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1. Introduction

Most clustering approaches in the literature focus on ”flat” data in which each data object
is represented as a fixed-length feature vector (R.O.Duda et al., 2000). However, many
real-world data sets are much richer in structure, involving objects of multiple types that are
related to each other, such as Web pages, search queries and Web users in a Web search system,
and papers, key words, authors and conferences in a scientific publication domain. In such
scenarios, using traditional methods to cluster each type of objects independently may not
work well due to the following reasons.
First, to make use of relation information under the traditional clustering framework, the
relation information needs to be transformed into features. In general, this transformation
causes information loss and/or very high dimensional and sparse data. For example, if we
represent the relations between Web pages and Web users as well as search queries as the
features for the Web pages, this leads to a huge number of features with sparse values for
each Web page. Second, traditional clustering approaches are unable to tackle the interactions
among the hidden structures of different types of objects, since they cluster data of single type
based on static features. Note that the interactions could pass along the relations, i.e., there
exists influence propagation in multi-type relational data. Third, in some machine learning
applications, users are not only interested in the hidden structure for each type of objects,
but also the global structure involving multi-types of objects. For example, in document
clustering, in addition to document clusters and word clusters, the relationship between
document clusters and word clusters is also useful information. It is difficult to discover such
global structures by clustering each type of objects individually.
Therefore, multi-type relational data has presented a great challenge for traditional clustering
approaches. In this study, first, we propose a general model, the collective factorization
on related matrices, to discover the hidden structures of multi-types of objects based on
both feature information and relation information. By clustering the multi-types of objects
simultaneously, the model performs adaptive dimensionality reduction for each type of data.
Through the related factorizations which share factors, the hidden structures of different types
of objects could interact under the model. In addition to the cluster structures for each type
of data, the model also provides information about the relation between clusters of different
types of objects.
Under this model, we derive a novel spectral clustering algorithm, the spectral relational
clustering, to cluster multi-type interrelated data objects simultaneously. By iteratively
embedding each type of data objects into low dimensional spaces, the algorithm benefits
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2 Data Mining

from the interactions among the hidden structures of different types of data objects. The
algorithm has the simplicity of spectral clustering approaches but at the same time also
applicable to relational data with various structures. Theoretic analysis and experimental
results demonstrate the promise and effectiveness of the algorithm.

2. Related work

Clustering on a special case of multi-type relational data, bi-type relational data, such as the
word-document data, is called co-clustering or bi-clustering. Several previous efforts related
to co-clustering are model based. PLSA (Hofmann, 1999) is a method based on a mixture
decomposition derived from a latent class model. A two-sided clustering model is proposed
for collaborative filtering by (Hofmann & Puzicha, 1999).
Spectral graph partitioning has also been applied to bi-type relational data (Dhillon, 2001;
H.Zha & H.Simon, 2001). These algorithms formulate the data matrix as a bipartite graph and
seek to find the optimal normalized cut for the graph. Due to the nature of a bipartite graph,
these algorithms have the restriction that the clusters from different types of objects must have
one-to-one associations.
Information-theory based co-clustering has also attracted attention in the literature. (El-Yaniv
& Souroujon, 2001) extend the information bottleneck (IB) framework (Tishby et al., 1999) to
repeatedly cluster documents and then words. (Dhillon et al., 2003) propose a co-clustering
algorithm to maximize the mutual information between the clustered random variables
subject to the constraints on the number of row and column clusters. A more generalized
co-clustering framework is presented by (Banerjee et al., 2004) wherein any Bregman
divergence can be used in the objective function.
Recently, co-clustering has been addressed based on matrix factorization. Both (Long et al.,
2005) and (Li, 2005) model the co-clustering as an optimization problem involving a triple
matrix factorization. (Long et al., 2005) propose an EM-like algorithm based on multiplicative
updating rules and (Li, 2005) proposes a hard clustering algorithm for binary data. (Ding
et al., 2005) extend the non-negative matrix factorization to symmetric matrices and show that
it is equvilent to the Kernel K-means and the Laplacian-based spectral clustering.
Compared with co-clustering, clustering on general relational data, which may consist of
more than two types of data objects, has not been well studied in the literature. Several
noticeable efforts are discussed as follows. (Taskar et al., 2001) extend the the probabilistic
relational model to the clustering scenario by introducing latent variables into the model.
(Gao et al., 2005) formulate star-structured relational data as a star-structured m-partite graph
and develop an algorithm based on semi-definite programming to partition the graph. Like
bipartite graph partitioning, it has limitations that the clusters from different types of objects
must have one-to-one associations and it fails to consider the feature information.
An intuitive idea for clustering multi-type interrelated objects is the mutual reinforcement
clustering. The idea works as follows: start with initial cluster structures of the data;
derive the new reduced features from the clusters of the related objects for each type of
objects; based on the new features, cluster each type of objects with a traditional clustering
algorithm; go back to the second step until the algorithm converges. Base on this idea,
(Zeng et al., 2002) propose a framework for clustering heterogeneous Web objects and (Wang
et al., 2003) present an approach to improve the cluster quality of interrelated data objects
through an iterative reinforcement clustering process. However, there are no sound objective
function and theoretical proof on the effectiveness and correctness (convergence) of the
mutual reinforcement clustering. (Long et al., 2006) formulate multi-type relational data as
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Fig. 1. Examples of the structures of multi-type relational data.

K-partite graphs and propose a novel algorithm to identify the hidden structures of a k-partite
graph by constructing a relation summary network to approximate the original k-partite
graph under a broad range of distortion measures.
To summarize, the research on multi-type relational data clustering has attracted substantial
attention, especially in the special cases of relational data. However, there is still limited and
preliminary work on the general relational data. This paper attempts to derive a theoretically
sounded model and algorithm for general multi-type relational data clustering.

3. Collective factorization on related matrices

In this section, we propose a general model for clustering multi-type relational data based on
factorizing multiple related matrices.
Given m sets of data objects, X1 = {x11, . . . , x1n1

}, . . . ,Xm = {xm1, . . . , xmnm}, which refer to m
different types of objects relating to each other, we are interested in simultaneously clustering
X1 into k1 disjoint clusters, . . . , and Xm into km disjoint clusters. We call this task as collective
clustering on multi-type relational data.
To derive a general model for collective clustering, we first formulate Multi-Type Relational
Data (MTRD) as a set of related matrices, in which two matrices are related in the sense that
their row indices or column indices refer to the same set of objects. First, if there exist relations

between Xi and Xj (denoted as Xi ∼Xj), we represent them as a relation matrix R(ij) ∈ R
ni×nj ,

where an element R
(ij)
pq denotes the relation between xip and xjq. Second, a set of objects Xi

may have its own features, which could be denoted by a feature matrix F(i) ∈ R
ni× fi , where an

element F
(i)
pq denotes the qth feature values for the object xip and fi is the number of features

for Xi.
Figure 1 shows three examples of the structures of MTRD. Example (a) refers to a basic bi-type

of relational data denoted by a relation matrix R(12), such as word-document data. Example
(b) represents a tri-type of star-structured data, such as Web pages, Web users and search
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4 Data Mining

queries in Web search systems, which are denoted by two relation matrices R(12) and R(23).
Example (c) represents the data consisting of shops, customers, suppliers, shareholders and
advertisement media, in which customers (type 5) have features. The data are denoted by

four relation matrices R(12), R(13), R(14) and R(15), and one feature matrix F(5).
It has been shown that the hidden structure of a data matrix can be explored by its
factorization (D.D.Lee & H.S.Seung, 1999; Long et al., 2005). Motivated by this observation, we
propose a general model for collective clustering, which is based on factorizing the multiple
related matrices. In MTRD, the cluster structure for a type of objects Xi may be embedded
in multiple related matrices; hence it can be exploited in multiple related factorizations.
First, if Xi ∼ Xj, then the cluster structures of both Xi and Xj are reflected in the triple

factorization of their relation matrix R(ij) such that R(ij) ≈ C(i)A(ij)(C(j))T (Long et al., 2005),

where C(i) ∈ {0,1}ni×ki is a cluster indicator matrix for Xi such that ∑
ki

q=1 C
(i)
pq = 1 and C

(i)
pq = 1

denotes that the pth object in Xi is associated with the qth cluster. Similarly C(j) ∈ {0,1}nj×k j .

A(ij) ∈ R
ki×k j is the cluster association matrix such that A

ij
pq denotes the association between

cluster p of Xi and cluster q of Xj. Second, if Xi has a feature matrix F(i) ∈ R
ni× fi , the cluster

structure is reflected in the factorization of F(i) such that F(i) ≈ C(i)B(i), where C(i) ∈ {0,1}ni×ki

is a cluster indicator matrix, and B(i) ∈ R
ki× fi is the feature basis matrix which consists of ki

basis (cluster center) vectors in the feature space.
Based on the above discussions, formally we formulate the task of collective clustering on
MTRD as the following optimization problem. Considering the most general case, we assume
that in MTRD, every pair of Xi and Xj is related to each other and every Xi has a feature

matrix F(i).

Definition 3.1 Given a distance function D, m positive numbers {ki}1≤i≤m and MTRD

{X1, . . . ,Xm}, which is described by a set of relation matrices {R(ij) ∈ R
ni×nj}1≤i<j≤m, a set of

feature matrices {F(i) ∈ R
ni× fi}1≤i≤m, as well as a set of weights w

(ij)
a ,w

(i)
b ∈ R+ for different types

of relations and features, the task of the collective clustering on the MTRD is to minimize

L = ∑
1≤i<j≤m

w
(ij)
a D(R(ij),C(i)A(ij)(C(j))T)

+ ∑
1≤i≤m

w
(i)
b D(F(i),C(i)B(i)) (1)

w.r.t. C(i) ∈ {0,1}ni×ki , A(ij) ∈ R
ki×k j , and B(i) ∈ R

ki× fi subject to the constraints: ∑
ki

q=1 C
(i)
pq = 1,

where 1 ≤ p ≤ ni, 1 ≤ i < j ≤ m.

We call the model proposed in Definition 3.1 as the Collective Factorization on Related
Matrices (CFRM).
The CFRM model clusters multi-type interrelated data objects simultaneously based on both
relation and feature information. The model exploits the interactions between the hidden
structures of different types of objects through the related factorizations which share matrix
factors, i.e., cluster indicator matrices. Hence, the interactions between hidden structures
work in two ways. First, if Xi ∼ Xj, the interactions are reflected as the duality of row

clustering and column clustering in R(ij). Second, if two types of objects are indirectly related,
the interactions pass along the relation ”chains” by a series of related factorizations, i.e., the
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model is capable of dealing with influence propagation. In addition to local cluster structure
for each type of objects, the model also provides the global structure information by the cluster
association matrices, which represent the relations among the clusters of different types of
objects.
CFRM is a general model for relational clustering, since it is applicable to MTRD with various
structures. Moreover, by adopting different distance functions, various algorithms based on
various distribution assumptions for a given data can be derived under the CFRM model.
To demonstrate the potential of CFRM, in the rest of paper we adopt CFRM with Euclidean
distance function to derive a novel spectral clustering algorithm for MTRD. For convenience,
we re-define the CFRM model under Euclidean distance function as follows.

Definition 3.2 Given m positive numbers {ki}1≤i≤m and MTRD {X1, . . . ,Xm}, which is described

by a set of relation matrices {R(ij) ∈ R
ni×nj}1≤i<j≤m, a set of feature matrices {F(i) ∈ R

ni× fi}1≤i≤m,

as well as a set of weights w
(ij)
a ,w

(i)
b ∈ R+ for different types of relations and features, the task of the

collective clustering on the MTRD is to minimize

L = ∑
1≤i<j≤m

w
(ij)
a ||R(ij) − C(i)A(ij)(C(j))T ||2

+ ∑
1≤i≤m

w
(i)
b ||F(i) − C(i)B(i)||2 (2)

w.r.t. C(i) ∈ {0,1}ni×ki , A(ij) ∈ R
ki×k j , and B(i) ∈ R

ki× fi subject to the constraints: ∑
ki

q=1 C
(i)
pq = 1,

where 1 ≤ p ≤ ni, 1 ≤ i < j ≤ m, and || · || denotes the Frobenius norm for a matrix.

4. Spectral relational clustering

Spectral clustering (Ng et al., 2001; Bach & Jordan, 2004) has been well studied in the literature.
The spectral clustering methods based on the graph partitioning theory focus on finding the
best cuts of a graph that optimize certain predefined criterion functions. The optimization of
the criterion functions usually leads to the computation of singular vectors or eigenvectors of
certain graph affinity matrices. Many criterion functions, such as the average cut (Chan et al.,
1993), the average association (Shi & Malik, 2000), the normalized cut (Shi & Malik, 2000), and
the min-max cut (Ding et al., 2001), have been proposed.
Traditional spectral clustering focuses on the single type data. As we discussed before, if
we apply traditional spectral clustering to each type of data objects individually, there are a
number of limitations. To our best knowledge, there is little research on spectral clustering
for general MTRD. In this section, we derive a novel spectral clustering algorithm for MTRD
under the CFRM model with Euclidean distance function.
First, without loss of generality, we re-define the cluster indicator matric C(i) as the following
vigorous cluster indicator matrix,

C
(i)
pq =

⎧

⎨

⎩

1

|π
(i)
q |

1
2

if xip ∈ π
(i)
q

0 otherwise

where |π
(i)
q | denotes the number of objects in the qth cluster of X (i). Clearly C(i) still captures

the disjoint cluster memberships and (C(i))TC(i) = Iki
where Iki

denotes ki × ki identity matrix.
Hence our task is the minimization:

359A General Model for Relational Clustering

www.intechopen.com



6 Data Mining

min
{(C(i))TC(i)=Iki

}1≤i≤m

{A(ij)∈R
ki×kj }1≤i<j≤m

{B(i)∈R
ki× fi }1≤i≤m

L (3)

where L is the same as in Eq. (2).
Then, we prove the following lemma, which is useful in proving our main theorem.

Lemma 4.1 If {C(i)}1≤i≤m, {A(ij)}1≤i<j≤m, and {B(i)}1≤i≤m are the optimal solution to Eq. (3),
then

A(ij) = (C(i))T R(ij)C(j) (4)

B(i) = (C(i))T F(i) (5)

for 1 ≤ i ≤ m.

Proof 4.2 The objective function in Eq. (3) can be expanded as follows.

L = ∑
1≤i<j≤m

w
(ij)
a tr((R(ij) − C(i)A(ij)(C(j))T)

(R(ij) − C(i)A(ij)(C(j))T)T) +

∑
1≤i≤m

w
(i)
b tr((F(i) − C(i)B(i))(F(i) − C(i)B(i))T)

= ∑
1≤i<j≤m

w
(ij)
a (tr(R(ij)(R(ij))T) +

tr(A(ij)(A(ij))T)− 2tr(C(i)A(ij)(C(i))T(R(ij))T))

+ ∑
1≤i≤m

w
(i)
b (tr(F(i)(F(i))T) + tr(B(i)(B(i))T)

−2tr(C(i)B(i)(F(i))T)) (6)

where tr denotes the trace of a matrix; the terms tr(A(ij)(A(ij))T) and tr(B(i)(B(i))T) result from the

communicative property of the trace and (C(i))T(C(i)) = Iki
. Based on Eq. (6), solving ∂L

∂A(ij) = 0 and
∂L

∂B(i) = 0 leads to Eq. (4) and Eq. (5). This completes the proof of the lemma.

Lemma 4.1 implies that the objective function in Eq. (2) can be simplified to the function of

only C(i). This leads to the following theorem, which is the basis of our algorithm.

Theorem 4.3 The minimization problem in Eq. (3) is equivalent to the following maximization
problem:

max
{(C(i))TC(i)

=Iki
}1≤i≤m

∑
1≤i≤m

w
(i)
b tr((C(i))T F(i)(F(i))TC(i))+

∑
1≤i<j≤m

w
(ij)
a tr((C(i))T R(ij)C(j)(C(j))T(R(ij))TC(i)) (7)
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Proof 4.4 From Lemma 4.1, we have Eq. (4) and (5). Plugging them into Eq. (6), we obtain

L = ∑
1≤i≤m

w
(i)
b (tr(F(i)(F(i))T)−

tr((C(i))T F(i)(F(i))TC(i))) +

∑
1≤i<j≤m

w
(ij)
a (tr(R(ij)(R(ij))T)−

tr((C(i))T R(ij)C(j)(C(j))T(R(ij))TC(i))). (8)

Since in Eq. (8), tr(F(i)(F(i))T) and tr(R(ij)(R(ij))T) are constants, the minimization of L in Eq. (3)
is equivalent to the maximization in Eq. (7). This completes the proof of the theorem.

We propose an iterative algorithm to determine the optimal (local) solution to the
maximization problem in Theorem 4.3, i.e., at each iterative step we maximize the objective

function in Eq. (7) w.r.t. only one matrix C(p) and fix other C(j) for j �= p where 1 ≤ p, j ≤ m.
Based on Eq. (7), after a little algebraic manipulation, the task at each iterative step is
equivalent to the following maximization,

max
(C(p))TC(p)=Ikp

tr((C(p))T M(p)C(p)) (9)

where

M(p) = w
(p)
b (F(p)(F(p))T)+

∑
p<j≤m

w
(pj)
a (R(pj)C(j)(C(j))T(R(pj))T) +

∑
1≤j<p

w
(jp)
a ((R(jp))TC(j)(C(j))T(R(jp))). (10)

Clearly M(p) is a symmetric matrix. Since C(p) is a vigorous cluster indicator matrix, the
maximization problem in Eq. (9) is still NP-hard. However, as in the spectral graph

partitioning, if we apply real relaxation to C(p) to let C(p) be an arbitrary orthonormal matrix,
it turns out that the maximization in Eq. (9) has a closed-form solution.

Theorem 4.5 (Ky-Fan thorem) Let M be a symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ . . . ≥

λk, and the corresponding eigenvectors U = [u1, . . . ,uk]. Then ∑
k
i=1 λi = maxXT X=Ik

tr(XT MX).
Moreover, the optimal X is given by [u1, . . . ,uk]Q where Q is an arbitrary orthogonal matrix.

Based on Theorem 4.5 (Bhatia, 1997), at each iterative step we update C(p) as the leading kp

eigenvectors of the matix M(p). After the iteration procedure converges, since the resulting
eigen-matrices are not indicator matrices, we need to transform them into cluster indicator
matrices by postprocessing (Bach & Jordan, 2004; Zha et al., 2002; Ding & He, 2004). In this
paper, we simply adopt the k-means for the postprocessing.
The algorithm, called Spectral Relational Clustering (SRC), is summarized in Algorithm 1.

By iteratively updating C(p) as the leading kp eigenvectors of M(p), SRC makes use of the
interactions among the hidden structures of different type of objects. After the iteration

361A General Model for Relational Clustering
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procedure converges, the hidden structure for each type of objects is embedded in an
eigen-matrix. Finally, we postprocess each eigen-matrix to extract the cluster structure.
To illustrate the SRC algorithm, we describe the specific update rules for the

tri-type relational data as shown in Figure 1(b): update C(1) as the leading k1

eigenvectors of w
(12)
a R(12)C(2)(C(2))T(R(12))T ; update C(2) as the leading k2 eigenvectors of

w
(12)
a (R(12))TC(1)(C(1))T R(12) + w

(23)
a R(23)C(3)(C(3))T(R(23))T ; update C(3) as the leading k3

eigenvectors of w
(23)
a (R(23))TC(2)(C(2))T R(23).

the computational complexity of SRC can be shown to be O(tmn2k) where t denotes the
number of iterations, n = Θ(ni) and k = Θ(ki). For sparse data, it could be reduced to O(tmzk)
where z denotes the number of non-zero elements.
The convergence of SRC algorithm can be proved. We describe the main idea as follows.
Theorem 4.3 and Eq. (9) imply that the updates of the matrices in Line 5 of Algorithm
1 increase the objective function in Eq. (7), and hence equivalently decrease the objective
function in Eq.(3). Since the objective function in Eq. (3) has the lower bound 0, the
convergence of SRC is guaranteed.

5. Experimental results

In this section, we evaluate the effectiveness of the SRC algorithm on two types of MTRD,
bi-type relational data and tri-type star-structured data as shown in Figure 1(a) and Figure
1(b), which represent two basic structures of MTRD and arise frequently in real applications.
The data sets used in the experiments are mainly based on the 20-Newsgroup data (Lang,
1995) which contains about 20,000 articles from 20 newsgroups. We pre-process the data
by removing stop words and file headers and selecting the top 2000 words by the mutual
information. The word-document matrix R is based on tf.idf and each document vector
is normalized to the unit norm vector. In the experiments the classic k-means is used for
initialization and the final performance score for each algorithm is the average of the 20 test
runs unless stated otherwise.

Algorithm 1 Spectral Relational Clustering

Input: Relation matrices {R(ij) ∈ R
ni×nj}1≤i<j≤m , feature matrices {F(i) ∈ R

ni× fi}1≤i≤m,

numbers of clusters {ki}1≤i≤m, weights {w
(ij)
a ,w

(i)
b ∈ R+}1≤i<j≤m. Output: Cluster indicator

matrices {C(p)}1≤p≤m. Method:

1: Initialize {C(p)}1≤p≤m with othonormal matrices.
2: repeat
3: for p = 1 to m do

4: Compute the matrix M(p) as in Eq. (10).

5: Update C(p) by the leading kp eigenvectors of M(p).
6: end for
7: until convergence
8: for p = 1 to m do

9: transform C(p) into a cluster indicator matrix by the k-means.
10: end for

362 New Fundamental Technologies in Data Mining
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Data set SRC NC BSGP
multi2 0.4979 0.1036 0.1500
multi3 0.5763 0.4314 0.4897
multi5 0.7242 0.6706 0.6118
multi8 0.6958 0.6192 0.5096
multi10 0.7158 0.6292 0.5071

Table 1. NMI comparisons of SRC, NC and BSGP algorithms

5.1 Clustering on bi-type relational data

In this section we conduct experiments on a bi-type relational data, word-document data, to
demonstrate the effectiveness of SRC as a novel co-clustering algorithm. A representative
spectral clustering algorithm, Normalized-Cut (NC) spectral clustering (Ng et al., 2001; Shi &
Malik, 2000), and BSGP (Dhillon, 2001), are used as comparisons.
The graph affinity matrix for NC is RT R, i.e., the cosine similarity matrix. In NC and
SRC, the leading k eigenvectors are used to extract the cluster structure, where k is the
number of document clusters. For BSGP, the second to the (⌈log2 k⌉ + 1)th leading singular
vectors are used (Dhillon, 2001). K-means is adopted to postprocess the eigenvectors. Before
postprocessing, the eigenvectors from NC and SRC are normalized to the unit norm vector
and the eigenvectors from BSGP are normalized as described by (Dhillon, 2001). Since all the
algorithms have random components resulting from k-means or itself, at each test we conduct
three trials with random initializations for each algorithm and the optimal one provides the
performance score for that test run. To evaluate the quality of document clusters, we elect to
use the Normalized Mutual Information (NMI) (Strehl & Ghosh, 2002), which is a standard
way to measure the cluster quality.
At each test run, five data sets, multi2 (NG 10, 11), multi3(NG 1,10,20), multi5 (NG 3, 6, 9, 12,
15), multi8 (NG 3, 6, 7, 9, 12, 15, 18, 20) and multi10 (NG 2, 4, 6, 8, 10, 12 ,14 ,16 ,18,20), are
generated by randomly sampling 100 documents from each newsgroup. Here NG i means
the ith newsgroup in the original order. For the numbers of document clusters, we use the
numbers of the true document classes. For the numbers of word clusters, there are no options
for BSGP, since they are restricted to equal to the numbers of document clusters. For SRC, it is
flexible to use any number of word clusters. Since how to choose the optimal number of word
clusters is beyond the scope of this paper, we simply choose one more word clusters than the
corresponding document clusters, i.e., 3,4, 6, 9, and 11. This may not be the best choice but it
is good enough to demonstrate the flexibility and effectiveness of SRC.
In Figure 2, (a), (b) and (c) show three document embeddings of a multi2 sample, which
is sampled from two close newsgroups, rec.sports.baseball and rec.sports.hockey. In this
example, when NC and BSGP fail to separate the document classes, SRC still provides a
satisfactory separation. The possible explanation is that the adaptive interactions among the
hidden structures of word clusters and document clusters remove the noise to lead to better
embeddings. (d) shows a typical run of the SRC algorithm. The objective value is the trace
value in Theorem 4.3.
Table 1 shows NMI scores on all the data sets. We observe that SRC performs better than NC
and BSGP on all data sets. This verifies the hypothesis that benefiting from the interactions
among the hidden structures of different types of objects, the SRC’s adaptive dimensionality
reduction has advantages over the dimensionality reduction of the existing spectral clustering
algorithms.
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Fig. 2. (a), (b) and (c) are document embeddings of multi2 data set produced by NC, BSGP
and SRC, respectively (u1 and u2 denote first and second eigenvectors, respectively). (d) is an
iteration curve for SRC.

5.2 Clustering on tri-type relational data

In this section, we conduct experiments on tri-type star-structured relational data to evaluate
the effectiveness of SRC in comparison with other two algorithms for MTRD clustering. One
is based on m-partite graph partitioning, Consistent Bipartite Graph Co-partitioning (CBGC)
(Gao et al., 2005) (we thank the authors for providing the executable program of CBGC). The
other is Mutual Reinforcement K-means (MRK), which is implemented based on the idea of
mutual reinforcement clustering as discussed in Section 2.

The first data set is synthetic data, in which two relation matrices, R(12) with 80-by-100

dimension and R(23) with 100-by-80 dimension, are binary matrices with 2-by-2 block

structures. R(12) is generated based on the block structure
[

0.9 0.7
0.8 0.9

]

, i.e., the objects in cluster

1 of X (1) is related to the objects in cluster 1 of X (2) with probability 0.9, and so on so forth.

R(23) is generated based on the block structure
[

0.6 0.7
0.7 0.6

]

. Each type of objects has two equal

size clusters. It is not a trivial task to identify the cluster structure of this data set, since the
block structures are subtle. We denote this data set as Binary Relation Matrices (BRM) data.
Other three data sets are built based on the 20-newsgroups data for hierarchical taxonomy
mining and document clustering. In the field of text categorization, hierarchical taxonomy
classification is widely used to obtain a better trade-off between effectiveness and efficiency
than flat taxonomy classification. To take advantage of hierarchical classification, one must
mine a hierarchical taxonomy from the data set. We can see that words, documents and
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Data set Taxonomy structure
TM1 {NG10, NG11}, {NG17, NG18, NG19}
TM2 {NG2, NG3}, {NG8, NG9}, {NG12, NG13}
TM3 {NG4, NG5}, {NG8, NG9}, {NG14, NG15},

{NG17, NG18}

Table 2. Taxonomy structures for three data sets

categories formulate a tri-type relational data, which consists of two relation matrices, a

word-document matrix R(12) and a document-category matrix R(23) (Gao et al., 2005).
The true taxonomy structures for three data sets, TM1, TM2 and TM3, are listed in Table 2.
For example, TM1 data set is sampled from five categories, in which NG10 and NG11 belong
to the same high level category res.sports and NG17, NG18 and NG19 belong to the same high
level category talk.politics. Therefore, for the TM1 data set, the expected clustering result on
categories should be {NG10, NG11} and {NG17, NG18, NG19} and the documents should be
clustered into two clusters according to their categories. The documents in each data set are
generated by sampling 100 documents from each category.
The number of clusters used for documents and categories are 2, 3 and 4 for TM1, TM2 and
TM3, respectively. For the number of word clusters, we adopt the number of categories,

i.e., 5, 6 and 8. For the weights w
(12)
a and w

(23)
a , we simply use equal weight, i.e., w

(12)
a =

w
(23)
a = 1. Figure 3 illustrates the effects of different weights on embeddings of documents
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Fig. 3. Three pairs of embeddings of documents and categories for the TM1 data set

produced by SRC with different weights: (a) and (b) with w
(12)
a = 1,w

(23)
a = 1; (c) and (d)

with w
(12)
a = 1,w

(23)
a = 0; (e) and (f) with w

(12)
a = 0,w

(23)
a = 1.
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Data set SRC MRK CBGC
BRM 0.6718 0.6470 0.4694
TM1 1 0.5243 –
TM2 0.7179 0.6277 –
TM3 0.6505 0.5719 –

Table 3. NMI comparisons of SRC, MRK and CBGC algorithms

and categories. When w
(12)
a = w

(23)
a = 1, i.e., SRC makes use of both word-document relations

and document-category relations, both documents and categories are separated into two
clusters very well as in (a) and (b) of Figure 3, respectively; when SRC makes use of only
the word-document relations, the documents are separated with partial overlapping as in (c)
and the categories are randomly mapped to a couple of points as in (d); when SRC makes
use of only the document-category relations, both documents and categories are incorrectly
overlapped as in (e) and (f), respectively, since the document-category matrix itself does not
provide any useful information for the taxonomy structure.
The performance comparison is based on the cluster quality of documents, since the better it is,
the more accurate we can identify the taxonomy structures. Table 3 shows NMI comparisons
of the three algorithms on the four data sets. The NMI score of CBGC is available only for
BRM data set because the CBGC program provided by the authors only works for the case
of two clusters and small size matrices. We observe that SRC performs better than MRK and
CBGC on all data sets. The comparison shows that among the limited efforts in the literature
attempting to cluster multi-type interrelated objects simultaneously, SRC is an effective one to
identify the cluster structures of MTRD.

6. Conclusions and future work

In this paper, we propose a general model CFRM for clustering MTRD. The model is
applicable to relational data with various structures. Under this model, we derive a novel
algorithm SRC to cluster multi-type interrelated data objects simultaneously. SRC iteratively
embeds each type of data objects into low dimensional spaces. Benefiting from the interactions
among the hidden structures of different types of data objects, the iterative procedure amounts
to adaptive dimensionality reduction and noise removal leading to better embeddings.
Extensive experiments demonstrate the promise and effectiveness of the CFRM model and
SRC algorithm. There are a number of interesting potential directions for future research in
the CFRM model and SRC algorithm, such as extending CFRM to more general cases with
soft clustering, deriving new algorithms under other distance functions and exploring more
applications for SRC.
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