
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

12

EverMiner – Towards Fully
 Automated KDD Process

M. Šimůnek and J. Rauch
Faculty of Informatics and Statistics, University of Economics, Prague,

Czech Republic

1. Introduction

A man-controlled data-mining process has its limits – there is a limited number of data
mining tasks an user is capable to create, a limited number of results he or she is able to
digest, a limited number of task parameters changes he or she is able to try to get better
results and so on. Significantly improved results from data mining could be in contrast
obtained from huge amount of data-mining tasks run automatically in iteration steps with
changing task parameters. These changes are based on results from previous runs combined
with background knowledge about given domain. Not only task parameters but also types
of patterns the automated process is looking for could be influenced by previous results and
changed during iterations.
This text specifies further and in more details the thoughts published in previous works of
[Rauch & Šimůnek, 2005a], [Rauch & Šimůnek, 2007], [Rauch & Šimůnek, 2009a] and mainly
in the paper [Rauch, 2010] where a formal architecture of the automated data-mining
process was firstly proposed.
The text is organized as follows. There are main research-goals presented in the next section
together with references to the work that has been already done, mainly in form of the
academic KDD system LISp-Miner (see [Šimůnek, 2003], [LISp-Miner]) and tightly related
project SEWEBAR for dealing with background knowledge that is necessary for every
successful data mining process (see [Kliegr et. al., 2009], [SEWEBAR]). The third section
introduces the EverMiner system and its global concept of two loops and its phases. These
particular phases are described then in details in the fourth section of this chapter.
Conclusions and plans of future work are outlined in the fifth section. The text ends with
acknowledgements and references of cited works.

2. Prerequisites

The KDD research on the UEP started in the year 1995 and we are developing since the
LISp-Miner system – an academic system for KDD, see [LISp-Miner]. It consists now of eight
data mining procedures mining for syntactically rich patterns with much higher possibilities
to express relations in analysed data than the simple association rules proposed by [Agrawal
et. al., 1993]. Instead, those procedures are based on an original Czech data-mining method
called GUHA (see [Hájek & Havránek, 1978]) with a deep theoretical background and
history of development since 1966. Thus, the LISp-Miner system incorporates a core data-

www.intechopen.com

 New Fundamental Technologies in Data Mining

222

mining algorithm with greater capabilities than the a-priori algorithm proposed by [Agrawal
et. al., 1996]. For details about alternative approach to mine for patterns with a rich syntax
see [Rauch & Šimůnek, 2005b] and [Hájek et. al., 2010]. A new feature to run also data-
mining tasks remotely on a computer grid was implemented recently into all the procedures
of the LISp-Miner system.
We concentrate now in our research on the significant problems of today’s KDD, mainly to
offer solutions for:
• to present results of data mining to data owners in a readable form, especially in the

form of analytical reports;
• to incorporate background/domain knowledge to (a) formulate reasonable Local

Analytical Questions (LAQ, see section 4.2 later in this chapter) to be answered by data
mining tasks and (b) to prune results of trivial or of already-known facts;

• to automate the whole process of KDD, mainly its three phases – Data Preprocessing,
Data Analysis and Results Interpretation. The EverMiner project (see the next section) has
been started to deal with this problem especially.

For the whole automation to be feasible there are some necessary prerequisites that had to
be accomplished first:
1. Long-time experiences with solving different types of data-mining tasks and a large set

of heuristics and hints how to pre-process data and how to fine-tune task parameters to
obtain suitable amount of valuable results.

2. Theoretical background of mathematical logic with a language to describe properties of
mined syntactically rich patterns and with logically valid rules for deduction and
induction of new knowledge based on already known facts and newly mined patterns.

3. Implemented portfolio of data-mining procedures mining for different kinds of
patterns. The most suitable one of these procedures will be chosen in each step of
iteration to answer given Local Analytical Question.

4. Implemented computer grid feature to solve many tasks simultaneously (and possibly
very fast) on a computer grid (dedicated one or an one consisting of ordinary PCs
linked together).

5. A Knowledgebase where all the above-mentioned heuristics, rules etc. are stored together
with the already known domain background knowledge collected previously from
domain specialists.

6. Good approach to present the mined results in a human readable form to domain
specialists (and in a way suitable for them).

Eight data mining procedures were implemented already in the LISp-Miner system and
they are proved through many years of using in data-mining analysis, both the real world
and academic ones in teaching courses (see e.g. [Lín et. al., 2004], [Rauch et. all., 2005],
[Rauch & Šimůnek, 2005b], [Rauch & Šimůnek, 2005c]). Sets of heuristics and rules for data-
mining process automation were proposed and a theoretical logical backgrounds were
established (see e.g. [Rauch, 2005], [Rauch, 2009]). Distributed solving of data mining tasks
using the computer grid was implemented (see [Šimůnek & Tammisto, 2010]). The first
version of the Knowledgebase for storing domain knowledge has been built within the LISp-
Miner LM DataSource module (see [Rauch & Šimůnek, 2008]) and is now refined further in
cooperation with the SEWEBAR project (see e.g. [Kliegr et. al., 2009]). Functions were
implemented for an automated export of mined results into the SEWEBAR to be published
in form of analytical reports. So the logical step now is to combine all the already existing
parts together and to start truly automated KDD process.

www.intechopen.com

EverMiner – Towards Fully Automated KDD Process

223

The above mentioned complex patterns and rich syntax offered by those already
implemented data-mining procedures of the LISp-Miner system have a good potential for
fine-tuning of the task parameters and for types of mined patterns to be chosen from in each
step. We see a great benefit of allowing these DM procedures to crawl automatically
through the analysed data and to digest true nuggets by several iterations of answering
analytical questions and provide newly found knowledge to domain specialists.
But we admit also that fulfilling this goal is not an easy task to do and there are several
related problems that had to be solved. Among others, it is to provide results to the domain
specialist in an understandable form. A tightly related SEWEBAR project (see section 3.5
later in this text) is aiming at this problem and is already delivering the first results in
improving communication with domain experts in both directions (i.e. gathering already
known facts from specialists and delivering results using analytical reports in the opposite
direction).

3. EverMiner

The EverMiner project aims at developing such a system that would automatically run
many data-mining tasks in several iterations and will possibly find interesting results
without any user interaction. The main goals of the EverMiner project are:
1. To mine automatically in the data for all the hidden patterns which were not discovered

yet and for which it is a great potential that they will be of some interests for domain
specialists (i.e. not to mine obvious or already-known facts nor their consequences).

2. To free data-miners from majority of the necessary work and time spent during the KDD
process. And to allow even the domain specialists themselves to do successful data-
mining analysis without any need to have the analytical know-how that is necessary to
discover some really useful new knowledge but which an ordinary domain specialist is
not willing to learn (or has no time to learn to work with a data-mining tool).

Let us remind that a similar project has been proposed already under the name of GUHA80
and mentioned in [Hájek & Havránek, 1982] and [Hájek & Ivánek, 1982] but has been never
realized. The project presented here differs completely from the GUHA80, albeit it is based
on the GUHA method too.
The global concept of the EverMiner is in Fig. 1. Analysed data provide input for the data-
mining process although they need to be pre-processed first. The most important property
of the proposed automated data mining is its cyclic nature. Immediately after the Data

Preprocessing phase, a main cycle of data-mining process begins (the Outer Loop) with an
inner loop inside for a fine-tuning of the currently processed task parameters to obtain a
reasonable amount of patterns (at least some, but not too many).
A brief description follows of all the phases presented in Fig 1. A detailed explanation is in
the section 4.

3.1 Analysed data

Generally, any empirical data obtained through experiments, observations or transactional
databases that we want to analyse and to uncover interesting relationships in them. In this
text we suppose that they represent a finite many properties of finite many objects and that
they are store in a table of a relational database. We expect also that the data concern some
given domain where a set of typically involved properties could be identified and formally

www.intechopen.com

 New Fundamental Technologies in Data Mining

224

LAQ Pool
Initial,

Induced

Analytical procedures
4ft-Miner, KL-Miner…

Synthesizer

New knowledge
induction logic

Task Builder

Task parameters setup
logic

Qustion Maker

formulation of the LAQ logic

FOUND
PRIME

PATTERNS

Task parameters
fine-tuning

KNOWLEDGE-
BASE

Domain
knowledge

Initial, Induced

4ft KL Ac4ft…

Already
known

facts

Newly
induced
knowledge

DISTRIBUTED
GRID

simultaneous solving
of many data-mining

tasks

Log
History of each step

and decision
undertaken during
automatic process

Categorization hints,
significant levels

SEWEBAR

Communication with
domain specialists
Analytical reports

Data Preprocessing

mapping to meta-attributes

ANALYZED
DATA

Fig. 1. Global concept of the EverMiner
described. Examples of analysed data are transactions on bank accounts, polling results,
standardized records of patients etc.

3.2 Data preprocessing

Data Preprocessing phase is equally important for an automated process as it is for a
manually done data-mining analysis. Understanding of analysed data structures and
suitable transformations of data have significant influence on quality of the data-mining
analysis results. The most important parts are mapping of analysed data columns to meta-
attributes defined in the Knowledgebase and categorization of values based on the hints – for
details see section 4.1 further in this text.
This phase is not part of the main cycle so user-feedback could be requested in case of an
ambiguity – e.g. a column good be mapped to more than one meta-attribute or two possible
categorization hints could be applied.

3.3 Outer loop

The Outer Loop is inspired by the main phases of the KDD process as described e.g. in the
CRISP-DM methodology [CRISP-DM] – i.e. the Domain Understanding, Data Transformation,
Analytical Procedures and Results Interpretation – and its cyclical nature.
Each of iterations of this cycle takes into account current state of the domain knowledge
(stored in the Knowledgebase) and tries to mine new knowledge mimicking steps of the man-
controlled data-mining analysis done by a user:

www.intechopen.com

EverMiner – Towards Fully Automated KDD Process

225

The Question Maker module formulates set of Local Analytical Questions (LAQ) based on the
current level of knowledge. LAQs are stored into the LAQ Pool where they wait to be
processed. (There could be also an initial set of LAQs provided manually.) The Task Builder
module takes the LAQs one by one from the LAQ Pool and creates a data-mining task(s) to
answer them in the same way as would be case in a man-controlled data-mining. Results in
form of found prime patterns are handed to the Synthetizer module. Here, they are examined
if they do not follow from some already known facts. Only those really novel patterns are
added into the Knowledgebase and eventually reported to domain specialist in form of
Analytical Reports via the SEWEBAR. Changes to the Knowledgebase make possible another
set of LAQs to be formulated by the Question Maker module (e.g. “Are they any exceptions to
newly found patterns?”) and these new LAQs are again stored into the LAQ Pool. The Task
Builder module periodically checks the LAQ Pool for not-yet-answered LAQs and the whole
process is repeated. The Outer Loop ends if there are no further LAQs in the LAQ Pool.
There could be more than one data-mining task necessary to answer a single LAQ. Actual
number of tasks and types of patterns it is looking for will depend on structure and
complexity of the processed LAQ. Generally, the automated data mining proposed here will
lead to a very large number of data-mining tasks to be solved by different GUHA-
procedures for each step of the Outer Loop, in contrast to much lower number of data-mining
tasks ever created by users during some data-mining analysis done manually.

3.4 Inner loop

Initial task parameters setting could be done only roughly, as is the case even for a man-
controlled data-mining analysis. The precise settings could be chosen only after task is
solved for many times and the data-miner could see number and quality of found patterns.
It has therefore an iterative nature.
The Inner Loop takes care of this iterative nature while looking for the right task parameters.
Results of every single task run are checked and task parameters could be tweaked if there
are no patterns found (parameters are too strict) or too many of them are found (parameters
are too loose). It is important to say that the background logic of implemented GUHA-
procedures already filters found patterns to be prime only – not easily deducted from other
already found patters (for details see e.g. [Rauch, 2005]).

3.5 SEWEBAR

The aim of the SEWEBAR project is to develop a framework of the same name that acts as a
platform to illicit the background knowledge from domain specialists and – in an opposite
direction – to present mined results in an understandable way (in form of structured
analytical reports). There has been developed a specialised BKEF XML schema for storing
background knowledge and an open-source content management system (CMS) called
Joomla is used for preparation of structured analytical reports using created authoring tools.
The SEWEBAR project is tightly related to the KDD research at Department of Knowledge
Engineering of the University of Economics Prague, but is independent of the LISp-Miner
and the EverMiner projects. For more details about the SEWEBAR project see [SEWEBAR],
[Kliegr et. al., 2009] and [Balhar et. al., 2010].
There is a two-way communication established between the EverMiner and the SEWEBAR
framework. All the necessary knowledge will be provided automatically by the SEWEBAR
to the EverMiner at request. Simultaneously, the EverMiner will send all the results and all
the updates of the Knowledgebase (newly found knowledge about given domain) to the

www.intechopen.com

 New Fundamental Technologies in Data Mining

226

SEWEBAR to be presented to domain specialists in easily understandable form of analytical
reports and of graphical visualisations of the Knowledgebase.

4. Detailed description of the proposed phases

Each of the above-mentioned proposed phases is described in the following sub-sections.

4.1 Domain knowledge and data preprocessing

The Knowledgebase (i.e. the knowledge repository) contains all the available knowledge about
given domain that was either provided by domain specialists (as a results of the domain
specialists communication with the SEWEBAR before the beginning of the analysis) or
induced from the results of automated iterations of the EverMiner’s Outer Loop.
There are several levels of knowledge present in the Knowledgebase and described in the
following paragraphs (see also [Rauch and Šimůnek, 2009], [Rauch, 2010]).

4.1.1 Meta-attributes

The basic level of knowledge consists of meta-attributes. The meta-attributes are typical
properties (characteristics) of objects for a given domain. They are identified in advance by
domain specialists and contain the following knowledge:
• Name (of list of possible typical names) of the concerned attribute in future analysed data.
• Cardinality type of values stored (nominal, ordinal, cardinal) and expected Data type of

values (integer, float, text, date, Boolean).
• Categorization hints – describing either enumeration of typical values (e.g. Sun, Mon,

Tue, …, Sat) or allowed range for numerical values and proposed lengths of intervals to
categorize them. There could be several categorization hints provided for a single meta-
attribute to differentiate among different goals of analysis.

• Important values (i.e. significant levels) that have some special meaning (e.g. 100 °C as a
threshold for boiling water). They could be used for categorization or setting-up data-
mining tasks (e.g. “Are there any exceptions for X when Temperature is below 100)?”)
because domain specialists are used to them and interpretation of results with such
thresholds is easily understandable for them.

All this information about meta-attributes is used then to map (automatically) database
columns from the analysed data to meta-attributes. It is necessary to find an appropriate
meta-attribute for each database column to do a proper pre-processing of database column
values – i.e. to categorize them accordingly to the categorization hints provided.
Mapping columns to meta-attributes is difficult given availability of typical names and data-
types of concerned meta-attributes only. There will be lots of ambiguities and missing
definitions, especially for a newly created Knowledgebase. Fortunately, the Data Preprocessing
phase is not part of the Outer Loop so it is possible to ask user for feedback to resolve such an
ambiguity or to update definition of meta-attributes if there is no appropriate meta-attribute
to map a database column to.

4.1.2 Hierarchy of meta-attributes

Defined meta-attributes are associates with meta-attribute groups. Each meta-attribute must
have its Basic group associated. A meta-attribute could moreover belong to an unlimited
number of other meta-attribute groups too. Therefore it is possible to group meta-attributes

www.intechopen.com

EverMiner – Towards Fully Automated KDD Process

227

according to several criterions at once. Attributes created from database columns of the
analysed data inherit associations to groups from its master meta-attribute on behalf of
which they were created.
Groups are organized in a hierarchy with the Root-Group at the top of it and each subsequent
group having its Parent group defined to be either the Root-Group or any other group already
present in the hierarchy. This hierarchical structure allows for a clever using of groups in
further processing (e.g. while formulating the LAQs – see the next section). So every mention
of a group covers simultaneously all the attributes belonging directly to the group plus others
in any Child-group having the given group as its Parent group.

4.1.3 Mutual dependency

Mutual dependency aims at visualizing relationships among meta-attributes in an easily
and understandable way for domain experts. Not only known dependencies among meta-
attributes are recorded but also clues for what are users interested in to be answered (and
for what not). For any pair of meta-attributes (or sometimes for the whole groups of
attributes) we could specify:
• Type of dependency … describes (based on the best-available knowledge of domain

experts) possible dependency between values of the first meta-attribute and values of
the second meta-attribute. Examples are:
• ↑↑ … a positive influence ⇒ the higher values of the first meta-attribute the higher

values of the second meta-attribute; applicable for cardinal or ordinal meta-
attributes only.

• ↑↓ … a negative influence ⇒ the higher values of the first meta-attribute the lower
values of the second meta-attribute; applicable for cardinal or ordinal meta-
attributes only.

• F … a function-like dependency, e.g. “velocity” is defined as ½ a t2 where “a” is
acceleration and “t” is time. So “velocity” is dependent on “acceleration” and “time”
in a function-like manner; applicable for cardinal attributes only.

• ↑+ … a positive increase of relative frequencies ⇒ the higher values of the first
meta-attribute (cardinal or ordinal) the higher probability of occurrence of some
property described by the second meta-attribute (Boolean).

• ? … an unknown influence, need to be specified by future analysis.
• – … no influence at all.
• ≈ … there is some influence but is not specified further (yet).
• ⊗ … we are not interested in determining type of influence between this pair of

meta-attributes.
• Scope … whether such dependency has a global scope (has been observed in the whole

domain) or is supposed to be specific only to the current sample of analysed data.
Options are:
• Data specific
• Domain specific

• Validity … whether the knowledge is supported by the results of the data-mining
analysis. This allows to track progress in changes of the domain knowledge. Options
are:
• Proven
• Rejected

www.intechopen.com

 New Fundamental Technologies in Data Mining

228

• Unknown
Several two-dimensional grids containing selected subsets of attributes could be constructed
where graphical symbols do express possible options of mutual dependencies among them
– see example in Fig. 2.

Fig. 2. Grid of mutual dependencies among subset of meta-attributes (from the LM
DataSource module)

Proven dependencies are framed in blue, rejected dependencies in red. Dependencies with a
limited scope of validity for the analysed data only are marked with the (D) sign – i.e.
dependencies that do not hold globally but only for given sample of the analysed data (e.g.
due to conditions how data were collected or pre-processed).
This visual presentation helps to gather as much information about given domain as
possible because it seems that domain experts are keen with expressing their knowledge this
way and they are happy even to input data themselves in a suitable (internet) application. It
is especially important while presenting a newly found knowledge when experts are
expected to approve it and to give a necessary feedback.

www.intechopen.com

EverMiner – Towards Fully Automated KDD Process

229

Although the above-mentioned Knowledgebase was implement first in the LM DataSource and
the LM KnowledgeSource modules of the LISp-Miner system (see [Rauch & Šimůnek, 2008]
and [LISp-Miner]) its future development was moved now into the SEWEBAR project.

4.1.4 Meta-attribute distribution

Another type of knowledge – about every single meta-attribute – could be included in the
Knowledgebase too. This kind of knowledge represents conditional distributions of
frequencies of values or big differences of types of distributions between two subsets of
analysed data. For example, the Education level could be of a Gaussian distribution among the
whole population but could be expected to be skewed towards higher levels of education in
the capital/university city where highly educated people are of high demand. This type of
knowledge could be used again both for the formulation of the LAQs and for the pruning
results of well-known facts.
This type of knowledge is related to the CF-Miner and SDCF-Miners data-mining procedures
of the LISp-Miner system and needs to be investigated further.

4.2 Question maker and local analytical questions

The Question Maker module formulates new Local Analytical Questions (LAQs) based on the
current level of domain knowledge and newly mined knowledge in previous cycles. Any
LAQ describes a question user wants to answer in a formalized way but using plain
language so the LAQ is understandable to domain experts. Examples of LAQs are:
• “Are there any relations between characteristics of Body-Mass-Index and Success of

therapy in analysed data?”
• “Are there any exceptions to the patterns found for the previous question depending on

level of Physical activity when these patterns do not hold?”
Not only single attributes could be used to formulate a LAQ – the whole groups of meta-
attributes could be instead to formulate more general analytical questions:
• “Are there any relations between Social characteristics of patients and Cardiovascular risk

factors?”
• “Are there any exceptions to the patterns found for the previous question depending on

Physical activities when these patterns do not hold?”

4.2.1 LAQ templates

After several years of experiences with data mining analyses we have observed that there is
only a limited number of LAQ types that are typically formulated. There is of course infinite
number of particular groups or even attributes that could appear in LAQs but the skeleton of
the LAQ remains still the same. Thus, it is possible to prepare reasonably small number of so
called LAQ Templates with active positions prepared where a particular group of attributes
could be inserted to formulate a proper LAQ. Examples of such LAQ Templates are:
• “Are there some strong relationships in sense of <interest measure> between patients

characteristics given by <group of attributes A> and by <group of attributes S> in subsets
of data given by Boolean conditions based on <group of attributes C>? We are however
interested in already known and proven facts.”

• “Are there any exceptions to the patterns found for the previous question depending on
<group of attributes C> when these patterns do not hold?”

www.intechopen.com

 New Fundamental Technologies in Data Mining

230

It is easy then to formulate new LAQs given the pre-defined LAQ Templates, list of possible
groups of attributes (available from the background knowledge of concerned domain) and list
of available interest measures to describe type of looked-for relationships in data.
List of available LAQ Templates is not strictly closed and a new template could be added if a
new type of typical user’s questions emerges. List of available groups of attributes is provided
by the Knowledgebase and it contains additional information about each attribute (derived
from its associated master meta-attribute) – e.g. its cardinality type (whether its values are
nominal, ordinal or cardinal). This could restrict positions in LAQ templates where such
attribute could be used.
A newly created LAQ should be checked against already accumulated domain knowledge
(both the initial and induced). It is not necessary to proceed to data-mining phase if the LAQ
could be answered (either directly or by a deduction) from the already known facts in the
Knowledgebase. Otherwise, a new data-mining task will be created based on it and solved.
Initially, a pool of unanswered LAQs will consists of the LAQs prepared in advance by the
user, if they are such. Next, the Question Maker will create as many further LAQs as possible
given the actual content of the Knowledgebase. Together they will be sent to the Task Builder
module (see the next sub-section) to find answers to them. Found answers to given LAQs
will eventually lead to a new knowledge and these new facts will be added into the
Knowledgebase. This might offer a new possibility for the Question Maker module to
formulated another LAQ(s) – e.g. using the “are there any exceptions to newly found patterns?”
LAQ Template. Therefore, the actual number of unanswered LAQs in the Pool fluctuates as a
LAQ is removed when corresponding data-mining task(s) is/are created and simultaneously
as new LAQs are formulated as a reaction to a fresh knowledge in the Knowledgebase being
newly induced from the results of just solved data-mining tasks.

4.2.2 LAQ grid

Again, a grid could be constructed to keep track of already processed LAQs – grid of
combinations of available group of attributes (or its subset) – see Fig. 3.

Fig. 3. LAQ-template Grid (from the LM LAQManager module)

www.intechopen.com

EverMiner – Towards Fully Automated KDD Process

231

So the user continually knows which LAQs are already solved (marked with X), which are
just being processed now (marked with B), which ones are waiting to be processed (marked
with [!]) or we are not concerned in this LAQ (marked with ⊗).

4.3 Task builder
Once a LAQ is formulated it needs to be answered by results from solved data-mining
task(s). One LAQ could be answered with a single task for a single analytical procedure or
more tasks for different analytical procedures might be necessary to answer it.
Set-up of the task depends on structure of the LAQ it is supposed to answer and its structure
is in turn influenced by the LAQ Template that was used to formulate the LAQ in the first
place. There are prepared rules in advance how to set-up task(s) for given LAQ Template.
There are many task parameters available that influence significantly the size and the
quality of mined results. These parameters include minimal and maximal lengths of Boolean
attributes involved in constructing of patterns. Task parameteres include also criterions
based on interest measure(s) to specify types and tightness of relationships inside to be found
patterns.
First version of heuristics was prepared to guide the Task Builder module while setting of
initial parameters for a new task. The heuristics are based on number of attributes and
number of theirs categories and on experiences with expressing the most typical kinds of
relationships inside patters – i.e. types of quantifiers used and suitable levels for theirs
parameters – for details see the Analytical procedures section or [Rauch & Šimůnek, 2005b].
Once a task is created it is dispatched to a corresponding analytical procedure to be solved.
The Task Builder role is not limited to setting up tasks based on the given LAQs. It is also
involved in the Inner Cycle of the EverMiner process – to fine-tune task parameters to get a
reasonable number of results from the Analytical procedures phase to answer the given LAQs.
It is very often that either too many patterns are found given the initial settings of task
parameters or that no pattern is found at all. This is typical even for man-prepared task
parameters because of an unknown character of the analysed data and because of
complexity of possible parameters settings. Thus, the data mining process has to be done
iteratively so long as the right values of task parameters are found. The Task Builder module
is equipped with another set of heuristics to be able to restrict searched solution-space (i.e.
to decrease number of found patterns) or to enlarge it (i.e. to increase number of found
patterns). The Inner Loop could be described in detail as visible in Fig. 4.
When the number of found patterns is too small (or no patterns found at all), task
parameters are changed to be looser (to allow for not so strong patterns) or to search
through an enlarged search-space (to prove more possible combinations). When the number
of found patterns is too big, task parameters are made stricter so a smaller number of strong
patterns will be found in the next round. This Inner Loop is repeated as many times as
needed. There are of course limits to fine-tuning of parameters, especially when no patterns
had been found, because it makes no sense to make task parameters very loose. Therefore, it
is possible that no patterns for a given LAQ are supported by the analysed data and this
particular LAQ is rejected.
It depends on the underlying LAQ, used analytical procedure and found types of patterns
what is assumed to be an “acceptable” number of found patterns. Some kinds of
relationships in the analysed data (e.g. of the ↑↑ or the F mutual dependency) could be
expressed with large number of 4ft-associational rules in the 4ft-Miner procedure compared to
a single KL-pattern as a result of the KL-Miner procedure. As a rule of thumb an “acceptable”
number of patterns is more than none and less than two hundred.

www.intechopen.com

 New Fundamental Technologies in Data Mining

232

Analytical procedure
looking-up patterns

Enlarge searched space
more loose Task params

Already
too

loose

None or too
little

Number of
Patterns
Check

FOUND
PRIME

PATTERNS

Acceptable

No results found
LAQ has backing in data

Initial Setting of Task
task params from heuristics

Narrow searched space
more strict Task params

Too much

Results found
answering the LAQ

Fig. 4. Detail Description of the Inner Loop

4.4 Analytical procedures

There are seven analytical procedures implemented already in the LISp-Miner system:
• 4ft-Miner procedure expressing found patterns as (conditional) 4ft-associational rules

with a rich syntax;
• SD4ft-Miner procedure looking for SD4ft-patterns – comparing two sub-sets in the

analysed data in sense of two (conditional) 4ft-associational rules;
• Ac4ft-Miner procedure looking for 4ft-action rules describing some kind of action

resulting in a change of characteristics in objects from the analysed data;
• KL-Miner procedure looking for KL-patterns in form of K×L contingency tables of two

multi-categorical attributes and under some (richly defined) condition;
• SDKL-Miner procedure comparing two sub-sets in the analysed data in sense of two KL-

patterns;
• CF-Miner procedure looking for CF-patterns in form of distribution of frequencies for a

single multi-categorical attribute and under some (richly defined) condition;
• SDCF-Miner procedure comparing two sub-sets in the analysed data in sense of two CF-

patterns.

www.intechopen.com

EverMiner – Towards Fully Automated KDD Process

233

All the implemented procedures are so called GUHA-procedures (in sense of [Hájek &
Havránek, 1978]). Theirs input consists of the analysed data and a simple definition of a
large space of potentially interesting patterns. And theirs output is set of all interesting
patterns that are supported by the analysed data. For more detail see [Rauch & Šimůnek,
2005a], [Hájek et. al., 2010].
The most important feature is a really rich syntax of looked-up patterns that could be
defined in relatively simple way. Each implemented data-mining procedure offers a rich
syntax how to describe potentially interesting pattern we are looking for. They mine not for
associational rules only but for an enhanced version called 4ft-asociational rules (see [Rauch &
Šimůnek, 2005a]) and for other types of patterns – e.g. conditional frequencies, K×L
conditional frequency tables ([Lín et. al., 2004]), Set-differs-from-set (SD) rules or for 4ft-
actional rules (see [Ras & Wieczorkowska, 2000], [Rauch & Šimůnek, 2009b]). This rich syntax
makes possible to involve semantically features of logical reasoning and deduction ([Rauch,
2009]).

4.4.1 Optimisation

Number of patterns in the search-space each analytical procedure has to walk-through is
enormous, especially because of the rich syntax of mined-for patterns. Several optimisation
techniques were incorporated therefore into analytical procedures implementations.
As an example of such an optimisation we could mention the bit-string structures for very
fast computing of frequencies of derived Boolean attributes to construct contingency tables
(for details see e.g. [Rauch & Šimůnek, 2005b]). For simplicity reasons we would discuss
only 4ft-association rule syntax that is used in the 4ft-Miner procedure. A conditional 4ft-
association rule has form of:

/ϕ ≈ ψ χ

Where ϕ, ψ and χ are derived Boolean attributes automatically derived from basic Boolean

attributes as theirs conjunctions, disjunctions and negations. The symbol ≈ is called 4ft-
quantifier. To compute frequencies from contingency table we need to know frequencies of
each derived Boolean attribute and hence frequencies of concerned basic Boolean attributes.
Values of each Boolean attribute in the analysed data are represented with binary arrays of
zeros and ones, which allow an easy compounding with binary arrays of another Boolean
attribute by bit-wise operations of AND, OR and NOT. Thus a bit-string representation of
any derived Boolean attribute could be quickly prepared from involved basic Boolean
attributes. Moreover bit-string representations of partial derived Boolean attributes are
cached during walking-through the search-space, so a new derived Boolean attribute
representation have not to be prepare from scratch.
Another technique of skips over the search-space is implemented that significantly reduces
number of patterns that have to be constructed. The whole branches of the search-space are
skipped when there is no chance of verified patterns could be present there based on logic of
associational rules and actual data-mining task parameters.

4.4.2 Filtering of found patterns

There are usually many patterns found, so users could easily get overwhelmed and get lost
without a chance to spot really interesting results. There were therefore implemented means
to decrease number of patterns without losing any information.

www.intechopen.com

 New Fundamental Technologies in Data Mining

234

Found true patterns are filtered according to theirs logical properties – only so called prime-
patterns are included into results. Thus only the patterns that do not easily follow from (a
more simple ones) already presented in results are included. For details see e.g. [Rauch,
2005]. This technique has also inspired the filtering of truly novel patterns in the Synthesizer
module – see section 4.6 later.

4.5 Distributed solving of tasks using grid

For the whole automated data-mining process to be feasible, there must be a way to
compute each step of the Inner Loop iteration very quickly. Although there are several
optimisation techniques already incorporated (see the previous section), there are clear
limits for shortening solution times on a single computer. One possible solution how to
significantly increase the computing power and hence to decrease solution times is to use
computer grid to divide solution of single task among many grid nodes.

4.5.1 Grid type chosen

There were two possible options regarding the type of grid used – the dedicated grid or the
PC-Grid consisting of ordinary PCs linked together as clients of the grid server. The
dedicated-grid main advantage is its huge processing power and constant availability of this
power because it has nothing else to do than to wait for assigned task to be solved.
Meanwhile, computers in the PC-Grid are obliged to serve their primary users first and only
the remaining computing power is available for the grid. On the other hand the main
advantage of the PC-Grid are low initial costs and its easy scalability – just another PCs are
registered. Being an academic institution where money funds are often scarce we opt for the
PC-Grid.
The Techila PC-Grid [Techila] was successfully installed on the University of Economics
computer network and now we would like to increase number of participation grid nodes
by registering more PCs from offices, computer labs and even dormitories.

4.5.2 Core data mining algorithm overhaul

The main problem that had to be addressed while incorporating grid features into the LISp-
Miner system was how to divide data-mining task into sub-tasks that could be solved (in
parallel) on particular grid nodes. The goal was to find a general solution that could be used
in all the implemented GUHA procedures within the LISp-Miner system, although they
mine for different patterns and theirs core data-mining algorithm is different. Different
strategies of task partitioning could lead to different complexity of each atomic sub-task and
therefore to very different total computing times on the grid.

4.5.3 Implementation

Two strategies were chosen and already implemented – for details see [Šimůnek &
Tammisto, 2010]. The most important feature of this solution is that no changes to the
original optimised core data-mining algorithms are needed and this solution is applicable
for all the GUHA-procedures implemented in the LISp-Miner system so far.
All the necessary communication with the grid using provided API was implemented on the
user side and new modules for solving sub-tasks on grid nodes were created (one module
for each of the eight data-mining procedures). This new modules use the same program
code as is used for local solving of tasks. There is no change from the point of view of user –

www.intechopen.com

EverMiner – Towards Fully Automated KDD Process

235

only a new dialog window appears to decide whether to solve the concerned task locally or
by the grid. Communications links and the grid access-privileges were secured by
certificates.
A real data analysis was undertaken using distributed grid verification and results were
compared to solving-times of the same task on a single computer. Two procedures were
selected for benchmark tests – the 4ft-Miner procedure as the currently most used one and
the Acft-Miner procedure (looking up the 4ft-action-rules) where the grid potential is even
higher due to a more complex pattern syntax. A significant improvement in solution times
was observed right from the first tasks. The grid overhead (due to division of a task into
sub-tasks, to uploading all the necessary data to the grid and then to downloading the
results) is reasonably small and its relative importance decreases by growing complexity of
tasks. There was observed a near linear dependency between number of grid nodes
involved and reduction in task-solution times. For example a task running for more than 30
hours on a single PC was solved within 6 hours on grid consisting from just 5 grid nodes.
And the same task was solved in just one hour using 24 grid nodes (albeit more powerful
ones, in 1,2 factor approximately).
The undertaken experiments proved that the implemented grid feature brings significant
improvements to solutions times and is easily up-scaled for even better times by simply
registering more PCs as grid nodes.

4.6 Synthesizer and inducing new knowledge
After new results are mined they are handed to the Synthesizer module to be confronted
with the existing knowledge already stored in the Knowledgebase and possibly to induce a
new knowledge. Remember, please, that new results have been already pruned of logically
dependent patterns and only so called prime-patterns are passed to this phase.

4.6.1 What to not report
Even the prime-patterns could describe many kinds of true but (from the point of view of
domain experts) completely worthless facts. Examples of such “gems” are: “There is at least a
99% probability that a person giving birth to a child will be a women” or “Body temperature of
patients is in range from 34 to 40 °C in more than 90 % of cases“. There is many more such
statements that are certainly true but will irritate domain experts and maybe they will even
break they faith in results of analysis. Thus, it is very important to automatically filter out as
many of such statements as possible.
There is no sense too in reporting the same patterns over and over if they were already
presented to users in previous rounds of analysis. So every found pattern has to be checked
against knowledge already present in the Knowledgebase and only really novel facts will be
append there are reported in analytical reports.

4.6.2 Filtering of already-known knowledge

A technique similar to prime-rule testing is proposed for comparing newly found patterns
with knowledge already in the Knowledgebase.
It is possible to translate any kind of Mutual Dependency knowledge stored in the
Knowledgebase to one (or more) patterns looked-up by one of analytical procedures. For
example, the dependency of Education ↑↓ BMI (stating that a higher level of education leads
generally to a lower level of the Body-Mass-Index) could be translated into 4ft-asociational
rules in form of:

www.intechopen.com

 New Fundamental Technologies in Data Mining

236

right _ cut _ n p,B left _ cut _ mEducation() BMI()α ⇒ β

where
• αright_cut_n is so-called right cut of categories of the attribute Education with the length of n

(i.e. n of highest categories of the concerned ordinal attribute)
• βleft_cut_m is so-called left cut of categories of the attribute BMI with the length of n (i.e. n

of lowest categories of the concerned ordinal attribute)
• ⇒p, B is the 4ft-quantifier of Found implication based on the confidence value of a/(a+b).
Similar translations are available for remaining types of Mutual Dependency using possibly
another types of quantifiers or whole analytical procedures and their patterns (KL-patterns,
CF-patterns and even SD4ft-, SDKL- and SDCF-patterns) – for more details see [Rauch, 2010].
 This translation of Mutual dependencies needs to be done only once (either before the
EverMiner analysis begins or after each change of the Knowledgebase). When a new pattern is
mined and sent to the Synthesizer module it will be checked against subsets of this translated
patterns (only those for the same analytical procedure). What we want to resolve is whether
it (logically) follows from some (simpler) pattern already present in the Knowledgebase. So
the same approach could be used as for the prime-rule testing described above. But this time
the set of patterns it is checked against the one translated from the Knowledgebase.
If deduction rules prove that the newly found pattern logically follows from a pattern
representing a Mutual dependency already present in the Knowledgebase, it could be either
filtered-out or this Mutual dependency could be flagged that it is supported by the analysed
data.

4.6.3 Inducing new knowledge

If a newly found pattern meets test of novelty it need to be added into the Knowledgebase in
form of the new Mutual dependency knowledge. Again, there are translations-rules available
for each analytical procedure (and its type of patterns) how to construct a new Mutual

dependency based on the found pattern.
When a new Mutual dependency is created and inserted into the Knowledgebase, it is compared
to already existing Mutual dependencies for the same pair of (meta-) attributes. If they are two
different types of Mutual dependencies now in the Knowledgebase, it should be investigated
further whether they are complementary or contradictory. Complementary dependencies
could coexist e.g. in case of:

Education BMI and Education BMI↑↓ ↓↑

In this special case, a tighter Mutual dependency of F(Education, BMI) stating that there is a
strict function-like dependency between the level of education and value of the BMI could
be used to formulate a new LAQ (and eventually to prove it).
On the other hand, the contradictory Mutual dependencies, e.g. in case of:

Education BMI and Education BMI↑↑ ↑↓

leads to the “rejected in the analysed data” flag to be set for the first mutual dependency and
the found contradiction need to be highlighted in the analytical report.

www.intechopen.com

EverMiner – Towards Fully Automated KDD Process

237

4.6.4 Groups of related patterns

The same dependency in the analysed data could be expressed in more than one way by
different types patterns of different analytical procedures. For example, where a single KL-

pattern could be sufficient to describe a function-like dependency between two attributes,
tens of 4ft-associational rules could be necessary to express the same. Too many found rules
make results hard to understand and complicate reaching right conclusions. It is necessary
therefore to identify groups of patterns that describe a single dependency in the analysed
data and possibly to use another type of the LAQ Template and therefore another analytical
procedure to answer it. This feature is not understood well and has to be addressed in
future research.

4.7 Complete history of analysis

Every decision taken during both Loops and even the intermediate results need to be logged
so the whole history of the automated KDD process could be checked afterwards. No
information of any kind is ever deleted. This will not only help during development of the
EverMiner but also will allow an analytical audit of the whole reasoning behind delivered
results and to prove the validity of newly induced knowledge. Types of stored information
are:
• used mapping of attributes from the analysed data to the meta-attributes in the

Knowledgebase;
• formulated LAQs and its parameters (used Template, groups of meta-attributes)
• created tasks; each task is associated to the LAQs it is supposed to answer;
• information about task-parameters changes during fine-tuning in the Inner Loop;
• found prime patterns of each task-run;
• answers to the LAQs derived from the found prime patterns – together with

information whether they support the already known facts in the Knowledgebase;
• changes made to the Mutual Dependency type of knowledge.
The necessary infrastructure for storing this kind of information is already in place for man-
controlled data-mining and could be used for the EverMiner too:
• Every created attribute has already an optional link to its master meta-attribute.
• Formulated LAQs are stored in database and their status could be monitored.
• Each data-mining task must belong to a task-group. So a task-group will be created for

every LAQ and all data-mining tasks designed to answer it will be included in this
group (remember that there could be more than one task necessary to answer a single
LAQ).

• Already implemented feature of task-cloning will be utilized for keeping track of task-
parameters evolution during the Inner Loop – a new clone of the task with current
version of task-parameters will be created in each iteration before task-parameters are
changed. The name of the newly cloned task will be the same and task will be inserted
into the same task-group. Only the “iteration” index will be increased to provide
information about sequence of steps in the Inner Loop.

• Found results are routinely stored within data-mining task data to be visible to users in
man-controlled data-mining analysis. This feature allows keeping results from all
iterations because each task-parameters version is stored in corresponding cloned-task
and identified with its “iteration” number.

www.intechopen.com

 New Fundamental Technologies in Data Mining

238

• Every newly synthesized knowledge is added in form of the Mutual Dependency into the
Knowledgebase. Three important properties accompany it – whether it is created by some
user (domain specialist) or by the Synthesizer module; the time-stamp – when it was
created; and finally links to data-mining results the new knowledge is based upon.
Incorporation of the time-stamp allows storing multiple instances of mutual
dependence to a single pair of meta-attributes while preserving the whole evolution of
who and when made any change. Thus, a mutual dependency relationship could be
marked as “proven” when results from a data-mining task will prove them, or could be
marked as “rejected” otherwise. And a complete “evolution graph” of the Knowledgebase
could be constructed afterwards to provide users with deep explanation why some new
knowledge was induced and based on what patterns in the analysed data.

5. Conclusion and further work

All the phases necessary to build an automated data-mining system were proposed. Some
parts were already implemented and the remaining pieces have a sufficient theoretical
background to be implemented in a near future.
Our goal is to proceed in partial steps and gradually build the functioning EverMiner
system. Currently, we are working on the communication with the SEWEBAR project
repositories to be able to gather relevant information into the EverMiner Knowledgebase
regarding processed attributes. A first version of the QuestionMaker for formulating some
simple kinds of LAQs based on the knowledge already stored in the Knowledgebase will be
implemented then. It will allow to launch first analytical procedures tasks and to solve them
using the already implemented grid feature.
After obtaining the first results we will be able then to deploy appropriate rules for the fine-
tuning of the task parameters, based on the number and quality of found prime patterns.
Another kinds of knowledge could be possibly stored into the Knowledge to help either
during the Data Preprocessing phase, during formulation of LAQs or during pruning results
of already-known facts.

6. Acknowledgements

This text was prepared with the support of “Institutional funds for support of a long-term
development of science and research at the Faculty of Informatics and Statistics of The
University of Economics, Prague”.

7. References

Agrawal, R.; Iimielinski, T.; Swami, A. (1993). Mining associations between sets of items in
massive databases. Proceedings of the ACM-SGMOD 1993 Int. Conference on
Management of Data, pp. 207-216, 1993, Wasghington D.C.

Agrawal, R.; Manilla, H.; Srikant, R.; Toivonen, H.; Verkamo, A. (1996) Fast Discovery of
Association Rules. In: Advances in Knowledge Discovery and Data Mining, Fayyad,
U. M. et al., (Eds.), pp. 307–328, AAAI Press/The MIT Press

Balhar, T.; Kliegr, T.; Šťastný, D.; Vojíř, S. (2010). Elicitation of Background Knowledge for
Data Mining. Proceedings of Znalosti 2010, s. 167–170, ISBN 978-80-245-1636-3,
Jindřichův Hradec, February 2010, Oeconomica, Praha

www.intechopen.com

EverMiner – Towards Fully Automated KDD Process

239

CRISP-DM: Cross Industry Standard Process for Data Mining [online]. [cit. 18. 12. 2009],
available from WWW: http://www.crisp-dm.org

Hájek, P. & Havránek, T. (1978). Mechanising Hypothesis Formation – Mathematical Foundations
for a General Theory. Springer-Verlag, Berlin – Heidelberg – New York, 1978, 396 pp.

Hájek, P. & Havránek, T. (1982). GUHA80: An Application of Artificial Intelligence to Data
Analysis. Computers and Artificial Intelligence, Vol. 1, 1982, pp. 107-134

Hájek, P. & Ivánek, J. (1982). Artificial Intelligence and Data Analysis, Proceedings of
COMPSTAT’82, Caussinus H., Ettinger P., Tomassone R. (Eds.), pp. 54-60, 1982,
Wien, Physica Verlag

Hájek, P.; Holeňa, M.; Rauch, J. (2010). The GUHA method and its meaning for data mining.
Journal of Computer and System Sciences, Vol. 76, 2010, pp. 34-48, ISSN: 0022-0000

Kliegr, T.; Ralbovský, M.; Svátek, V.; Šimůnek, M.; Jirkovský, V.; Nemrava, J.; Zemánek, J.
(2009). Semantic Analytical Reports: A Framework for Post-processing data Mining
Results, Proceedings of Foundations of Intelligent Systems, pp. 88–98, ISBN 978-3-642-
04124-2, ISSN 1867-8211, Praha, September 2009, Springer Verlag, Berlin

Lín, V.; Dolejší, P.; Rauch, J.; Šimůnek, M. The KL-Miner Procedure for Datamining, Neural
Network World, Vol. 5, 2004, pp. 411–420, ISSN 1210-0552.

LISp-Miner – academic KDD system [online], [cit 2010-07-15], available from WWW
http://lispminer.vse.cz

Ras, Z. & Wieczorkowska, A. (2000). Action-Rules: How to Increase Profit of a Company.
Proceedings of PKDD 2000, Zighed, D.A., Komorowski, J., Zytkow, J.M. (Eds.), pp.
587–592, LNCS (LNAI) Vol. 1910, Springer, Heidelberg

Rauch J. (2005): Logic of Association Rules. Applied Intelligence, Vol. 22, 2005, pp. 9 – 28, ISSN
0924-669X

Rauch J. (2009): Considerations on Logical Calculi for Dealing with Knowledge in Data
Mining, In: Advances in Data Management, Ras Z. W., Dardzinska A. (Eds.), pp. 177 –
202, Springer, 2009

Rauch, J. (2010). EverMiner – Consideration on a Knowledge Driven Permanent Data
Mining Process, EverMiner – Consideration on a Knowledge Driven Permanent
Data Mining Process, International Journal of Data Mining, Modelling and
Management, ISSN: 1759-1171 (Online), 1759-1163 (Print), accepted for publication

Rauch, J. & Šimůnek, M. (2005a). GUHA Method and Granular Computing, Proceedings of
IEEE 2005, HU, Xiaohua, LIU, Qing, SKOWRON, Andrzej, LIN, Tsau Young,
YAGER, Ronald R., ZANG, Bo (Eds.), pp. 630–635, ISBN 0-7803-9017-2, Beijing, July
2005, IEEE, Piscataway

Rauch, J. & Šimůnek, M. (2005b). An Alternative Approach to Mining Association Rules. In:
Foundations of Data Mining and Knowledge Discovery, LIN, Tsau Young et. al. (Eds.),
pp. 211–231, ISBN 3-540-26257-1, ISSN 1860-949X, Springer, Berlin

Rauch, J. & Šimůnek, M. (2005c). New GUHA procedures in LISp-Miner system, Proceedings
of COST 274: Theory and Applications of Relational Structures as Knowledge Instruments.
pp. 73–85, Universidad de Málaga, April 2005, Málaga

Rauch, J. & Šimůnek, M. (2007). Semantic Web Presentation of Analytical Reports from Data
Mining – Preliminary Considerations, Proceedings of the WEB INTELLIGENCE, pp.
3–7, ISBN 0-7695-3026-5, San Francisco, November 2007, IEEE Computer Society,
Los Alamitos

www.intechopen.com

 New Fundamental Technologies in Data Mining

240

Rauch, J. & Šimůnek, M. (2008). LAREDAM – Considerations on System of Local Analytical
Reports from Data Mining, Proceedings of Foundations of Intelligent Systems, pp. 143–
149, ISBN 978-3-540-68122-9, ISSN 0302-9743, Toronto, May 2008, Springer-Verlag,
Berlin

Rauch, J. & Šimůnek, M. (2009a). Dealing with Background Knowledge in the SEWEBAR
Project. In: Knowledge Discovery Enhanced with Semantic and Social Information,
BERENDT, Bettina, MLADENIČ, Dunja, GEMMIS, Marco de, SEMERARO,
Giovanni, SPILIOPOULOU, Myra, STUMME, Gerd, SVÁTEK, Vojtěch, ŽELEZNÝ,
Filip (Eds.), pp. 89–106, Springer-Verlag, ISBN 978-3-642-01890-9. ISSN 1860-949X,
Berlin. URL: http://www.springer.com/engineering/book/978-3-642-01890-9.

Rauch, J. & Šimůnek, M. (2009b). Action Rules and the GUHA Method: Preliminary
Considerations and Results, Proceedings of Foundations of Intelligent Systems, pp. 76–
87, ISBN 978-3-642-04124-2. ISSN 1867-8211, Praha, September, 2009, Springer
Verlag, Berlin

Rauch, J.; Šimůnek, M.; Lín, V. (2005). Mining for Patterns Based on Contingency Tables by
KL-Miner – First Experience. In: Foundations and Novel Approaches in Data Mining,
LIN, Tsau Young, OHSUGA, Setsuo, LIAU, C. J., HU, Xiaohua (Eds.), pp. 155–167,
ISBN 3-540-28315-3. ISSN 1860-949X, Springer-Verlag, Berlin

SEWEBAR project [online], [cit 2010-17-14], available from WWW http://sewebar.vse.cz
Šimůnek, M. (2003). Academic KDD Project LISp-Miner. Proceedings of Advances in Soft

Computing – Intelligent Systems Desing and Applications, ABRAHAM, A., FRANKE,
K., KOPPEN, K. (Eds.), pp. 263–272, ISBN 3-540-40426-0, Tulsa, 2003, Springer-
Verlag, Heidelberg

Šimůnek, M. & Tammisto, T. (2010). Distributed Data-Mining in the LISp-Miner System
Using Techila Grid. Proceedings of Networked Digital Technologies, ZAVORAL, Filip,
YAGHOB, Jakub, PICHAPPAN, Pit, El-QAWASMEH, Eyas (Eds.), pp. 15–21, ISSN
1865-0929, ISBN 978-3-642-14291-8, Praha, July 2010, Springer-Verlag, Berlin

Techila PC-Grid [online], [cit: 2010-07-10], see http://www.techila.fi

www.intechopen.com

New Fundamental Technologies in Data Mining

Edited by Prof. Kimito Funatsu

ISBN 978-953-307-547-1

Hard cover, 584 pages

Publisher InTech

Published online 21, January, 2011

Published in print edition January, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The progress of data mining technology and large public popularity establish a need for a comprehensive text

on the subject. The series of books entitled by "Data Mining" address the need by presenting in-depth

description of novel mining algorithms and many useful applications. In addition to understanding each section

deeply, the two books present useful hints and strategies to solving problems in the following chapters. The

contributing authors have highlighted many future research directions that will foster multi-disciplinary

collaborations and hence will lead to significant development in the field of data mining.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

M. Šimůnek and J. Rauch (2011). EverMiner - towards Fully Automated KDD Process, New Fundamental

Technologies in Data Mining, Prof. Kimito Funatsu (Ed.), ISBN: 978-953-307-547-1, InTech, Available from:

http://www.intechopen.com/books/new-fundamental-technologies-in-data-mining/everminer-towards-fully-

automated-kdd-process

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

