier in

QUAMO. We can view the function approximation learning algorithm adopted in QUAMO

as statistical estimators of conditional distributions P(Y | X) or of functions that estimate P(Y

www.intechopen.com

Quality Model based on Object-oriented Metrics and Naive Bayes

413

| X) from a sample of training data in QUAMO. Naive Bayes uses Bayes' Theorem to predict

the value of a target (i.e. output in QUAMO), from evidence given by one or more predictor

(i.e. input in QUAMO) fields. Table 7, Table 8, and Table 9 depict the discretize, learn, and

test algorithms.

Properties for CsII and LcsII

Property 1
If n is a non-negative number, then there is only a finite number of
inherited attributes TCsIA for which TCsIA = n.

Property 2
If n is a non-negative number, then there is only a finite number of
inherited methods TCsIM for which TCsIM = n.

Property 3
If n is a non-negative number, then there is only a finite number of
attributes TCsA for which TCsA = n.

Property 4
If n is a non-negative number, then there is only a finite number of
methods TCsM for which TCsM = n.

Property 5
There are distinct classes Cs1 and Cs2 for which Cs1 is the
superclass of Cs2.

Property 6
There are inherited attributes, IA1, IA2, IA3,…, IAn, for which IA1

≠ IA2 ≠ IA3 … ≠ IAn

Property 7
There are inherited methods, IM1, IM2, IM3,…, IMn, for which IM1

≠ IM2 ≠ IM3 … ≠ IMn

Properties for CoIA and LCoIA

Property 1
If n is a non-negative number, then there is only a finite number of
classes TCs for which TCs = n.

Property 2
If n is a decimal number, then there are total class inherited indexes
TCsII for which TCsII = n.

Table 6. Properties of CsII, CoIA, LCsII, and LcoIA

5. Conclusion

The primary objective of this research is to propose the characteristics of a quality model
through a comparative evaluation of existing software quality models. Based on the

www.intechopen.com

 New Fundamental Technologies in Data Mining

414

comparative evaluation, an improved hierarchical model, QUAMO for the assessment of
high-level quality attributes in object-oriented systems specializing on object-oriented code
based on object-oriented metrics and Naive Bayes is proposed. In this model, the structural
properties of classes and their relationships are evaluated using Naive Bayes and a suite of
object-oriented metrics. A key attribute of QUAMO is that the model can be augmented to
include different object-oriented metrics and quality-carrying attributes, thus providing a
practical quality assessment instrument adaptable to a variety of object-oriented systems.
QUAMO relates code properties (also referred to as object-oriented constructs) such as
encapsulation, information hiding, and inheritance to high-level quality carrying attributes
such as reusability, flexibility, maintainability, and complexity via Naive Bayes and a suite
of object-oriented metrics.

O

M1 M2 MnM3

Output attribute (cause) such as number of software
violations; discrete values.

Input attributes (effect/evidence)
such as class inherited index and
lack of class inherited index;
discrete values

O

M1 M2 MnM3

P(O) = ?

...... .

...... .

P(M 1 | O) = ?
P(M 1 | ¬O) = ?
P(M 2 | O) = ?
P(M 2 | ¬O) = ?
P(M 3 | O) = ?
P(M 3 | ¬O) = ?
...
...
P(M n | O) = ?
P(M n | ¬O) = ?

Fig. 1. QUAMO Naive Bayes Classifier

Precondition: There are n training instances for which the value of a numeric attribute
(e.g. KQM and other object-oriented metrics, and outputs such as number of software
violations and number of software bugs) Xi is known. The minimum and maximum
values are vmin and vmax respectively.
Postcondition: There are k intervals for which the width w = (vmax – vmin / k).
Rule: The values of the metrics are continuous values.

Algorithm:
Given a numeric attribute Xi
Sort the values of vi (vi = v1, ..., vn) in ascending order
Divide the sorted values of vi between vmin and vmax into intervals of equal width

Table 7. Discretize Algorithm

www.intechopen.com

Quality Model based on Object-oriented Metrics and Naive Bayes

415

Postcondition: Conditional probability tables for xj, Nj x L elements.
Rule: The values of the attrtibutes values are discrete values and the values of target
values are continuous values.

Algorithm:
Given a training set S
For each target value of ci (ci = c1, ..., cL)
 P’(C = ci) ← estimate P(C = ci)
 For every attribute value ajk of each attribute xj (j = 1, ..., n; k = 1, ..., Nj)
P’(Xj = ajk | C = ci) ← estimate P(Xj = ajk | C = ci)

Table 8. Learn Algorithm

Precondition: Conditional probability tables for for xj, Nj x L elements.
Postcondition: c or c* is labelled to X’.
Rule: None.

Algorithm:
Given an unknown instance X’ = (a’1, ..., a’n)
Look up conditional probability tables to assign the label c* to X’
 Compute [P’(a’1 | c*) ... P’(a’n | c*)]P’(c*)
 Compute [P’(a’1 | c*) ... P’(a’n | c*)]P’(c)
 If [P’(a’1 | c*) ... P’(a’n | c*)]P’(c*) > [P’(a’1 | c*) ... P’(a’n | c*)]P’(c),
 c ≠ c*, c = c1, ..., cL then
 Label X’ to be c*
 Else
 Label X’ to be c

Table 9. Test Algorithm

6. References

Bansiya, J. & Davis, C.G. (2002). A hierarchical model for object-oriented design quality
assessment. IEEE Transactions on Software Engineering, Vol.28, No.1, pp. 4-17.

Boehm, B. W.; Brownm, J. R. & Lipow M. (1976). Quantitative evaluation of software quality,
Proceedings of the 2nd International Conference on Software engineering, pp. 592-605,
San Francisco, California, United States.

Callaos, N. & Callaos, B. (1996) . Designing with a systemic total quality, Proceedings of the
International Conference on Information Systems Analysis and Synthesis, pp. 15-23,
Orlando, Florida, United States.

Chidamber S.R. & Kemerer C.F. (1994). A metrcs suite for object-oriented design. IEEE
Transactions on Software Engineering, Vol.20, No.6, pp. 476-493.Côté, M.A.; Suryn, W.
& Georgiadou, E. (2007). In search for a widely applicable and accepted software
quality model for software quality engineering. Software Quality Journal, Vol.15,
No.4, pp. 401-416.

www.intechopen.com

 New Fundamental Technologies in Data Mining

416

Dromey, R.G. (1995). A model for software product quality. IEEE Transactions on Software
Engineering, Vol.21, No.1, pp. 146-162.

Dromey, R.G. (1996). Concerning the Chimera [software quality]. IEEE Transactions on
Software Engineering, Vol.13, No.1, pp. 33-43.

Georgiadou, E. (2003). GEQUAMO – A generic, multilayered, customizable, software
quality model. Software Quality Control, Vol.11, No.4, pp. 313-323.

Khaddaj, S. & Horgan, G. (2005). A proposed adaptable quality model for software quality
assurance, Journal of Computer Science, Vol.1, No.4, pp. 482-487.

McCall, J.A., Richards, P.K. & Walters, G.F. (1977). Factors in software quality. National
Technical Information Service, Vol.1-3.

Ortega, M.; Pérez, M. & Rojas, T. (2000). A model for software quality with a systemic focus,
Proceedings of the 4th World Multiconference on Systemics, Cybernetics and Informatics,
pp. 464-469, Orlando, Florida, United States.

Ortega, M.; Pérez, M. & Rojas, T. (2002). A systemic quality model for evaluating software
products, Proceedings of the 6th World Multiconference on Systemics, Cybernetics and
Informatics, pp. 371-376, Orlando, Florida, United States.

Ortega, M.; Pérez, M. & Rojas, T. (2003). Construction of a systemic quality model for
evaluating a software product. Software Quality Journal, Vol.11, No.3, pp. 219-242.

www.intechopen.com

New Fundamental Technologies in Data Mining

Edited by Prof. Kimito Funatsu

ISBN 978-953-307-547-1

Hard cover, 584 pages

Publisher InTech

Published online 21, January, 2011

Published in print edition January, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The progress of data mining technology and large public popularity establish a need for a comprehensive text

on the subject. The series of books entitled by "Data Mining" address the need by presenting in-depth

description of novel mining algorithms and many useful applications. In addition to understanding each section

deeply, the two books present useful hints and strategies to solving problems in the following chapters. The

contributing authors have highlighted many future research directions that will foster multi-disciplinary

collaborations and hence will lead to significant development in the field of data mining.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Sai Peck Lee and Chuan Ho Loh (2011). Quality Model based on Object-oriented Metrics and Naive Bayes,

New Fundamental Technologies in Data Mining, Prof. Kimito Funatsu (Ed.), ISBN: 978-953-307-547-1, InTech,

Available from: http://www.intechopen.com/books/new-fundamental-technologies-in-data-mining/quality-model-

based-on-object-oriented-metrics-and-naive-bayes

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

