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EverMiner – Towards Fully 
 Automated KDD Process 

M. Šimůnek and J. Rauch 
Faculty of Informatics and Statistics, University of Economics, Prague, 

Czech Republic 

1. Introduction 

A man-controlled data-mining process has its limits – there is a limited number of data 
mining tasks an user is capable to create, a limited number of results he or she is able to 
digest, a limited number of task parameters changes he or she is able to try to get better 
results and so on. Significantly improved results from data mining could be in contrast 
obtained from huge amount of data-mining tasks run automatically in iteration steps with 
changing task parameters. These changes are based on results from previous runs combined 
with background knowledge about given domain. Not only task parameters but also types 
of patterns the automated process is looking for could be influenced by previous results and 
changed during iterations.  
This text specifies further and in more details the thoughts published in previous works of 
[Rauch & Šimůnek, 2005a], [Rauch & Šimůnek, 2007], [Rauch & Šimůnek, 2009a] and mainly 
in the paper [Rauch, 2010] where a formal architecture of the automated data-mining 
process was firstly proposed.  
The text is organized as follows. There are main research-goals presented in the next section 
together with references to the work that has been already done, mainly in form of the 
academic KDD system LISp-Miner (see [Šimůnek, 2003], [LISp-Miner]) and tightly related 
project SEWEBAR for dealing with background knowledge that is necessary for every 
successful data mining process (see [Kliegr et. al., 2009], [SEWEBAR]). The third section 
introduces the EverMiner system and its global concept of two loops and its phases. These 
particular phases are described then in details in the fourth section of this chapter. 
Conclusions and plans of future work are outlined in the fifth section. The text ends with 
acknowledgements and references of cited works. 

2. Prerequisites 

The KDD research on the UEP started in the year 1995 and we are developing since the 
LISp-Miner system – an academic system for KDD, see [LISp-Miner]. It consists now of eight 
data mining procedures mining for syntactically rich patterns with much higher possibilities 
to express relations in analysed data than the simple association rules proposed by [Agrawal 
et. al., 1993]. Instead, those procedures are based on an original Czech data-mining method 
called GUHA (see [Hájek & Havránek, 1978]) with a deep theoretical background and 
history of development since 1966. Thus, the LISp-Miner system incorporates a core data-
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mining algorithm with greater capabilities than the a-priori algorithm proposed by [Agrawal 
et. al., 1996].  For details about alternative approach to mine for patterns with a rich syntax 
see [Rauch & Šimůnek, 2005b] and [Hájek et. al., 2010]. A new feature to run also data-
mining tasks remotely on a computer grid was implemented recently into all the procedures 
of the LISp-Miner system.  
We concentrate now in our research on the significant problems of today’s KDD, mainly to 
offer solutions for:  
• to present results of data mining to data owners in a readable form, especially in the 

form of analytical reports; 
• to incorporate background/domain knowledge to (a) formulate reasonable Local 

Analytical Questions (LAQ, see section 4.2 later in this chapter) to be answered by data 
mining tasks and (b) to prune results of trivial or of already-known facts; 

• to automate the whole process of KDD, mainly its three phases – Data Preprocessing, 
Data Analysis and Results Interpretation. The EverMiner project (see the next section) has 
been started to deal with this problem especially.   

For the whole automation to be feasible there are some necessary prerequisites that had to 
be accomplished first: 
1. Long-time experiences with solving different types of data-mining tasks and a large set 

of heuristics and hints how to pre-process data and how to fine-tune task parameters to 
obtain suitable amount of valuable results. 

2. Theoretical background of mathematical logic with a language to describe properties of 
mined syntactically rich patterns and with logically valid rules for deduction and 
induction of new knowledge based on already known facts and newly mined patterns. 

3. Implemented portfolio of data-mining procedures mining for different kinds of 
patterns. The most suitable one of these procedures will be chosen in each step of 
iteration to answer given Local Analytical Question. 

4. Implemented computer grid feature to solve many tasks simultaneously (and possibly 
very fast) on a computer grid (dedicated one or an one consisting of ordinary PCs 
linked together). 

5. A Knowledgebase where all the above-mentioned heuristics, rules etc. are stored together 
with the already known domain background knowledge collected previously from 
domain specialists. 

6. Good approach to present the mined results in a human readable form to domain 
specialists (and in a way suitable for them). 

Eight data mining procedures were implemented already in the LISp-Miner system and 
they are proved through many years of using in data-mining analysis, both the real world 
and academic ones in teaching courses (see e.g. [Lín et. al., 2004], [Rauch et. all., 2005], 
[Rauch & Šimůnek, 2005b], [Rauch & Šimůnek, 2005c]). Sets of heuristics and rules for data-
mining process automation were proposed and a theoretical logical backgrounds were 
established (see e.g. [Rauch, 2005], [Rauch, 2009]). Distributed solving of data mining tasks 
using the computer grid was implemented (see [Šimůnek & Tammisto, 2010]). The first 
version of the Knowledgebase for storing domain knowledge has been built within the LISp-
Miner LM DataSource module (see [Rauch & Šimůnek, 2008]) and is now refined further in 
cooperation with the SEWEBAR project (see e.g. [Kliegr et. al., 2009]). Functions were 
implemented for an automated export of mined results into the SEWEBAR to be published 
in form of analytical reports. So the logical step now is to combine all the already existing 
parts together and to start truly automated KDD process. 
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The above mentioned complex patterns and rich syntax offered by those already 
implemented data-mining procedures of the LISp-Miner system have a good potential for 
fine-tuning of the task parameters and for types of mined patterns to be chosen from in each 
step. We see a great benefit of allowing these DM procedures to crawl automatically 
through the analysed data and to digest true nuggets by several iterations of answering 
analytical questions and provide newly found knowledge to domain specialists.  
But we admit also that fulfilling this goal is not an easy task to do and there are several 
related problems that had to be solved. Among others, it is to provide results to the domain 
specialist in an understandable form. A tightly related SEWEBAR project (see section 3.5 
later in this text) is aiming at this problem and is already delivering the first results in 
improving communication with domain experts in both directions (i.e. gathering already 
known facts from specialists and delivering results using analytical reports in the opposite 
direction). 

3. EverMiner 

The EverMiner project aims at developing such a system that would automatically run 
many data-mining tasks in several iterations and will possibly find interesting results 
without any user interaction. The main goals of the EverMiner project are: 
1. To mine automatically in the data for all the hidden patterns which were not discovered 

yet and for which it is a great potential that they will be of some interests for domain 
specialists (i.e. not to mine obvious or already-known facts nor their consequences). 

2. To free data-miners from majority of the necessary work and time spent during the KDD 
process. And to allow even the domain specialists themselves to do successful data-
mining analysis without any need to have the analytical know-how that is necessary to 
discover some really useful new knowledge but which an ordinary domain specialist is 
not willing to learn (or has no time to learn to work with a data-mining tool). 

Let us remind that a similar project has been proposed already under the name of GUHA80 
and mentioned in [Hájek & Havránek, 1982] and [Hájek & Ivánek, 1982] but has been never 
realized. The project presented here differs completely from the GUHA80, albeit it is based 
on the GUHA method too. 
The global concept of the EverMiner is in Fig. 1. Analysed data provide input for the data-
mining process although they need to be pre-processed first. The most important property 
of the proposed automated data mining is its cyclic nature. Immediately after the Data 

Preprocessing phase, a main cycle of data-mining process begins (the Outer Loop) with an 
inner loop inside for a fine-tuning of the currently processed task parameters to obtain a 
reasonable amount of patterns (at least some, but not too many). 
A brief description follows of all the phases presented in Fig 1. A detailed explanation is in 
the section 4. 

3.1 Analysed data 

Generally, any empirical data obtained through experiments, observations or transactional 
databases that we want to analyse and to uncover interesting relationships in them. In this 
text we suppose that they represent a finite many properties of finite many objects and that 
they are store in a table of a relational database. We expect also that the data concern some 
given domain where a set of typically involved properties could be identified and formally 
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Fig. 1. Global concept of the EverMiner 
described. Examples of analysed data are transactions on bank accounts, polling results, 
standardized records of patients etc. 

3.2 Data preprocessing 

Data Preprocessing phase is equally important for an automated process as it is for a 
manually done data-mining analysis. Understanding of analysed data structures and 
suitable transformations of data have significant influence on quality of the data-mining 
analysis results. The most important parts are mapping of analysed data columns to meta-
attributes defined in the Knowledgebase and categorization of values based on the hints – for 
details see section 4.1 further in this text. 
This phase is not part of the main cycle so user-feedback could be requested in case of an 
ambiguity – e.g. a column good be mapped to more than one meta-attribute or two possible 
categorization hints could be applied. 

3.3 Outer loop 

The Outer Loop is inspired by the main phases of the KDD process as described e.g. in the 
CRISP-DM methodology [CRISP-DM] – i.e. the Domain Understanding, Data Transformation, 
Analytical Procedures and Results Interpretation – and its cyclical nature.  
Each of iterations of this cycle takes into account current state of the domain knowledge 
(stored in the Knowledgebase) and tries to mine new knowledge mimicking steps of the man-
controlled data-mining analysis done by a user: 
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The Question Maker module formulates set of Local Analytical Questions (LAQ) based on the 
current level of knowledge. LAQs are stored into the LAQ Pool where they wait to be 
processed. (There could be also an initial set of LAQs provided manually.) The Task Builder 
module takes the LAQs one by one from the LAQ Pool and creates a data-mining task(s) to 
answer them in the same way as would be case in a man-controlled data-mining. Results in 
form of found prime patterns are handed to the Synthetizer module. Here, they are examined 
if they do not follow from some already known facts. Only those really novel patterns are 
added into the Knowledgebase and eventually reported to domain specialist in form of 
Analytical Reports via the SEWEBAR. Changes to the Knowledgebase make possible another 
set of LAQs to be formulated by the Question Maker module (e.g. “Are they any exceptions to 
newly found patterns?”) and these new LAQs are again stored into the LAQ Pool. The Task 
Builder module periodically checks the LAQ Pool for not-yet-answered LAQs and the whole 
process is repeated. The Outer Loop ends if there are no further LAQs in the LAQ Pool.  
There could be more than one data-mining task necessary to answer a single LAQ. Actual 
number of tasks and types of patterns it is looking for will depend on structure and 
complexity of the processed LAQ. Generally, the automated data mining proposed here will 
lead to a very large number of data-mining tasks to be solved by different GUHA-
procedures for each step of the Outer Loop, in contrast to much lower number of data-mining 
tasks ever created by users during some data-mining analysis done manually. 

3.4 Inner loop 

Initial task parameters setting could be done only roughly, as is the case even for a man-
controlled data-mining analysis. The precise settings could be chosen only after task is 
solved for many times and the data-miner could see number and quality of found patterns. 
It has therefore an iterative nature. 
The Inner Loop takes care of this iterative nature while looking for the right task parameters. 
Results of every single task run are checked and task parameters could be tweaked if there 
are no patterns found (parameters are too strict) or too many of them are found (parameters 
are too loose). It is important to say that the background logic of implemented GUHA-
procedures already filters found patterns to be prime only – not easily deducted from other 
already found patters (for details see e.g. [Rauch, 2005]).  

3.5 SEWEBAR 

The aim of the SEWEBAR project is to develop a framework of the same name that acts as a 
platform to illicit the background knowledge from domain specialists and – in an opposite 
direction – to present mined results in an understandable way (in form of structured 
analytical reports). There has been developed a specialised BKEF XML schema for storing 
background knowledge and an open-source content management system (CMS) called 
Joomla is used for preparation of structured analytical reports using created authoring tools. 
The SEWEBAR project is tightly related to the KDD research at Department of Knowledge 
Engineering of the University of Economics Prague, but is independent of the LISp-Miner 
and the EverMiner projects. For more details about the SEWEBAR project see [SEWEBAR], 
[Kliegr et. al., 2009] and [Balhar et. al., 2010]. 
There is a two-way communication established between the EverMiner and the SEWEBAR 
framework. All the necessary knowledge will be provided automatically by the SEWEBAR 
to the EverMiner at request. Simultaneously, the EverMiner will send all the results and all 
the updates of the Knowledgebase (newly found knowledge about given domain) to the 
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SEWEBAR to be presented to domain specialists in easily understandable form of analytical 
reports and of graphical visualisations of the Knowledgebase. 

4. Detailed description of the proposed phases 

Each of the above-mentioned proposed phases is described in the following sub-sections. 

4.1 Domain knowledge and data preprocessing 

The Knowledgebase (i.e. the knowledge repository) contains all the available knowledge about 
given domain that was either provided by domain specialists (as a results of the domain 
specialists communication with the SEWEBAR before the beginning of the analysis) or 
induced from the results of automated iterations of the EverMiner’s Outer Loop. 
There are several levels of knowledge present in the Knowledgebase and described in the 
following paragraphs (see also [Rauch and Šimůnek, 2009], [Rauch, 2010]). 

4.1.1 Meta-attributes 

The basic level of knowledge consists of meta-attributes. The meta-attributes are typical 
properties (characteristics) of objects for a given domain. They are identified in advance by 
domain specialists and contain the following knowledge: 
• Name (of list of possible typical names) of the concerned attribute in future analysed data. 
• Cardinality type of values stored (nominal, ordinal, cardinal) and expected Data type of 

values (integer, float, text, date, Boolean). 
• Categorization hints – describing either enumeration of typical values (e.g. Sun, Mon, 

Tue, …, Sat) or allowed range for numerical values and proposed lengths of intervals to 
categorize them. There could be several categorization hints provided for a single meta-
attribute to differentiate among different goals of analysis. 

• Important values (i.e. significant levels) that have some special meaning (e.g. 100 °C as a 
threshold for boiling water). They could be used for categorization or setting-up data-
mining tasks (e.g. “Are there any exceptions for X when Temperature is below 100)?”) 
because domain specialists are used to them and interpretation of results with such 
thresholds is easily understandable for them. 

All this information about meta-attributes is used then to map (automatically) database 
columns from the analysed data to meta-attributes. It is necessary to find an appropriate 
meta-attribute for each database column to do a proper pre-processing of database column 
values – i.e. to categorize them accordingly to the categorization hints provided.  
Mapping columns to meta-attributes is difficult given availability of typical names and data-
types of concerned meta-attributes only. There will be lots of ambiguities and missing 
definitions, especially for a newly created Knowledgebase. Fortunately, the Data Preprocessing 
phase is not part of the Outer Loop so it is possible to ask user for feedback to resolve such an 
ambiguity or to update definition of meta-attributes if there is no appropriate meta-attribute 
to map a database column to. 

4.1.2 Hierarchy of meta-attributes 

Defined meta-attributes are associates with meta-attribute groups. Each meta-attribute must 
have its Basic group associated. A meta-attribute could moreover belong to an unlimited 
number of other meta-attribute groups too. Therefore it is possible to group meta-attributes 
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according to several criterions at once. Attributes created from database columns of the 
analysed data inherit associations to groups from its master meta-attribute on behalf of 
which they were created. 
Groups are organized in a hierarchy with the Root-Group at the top of it and each subsequent 
group having its Parent group defined to be either the Root-Group or any other group already 
present in the hierarchy. This hierarchical structure allows for a clever using of groups in 
further processing (e.g. while formulating the LAQs – see the next section). So every mention 
of a group covers simultaneously all the attributes belonging directly to the group plus others 
in any Child-group having the given group as its Parent group. 

4.1.3 Mutual dependency 

Mutual dependency aims at visualizing relationships among meta-attributes in an easily 
and understandable way for domain experts. Not only known dependencies among meta-
attributes are recorded but also clues for what are users interested in to be answered (and 
for what not). For any pair of meta-attributes (or sometimes for the whole groups of 
attributes) we could specify: 
• Type of dependency … describes (based on the best-available knowledge of domain 

experts) possible dependency between values of the first meta-attribute and values of 
the second meta-attribute. Examples are: 
• ↑↑ … a positive influence ⇒ the higher values of the first meta-attribute the higher 

values of the second meta-attribute; applicable for cardinal or ordinal meta-
attributes only. 

• ↑↓ … a negative influence ⇒ the higher values of the first meta-attribute the lower 
values of the second meta-attribute; applicable for cardinal or ordinal meta-
attributes only. 

• F … a function-like dependency, e.g. “velocity” is defined as ½ a t2 where “a” is 
acceleration and “t” is time. So “velocity” is dependent on “acceleration” and “time” 
in a function-like manner; applicable for cardinal attributes only. 

• ↑+ … a positive increase of relative frequencies ⇒ the higher values of the first 
meta-attribute (cardinal or ordinal) the higher probability of occurrence of some 
property described by the second meta-attribute (Boolean). 

• ? … an unknown influence, need to be specified by future analysis. 
• – … no influence at all. 
• ≈ … there is some influence but is not specified further (yet). 
• ⊗ … we are not interested in determining type of influence between this pair of 

meta-attributes. 
• Scope … whether such dependency has a global scope (has been observed in the whole 

domain) or is supposed to be specific only to the current sample of analysed data. 
Options are: 
• Data specific 
• Domain specific 

• Validity … whether the knowledge is supported by the results of the data-mining 
analysis. This allows to track progress in changes of the domain knowledge. Options 
are: 
• Proven 
• Rejected 
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• Unknown 
Several two-dimensional grids containing selected subsets of attributes could be constructed 
where graphical symbols do express possible options of mutual dependencies among them 
– see example in Fig. 2. 
 

 
Fig. 2. Grid of mutual dependencies among subset of meta-attributes (from the LM 
DataSource module) 

Proven dependencies are framed in blue, rejected dependencies in red. Dependencies with a 
limited scope of validity for the analysed data only are marked with the (D) sign – i.e. 
dependencies that do not hold globally but only for given sample of the analysed data (e.g. 
due to conditions how data were collected or pre-processed).  
This visual presentation helps to gather as much information about given domain as 
possible because it seems that domain experts are keen with expressing their knowledge this 
way and they are happy even to input data themselves in a suitable (internet) application. It 
is especially important while presenting a newly found knowledge when experts are 
expected to approve it and to give a necessary feedback. 
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Although the above-mentioned Knowledgebase was implement first in the LM DataSource and 
the LM KnowledgeSource modules of the LISp-Miner system (see [Rauch & Šimůnek, 2008] 
and [LISp-Miner]) its future development was moved now into the SEWEBAR project.  

4.1.4 Meta-attribute distribution 

Another type of knowledge – about every single meta-attribute – could be included in the 
Knowledgebase too. This kind of knowledge represents conditional distributions of 
frequencies of values or big differences of types of distributions between two subsets of 
analysed data. For example, the Education level could be of a Gaussian distribution among the 
whole population but could be expected to be skewed towards higher levels of education in 
the capital/university city where highly educated people are of high demand. This type of 
knowledge could be used again both for the formulation of the LAQs and for the pruning 
results of well-known facts. 
This type of knowledge is related to the CF-Miner and SDCF-Miners data-mining procedures 
of the LISp-Miner system and needs to be investigated further. 

4.2 Question maker and local analytical questions 

The Question Maker module formulates new Local Analytical Questions (LAQs) based on the 
current level of domain knowledge and newly mined knowledge in previous cycles. Any 
LAQ describes a question user wants to answer in a formalized way but using plain 
language so the LAQ is understandable to domain experts. Examples of LAQs are: 
• “Are there any relations between characteristics of Body-Mass-Index and Success of 

therapy in analysed data?” 
• “Are there any exceptions to the patterns found for the previous question depending on 

level of Physical activity when these patterns do not hold?” 
Not only single attributes could be used to formulate a LAQ – the whole groups of meta-
attributes could be instead to formulate more general analytical questions: 
• “Are there any relations between Social characteristics of patients and Cardiovascular risk 

factors?” 
• “Are there any exceptions to the patterns found for the previous question depending on 

Physical activities when these patterns do not hold?” 

4.2.1 LAQ templates 

After several years of experiences with data mining analyses we have observed that there is 
only a limited number of LAQ types that are typically formulated. There is of course infinite 
number of particular groups or even attributes that could appear in LAQs but the skeleton of 
the LAQ remains still the same. Thus, it is possible to prepare reasonably small number of so 
called LAQ Templates with active positions prepared where a particular group of attributes 
could be inserted to formulate a proper LAQ. Examples of such LAQ Templates are: 
• “Are there some strong relationships in sense of <interest measure> between patients 

characteristics given by <group of attributes A> and by <group of attributes S> in subsets 
of data given by Boolean conditions based on <group of attributes C>? We are however 
interested in already known and proven facts.” 

• “Are there any exceptions to the patterns found for the previous question depending on 
<group of attributes C> when these patterns do not hold?” 
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It is easy then to formulate new LAQs given the pre-defined LAQ Templates, list of possible 
groups of attributes (available from the background knowledge of concerned domain) and list 
of available interest measures to describe type of looked-for relationships in data.  
List of available LAQ Templates is not strictly closed and a new template could be added if a 
new type of typical user’s questions emerges. List of available groups of attributes is provided 
by the Knowledgebase and it contains additional information about each attribute (derived 
from its associated master meta-attribute) – e.g. its cardinality type (whether its values are 
nominal, ordinal or cardinal). This could restrict positions in LAQ templates where such 
attribute could be used. 
A newly created LAQ should be checked against already accumulated domain knowledge 
(both the initial and induced). It is not necessary to proceed to data-mining phase if the LAQ 
could be answered (either directly or by a deduction) from the already known facts in the 
Knowledgebase. Otherwise, a new data-mining task will be created based on it and solved.  
Initially, a pool of unanswered LAQs will consists of the LAQs prepared in advance by the 
user, if they are such. Next, the Question Maker will create as many further LAQs as possible 
given the actual content of the Knowledgebase. Together they will be sent to the Task Builder 
module (see the next sub-section) to find answers to them. Found answers to given LAQs 
will eventually lead to a new knowledge and these new facts will be added into the 
Knowledgebase. This might offer a new possibility for the Question Maker module to 
formulated another LAQ(s) – e.g. using the “are there any exceptions to newly found patterns?” 
LAQ Template. Therefore, the actual number of unanswered LAQs in the Pool fluctuates as a 
LAQ is removed when corresponding data-mining task(s) is/are created and simultaneously 
as new LAQs are formulated as a reaction to a fresh knowledge in the Knowledgebase being 
newly induced from the results of just solved data-mining tasks. 

4.2.2 LAQ grid 

Again, a grid could be constructed to keep track of already processed LAQs – grid of 
combinations of available group of attributes (or its subset) – see Fig. 3. 
 

 
Fig. 3. LAQ-template Grid (from the LM LAQManager module) 

www.intechopen.com



EverMiner – Towards Fully Automated KDD Process 

 

231 

So the user continually knows which LAQs are already solved (marked with X), which are 
just being processed now (marked with B), which ones are waiting to be processed (marked 
with [!]) or we are not concerned in this LAQ (marked with ⊗).  

4.3 Task builder 
Once a LAQ is formulated it needs to be answered by results from solved data-mining 
task(s). One LAQ could be answered with a single task for a single analytical procedure or 
more tasks for different analytical procedures might be necessary to answer it. 
Set-up of the task depends on structure of the LAQ it is supposed to answer and its structure 
is in turn influenced by the LAQ Template that was used to formulate the LAQ in the first 
place. There are prepared rules in advance how to set-up task(s) for given LAQ Template.  
There are many task parameters available that influence significantly the size and the 
quality of mined results. These parameters include minimal and maximal lengths of Boolean 
attributes involved in constructing of patterns. Task parameteres include also criterions 
based on interest measure(s) to specify types and tightness of relationships inside to be found 
patterns. 
First version of heuristics was prepared to guide the Task Builder module while setting of 
initial parameters for a new task. The heuristics are based on number of attributes and 
number of theirs categories and on experiences with expressing the most typical kinds of 
relationships inside patters – i.e. types of quantifiers used and suitable levels for theirs 
parameters – for details see the Analytical procedures section or [Rauch & Šimůnek, 2005b]. 
Once a task is created it is dispatched to a corresponding analytical procedure to be solved. 
The Task Builder role is not limited to setting up tasks based on the given LAQs. It is also 
involved in the Inner Cycle of the EverMiner process – to fine-tune task parameters to get a 
reasonable number of results from the Analytical procedures phase to answer the given LAQs. 
It is very often that either too many patterns are found given the initial settings of task 
parameters or that no pattern is found at all. This is typical even for man-prepared task 
parameters because of an unknown character of the analysed data and because of 
complexity of possible parameters settings. Thus, the data mining process has to be done 
iteratively so long as the right values of task parameters are found. The Task Builder module 
is equipped with another set of heuristics to be able to restrict searched solution-space (i.e. 
to decrease number of found patterns) or to enlarge it (i.e. to increase number of found 
patterns). The Inner Loop could be described in detail as visible in Fig. 4. 
When the number of found patterns is too small (or no patterns found at all), task 
parameters are changed to be looser (to allow for not so strong patterns) or to search 
through an enlarged search-space (to prove more possible combinations). When the number 
of found patterns is too big, task parameters are made stricter so a smaller number of strong 
patterns will be found in the next round. This Inner Loop is repeated as many times as 
needed. There are of course limits to fine-tuning of parameters, especially when no patterns 
had been found, because it makes no sense to make task parameters very loose. Therefore, it 
is possible that no patterns for a given LAQ are supported by the analysed data and this 
particular LAQ is rejected. 
It depends on the underlying LAQ, used analytical procedure and found types of patterns 
what is assumed to be an “acceptable” number of found patterns. Some kinds of 
relationships in the analysed data (e.g. of the ↑↑ or the F mutual dependency) could be 
expressed with large number of 4ft-associational rules in the 4ft-Miner procedure compared to 
a single KL-pattern as a result of the KL-Miner procedure. As a rule of thumb an “acceptable” 
number of patterns is more than none and less than two hundred. 
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Fig. 4. Detail Description of the Inner Loop 

4.4 Analytical procedures 

There are seven analytical procedures implemented already in the LISp-Miner system: 
• 4ft-Miner procedure expressing found patterns as (conditional) 4ft-associational rules 

with a rich syntax; 
• SD4ft-Miner procedure looking for SD4ft-patterns – comparing two sub-sets in the 

analysed data in sense of two (conditional) 4ft-associational rules; 
• Ac4ft-Miner procedure looking for 4ft-action rules describing some kind of action 

resulting in a change of characteristics in objects from the analysed data; 
• KL-Miner procedure looking for KL-patterns in form of K×L contingency tables of two 

multi-categorical attributes and under some (richly defined) condition; 
• SDKL-Miner procedure comparing two sub-sets in the analysed data in sense of two KL-

patterns; 
• CF-Miner procedure looking for CF-patterns in form of distribution of frequencies for a 

single multi-categorical attribute and under some (richly defined) condition; 
• SDCF-Miner procedure comparing two sub-sets in the analysed data in sense of two CF-

patterns. 
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All the implemented procedures are so called GUHA-procedures (in sense of [Hájek & 
Havránek, 1978]). Theirs input consists of the analysed data and a simple definition of a 
large space of potentially interesting patterns. And theirs output is set of all interesting 
patterns that are supported by the analysed data. For more detail see [Rauch & Šimůnek, 
2005a], [Hájek et. al., 2010]. 
The most important feature is a really rich syntax of looked-up patterns that could be 
defined in relatively simple way. Each implemented data-mining procedure offers a rich 
syntax how to describe potentially interesting pattern we are looking for. They mine not for 
associational rules only but for an enhanced version called 4ft-asociational rules (see [Rauch & 
Šimůnek, 2005a]) and for other types of patterns – e.g. conditional frequencies, K×L 
conditional frequency tables ([Lín et. al., 2004]), Set-differs-from-set (SD) rules or for 4ft-
actional rules (see [Ras & Wieczorkowska, 2000], [Rauch & Šimůnek, 2009b]). This rich syntax 
makes possible to involve semantically features of logical reasoning and deduction ([Rauch, 
2009]).  

4.4.1 Optimisation 

Number of patterns in the search-space each analytical procedure has to walk-through is 
enormous, especially because of the rich syntax of mined-for patterns. Several optimisation 
techniques were incorporated therefore into analytical procedures implementations.  
As an example of such an optimisation we could mention the bit-string structures for very 
fast computing of frequencies of derived Boolean attributes to construct contingency tables 
(for details see e.g. [Rauch & Šimůnek, 2005b]). For simplicity reasons we would discuss 
only 4ft-association rule syntax that is used in the 4ft-Miner procedure. A conditional 4ft-
association rule has form of: 

/ϕ ≈ ψ χ  

Where ϕ, ψ and χ are derived Boolean attributes automatically derived from basic Boolean 

attributes as theirs conjunctions, disjunctions and negations. The symbol ≈ is called 4ft-
quantifier. To compute frequencies from contingency table we need to know frequencies of 
each derived Boolean attribute and hence frequencies of concerned basic Boolean attributes. 
Values of each Boolean attribute in the analysed data are represented with binary arrays of 
zeros and ones, which allow an easy compounding with binary arrays of another Boolean 
attribute by bit-wise operations of AND, OR and NOT. Thus a bit-string representation of 
any derived Boolean attribute could be quickly prepared from involved basic Boolean 
attributes. Moreover bit-string representations of partial derived Boolean attributes are 
cached during walking-through the search-space, so a new derived Boolean attribute 
representation have not to be prepare from scratch. 
Another technique of skips over the search-space is implemented that significantly reduces 
number of patterns that have to be constructed. The whole branches of the search-space are 
skipped when there is no chance of verified patterns could be present there based on logic of 
associational rules and actual data-mining task parameters. 

4.4.2 Filtering of found patterns 

There are usually many patterns found, so users could easily get overwhelmed and get lost 
without a chance to spot really interesting results. There were therefore implemented means 
to decrease number of patterns without losing any information. 
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Found true patterns are filtered according to theirs logical properties – only so called prime-
patterns are included into results. Thus only the patterns that do not easily follow from (a 
more simple ones) already presented in results are included. For details see e.g. [Rauch, 
2005]. This technique has also inspired the filtering of truly novel patterns in the Synthesizer 
module – see section 4.6 later. 

4.5 Distributed solving of tasks using grid 

For the whole automated data-mining process to be feasible, there must be a way to 
compute each step of the Inner Loop iteration very quickly. Although there are several 
optimisation techniques already incorporated (see the previous section), there are clear 
limits for shortening solution times on a single computer. One possible solution how to 
significantly increase the computing power and hence to decrease solution times is to use 
computer grid to divide solution of single task among many grid nodes. 

4.5.1 Grid type chosen 

There were two possible options regarding the type of grid used – the dedicated grid or the 
PC-Grid consisting of ordinary PCs linked together as clients of the grid server. The 
dedicated-grid main advantage is its huge processing power and constant availability of this 
power because it has nothing else to do than to wait for assigned task to be solved. 
Meanwhile, computers in the PC-Grid are obliged to serve their primary users first and only 
the remaining computing power is available for the grid. On the other hand the main 
advantage of the PC-Grid are low initial costs and its easy scalability – just another PCs are 
registered. Being an academic institution where money funds are often scarce we opt for the 
PC-Grid.  
The Techila PC-Grid [Techila] was successfully installed on the University of Economics 
computer network and now we would like to increase number of participation grid nodes 
by registering more PCs from offices, computer labs and even dormitories. 

4.5.2 Core data mining algorithm overhaul 

The main problem that had to be addressed while incorporating grid features into the LISp-
Miner system was how to divide data-mining task into sub-tasks that could be solved (in 
parallel) on particular grid nodes. The goal was to find a general solution that could be used 
in all the implemented GUHA procedures within the LISp-Miner system, although they 
mine for different patterns and theirs core data-mining algorithm is different. Different 
strategies of task partitioning could lead to different complexity of each atomic sub-task and 
therefore to very different total computing times on the grid.  

4.5.3 Implementation 

Two strategies were chosen and already implemented – for details see [Šimůnek & 
Tammisto, 2010]. The most important feature of this solution is that no changes to the 
original optimised core data-mining algorithms are needed and this solution is applicable 
for all the GUHA-procedures implemented in the LISp-Miner system so far.  
All the necessary communication with the grid using provided API was implemented on the 
user side and new modules for solving sub-tasks on grid nodes were created (one module 
for each of the eight data-mining procedures). This new modules use the same program 
code as is used for local solving of tasks. There is no change from the point of view of user – 
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only a new dialog window appears to decide whether to solve the concerned task locally or 
by the grid. Communications links and the grid access-privileges were secured by 
certificates. 
A real data analysis was undertaken using distributed grid verification and results were 
compared to solving-times of the same task on a single computer. Two procedures were 
selected for benchmark tests – the 4ft-Miner procedure as the currently most used one and 
the Acft-Miner procedure (looking up the 4ft-action-rules) where the grid potential is even 
higher due to a more complex pattern syntax. A significant improvement in solution times 
was observed right from the first tasks. The grid overhead (due to division of a task into 
sub-tasks, to uploading all the necessary data to the grid and then to downloading the 
results) is reasonably small and its relative importance decreases by growing complexity of 
tasks. There was observed a near linear dependency between number of grid nodes 
involved and reduction in task-solution times. For example a task running for more than 30 
hours on a single PC was solved within 6 hours on grid consisting from just 5 grid nodes. 
And the same task was solved in just one hour using 24 grid nodes (albeit more powerful 
ones, in 1,2 factor approximately). 
The undertaken experiments proved that the implemented grid feature brings significant 
improvements to solutions times and is easily up-scaled for even better times by simply 
registering more PCs as grid nodes. 

4.6 Synthesizer and inducing new knowledge 
After new results are mined they are handed to the Synthesizer module to be confronted 
with the existing knowledge already stored in the Knowledgebase and possibly to induce a 
new knowledge. Remember, please, that new results have been already pruned of logically 
dependent patterns and only so called prime-patterns are passed to this phase. 

4.6.1 What to not report 
Even the prime-patterns could describe many kinds of true but (from the point of view of 
domain experts) completely worthless facts. Examples of such “gems” are: “There is at least a 
99% probability that a person giving birth to a child will be a women” or “Body temperature of 
patients is in range from 34 to 40 °C in more than 90 % of cases“. There is many more such 
statements that are certainly true but will irritate domain experts and maybe they will even 
break they faith in results of analysis. Thus, it is very important to automatically filter out as 
many of such statements as possible.  
There is no sense too in reporting the same patterns over and over if they were already 
presented to users in previous rounds of analysis. So every found pattern has to be checked 
against knowledge already present in the Knowledgebase and only really novel facts will be 
append there are reported in analytical reports. 

4.6.2 Filtering of already-known knowledge 

A technique similar to prime-rule testing is proposed for comparing newly found patterns 
with knowledge already in the Knowledgebase.  
It is possible to translate any kind of Mutual Dependency knowledge stored in the 
Knowledgebase to one (or more) patterns looked-up by one of analytical procedures. For 
example, the dependency of Education ↑↓ BMI (stating that a higher level of education leads 
generally to a lower level of the Body-Mass-Index) could be translated into 4ft-asociational 
rules in form of:  
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right _ cut _ n p,B left _ cut _ mEducation( ) BMI( )α ⇒ β  

where 
• αright_cut_n is so-called right cut of categories of the attribute Education with the length of n 

(i.e. n of highest categories of the concerned ordinal attribute) 
• βleft_cut_m  is so-called left cut of categories of the attribute BMI with the length of n (i.e. n 

of lowest categories of the concerned ordinal attribute) 
• ⇒p, B is the 4ft-quantifier of Found implication based on the confidence value of a/(a+b). 
Similar translations are available for remaining types of Mutual Dependency using possibly 
another types of quantifiers or whole analytical procedures and their patterns (KL-patterns, 
CF-patterns and even SD4ft-, SDKL- and SDCF-patterns) – for more details see [Rauch, 2010]. 
 This translation of Mutual dependencies needs to be done only once (either before the 
EverMiner analysis begins or after each change of the Knowledgebase). When a new pattern is 
mined and sent to the Synthesizer module it will be checked against subsets of this translated 
patterns (only those for the same analytical procedure). What we want to resolve is whether 
it (logically) follows from some (simpler) pattern already present in the Knowledgebase. So 
the same approach could be used as for the prime-rule testing described above. But this time 
the set of patterns it is checked against the one translated from the Knowledgebase. 
If deduction rules prove that the newly found pattern logically follows from a pattern 
representing a Mutual dependency already present in the Knowledgebase, it could be either 
filtered-out or this Mutual dependency could be flagged that it is supported by the analysed 
data. 

4.6.3 Inducing new knowledge 

If a newly found pattern meets test of novelty it need to be added into the Knowledgebase in 
form of the new Mutual dependency knowledge. Again, there are translations-rules available 
for each analytical procedure (and its type of patterns) how to construct a new Mutual 

dependency based on the found pattern. 
When a new Mutual dependency is created and inserted into the Knowledgebase, it is compared 
to already existing Mutual dependencies for the same pair of (meta-) attributes. If they are two 
different types of Mutual dependencies now in the Knowledgebase, it should be investigated 
further whether they are complementary or contradictory. Complementary dependencies 
could coexist e.g. in case of: 

Education BMI and Education BMI↑↓ ↓↑  

In this special case, a tighter Mutual dependency of F( Education, BMI) stating that there is a 
strict function-like dependency between the level of education and value of the BMI could 
be used to formulate a new LAQ (and eventually to prove it). 
On the other hand, the contradictory Mutual dependencies, e.g. in case of: 

Education BMI and Education BMI↑↑ ↑↓  

leads to the “rejected in the analysed data” flag to be set for the first mutual dependency and 
the found contradiction need to be highlighted in the analytical report. 
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4.6.4 Groups of related patterns 

The same dependency in the analysed data could be expressed in more than one way by 
different types patterns of different analytical procedures. For example, where a single KL-

pattern could be sufficient to describe a function-like dependency between two attributes, 
tens of 4ft-associational rules could be necessary to express the same. Too many found rules 
make results hard to understand and complicate reaching right conclusions. It is necessary 
therefore to identify groups of patterns that describe a single dependency in the analysed 
data and possibly to use another type of the LAQ Template and therefore another analytical 
procedure to answer it. This feature is not understood well and has to be addressed in 
future research. 

4.7 Complete history of analysis 

Every decision taken during both Loops and even the intermediate results need to be logged 
so the whole history of the automated KDD process could be checked afterwards. No 
information of any kind is ever deleted. This will not only help during development of the 
EverMiner but also will allow an analytical audit of the whole reasoning behind delivered 
results and to prove the validity of newly induced knowledge. Types of stored information 
are: 
• used mapping of attributes from the analysed data to the meta-attributes in the 

Knowledgebase; 
• formulated LAQs and its parameters (used Template, groups of meta-attributes) 
• created tasks; each task is associated to the LAQs it is supposed to answer; 
• information about task-parameters changes during fine-tuning in the Inner Loop; 
• found prime patterns of each task-run; 
• answers to the LAQs derived from the found prime patterns – together with 

information whether they support the already known facts in the Knowledgebase; 
• changes made to the Mutual Dependency type of knowledge. 
The necessary infrastructure for storing this kind of information is already in place for man-
controlled data-mining and could be used for the EverMiner too:  
• Every created attribute has already an optional link to its master meta-attribute. 
• Formulated LAQs are stored in database and their status could be monitored.  
• Each data-mining task must belong to a task-group. So a task-group will be created for 

every LAQ and all data-mining tasks designed to answer it will be included in this 
group (remember that there could be more than one task necessary to answer a single 
LAQ).  

• Already implemented feature of task-cloning will be utilized for keeping track of task-
parameters evolution during the Inner Loop – a new clone of the task with current 
version of task-parameters will be created in each iteration before task-parameters are 
changed. The name of the newly cloned task will be the same and task will be inserted 
into the same task-group. Only the “iteration” index will be increased to provide 
information about sequence of steps in the Inner Loop. 

• Found results are routinely stored within data-mining task data to be visible to users in 
man-controlled data-mining analysis. This feature allows keeping results from all 
iterations because each task-parameters version is stored in corresponding cloned-task 
and identified with its “iteration” number. 
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• Every newly synthesized knowledge is added in form of the Mutual Dependency into the 
Knowledgebase. Three important properties accompany it – whether it is created by some 
user (domain specialist) or by the Synthesizer module; the time-stamp – when it was 
created; and finally links to data-mining results the new knowledge is based upon. 
Incorporation of the time-stamp allows storing multiple instances of mutual 
dependence to a single pair of meta-attributes while preserving the whole evolution of 
who and when made any change. Thus, a mutual dependency relationship could be 
marked as “proven” when results from a data-mining task will prove them, or could be 
marked as “rejected” otherwise. And a complete “evolution graph” of the Knowledgebase 
could be constructed afterwards to provide users with deep explanation why some new 
knowledge was induced and based on what patterns in the analysed data. 

5. Conclusion and further work 

All the phases necessary to build an automated data-mining system were proposed. Some 
parts were already implemented and the remaining pieces have a sufficient theoretical 
background to be implemented in a near future.  
Our goal is to proceed in partial steps and gradually build the functioning EverMiner 
system. Currently, we are working on the communication with the SEWEBAR project 
repositories to be able to gather relevant information into the EverMiner Knowledgebase 
regarding processed attributes. A first version of the QuestionMaker for formulating some 
simple kinds of LAQs based on the knowledge already stored in the Knowledgebase will be 
implemented then. It will allow to launch first analytical procedures tasks and to solve them 
using the already implemented grid feature. 
After obtaining the first results we will be able then to deploy appropriate rules for the fine-
tuning of the task parameters, based on the number and quality of found prime patterns. 
Another kinds of knowledge could be possibly stored into the Knowledge to help either 
during the Data Preprocessing phase, during formulation of LAQs or during pruning results 
of already-known facts. 
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