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1. Introduction

Turbulence is almost the rule in the flow of classical fluids. It is a complex nonlinear
phenomenon for which the development of a satisfactory theoretical framework is still
incomplete. Turbulence is often found in the flow of quantum fluids, especially superfluid
Helium 4, known as liquid helium II (Donnelly, 1991), (Nemirovskii & Fiszdon, 1995),
(Barenghi et al., 2001), (Vinen & Niemela, 2002).
In recent years there has been growing interest in superfluid turbulence, because of its unique
quantum peculiarities and of its similarity with classical turbulence to which it provides
a wide range of new experimental possibilities at very high Reynolds numbers (Vinen,
2000), (Barenghi, 1999), and because of their influence in some practical applications, as
in refrigeration by means of superfluid helium. We will consider here the turbulence in
superfluid 4He, for which many detailed experimental techniques have been developed.
The behavior of liquid helium, below the lambda point (Tc ≃ 2.17 K), is very different from that
of ordinary fluids. One example of non-classical behavior is the possibility to propagate the
second sound, a wave motion in which temperature and entropy oscillate. A second example
of non-classical behavior is heat transfer in counterflow experiments. Using an ordinary fluid
(such as helium I), a temperature gradient can bemeasured along the channel, which indicates
the existence of a finite thermal conductivity. If helium II is used, and the heat flux inside the
channel is not too high, the temperature gradient is so small that it cannot be measured, so
indicating that the liquid has an extremely high thermal conductivity (three million times
larger than that of helium I). This is confirmed by the fact that helium II is unable to boil. This
effect explains the remarkable ability of helium II to remove heat and makes it important in
engineering applications.
The most known phenomenological model, accounting for many of the properties of He
II, given by Tisza and Landau (Tisza, 1938), (Landau, 1941) is called the two-fluid model.
The basic assumption is that the liquid behaves as a mixture of two fluids: the normal
component with density ρn and velocity vn, and the superfluid component with density ρs
and velocity vs, with total mass density ρ and barycentric velocity v defined by ρ = ρs + ρn
and ρv = ρsvs + ρnvn. The second component is related to the quantum coherent ground
state and it is an ideal fluid, which does not experience dissipation neither carries entropy.
The superfluid component, which is absent above the lambda transition temperature, was
originally considered to be composed by particles in the Bose-Einstein state and is an ideal
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2 Thermodynamics

fluid, and the normal component by particles in the excited state (phonons and rotons) and is
a classical Navier-Stokes viscous fluid.
The two-fluid model explains the experiment described above in the following way: in the
absence of mass flux (ρnvn + ρsvs = 0 and vn and vs averaged on a small mesoscopic volume
Λ), in helium II the heat is carried toward the bath by the normal fluid only, and q = ρsTvn
where s is the entropy per unit mass and T the temperature. Being the net mass flux zero,
there is superfluid motion toward the heater (vs = −ρnvn/ρs), hence there is a net internal
counterflow Vns = vn − vs = q/(ρssT) which is proportional to the applied heat flux q.
An alternative model of superfluid helium is the one-fluid model (Lebon & Jou, 1979),
(Mongiovı̀, 1993), (Mongiovı̀, 2001) based on extended thermodynamics (Müller & Ruggeri,
1998), (Jou et al., 2001), (Lebon et al., 2008). Extended Thermodynamics (E.T.) is a
thermodynamic formalism proposed in the last decades, which offers a natural framework for
the macroscopic description of liquid helium II. The basic idea underlying E.T. is to consider
the physical fluxes as independent variables. In previous papers, the E.T. has been applied to
formulate a non-standard one-fluidmodel of liquid helium II, for laminar flows. This model is
recalled in Section 2, in the absence of vortices (laminar flow) and in Section 3both in rotating
containers and in counterflow situations.
Quantum turbulence is described as a chaotic tangle of quantized vortices of equal circulation

κ =
∮

us · dl (1)

(us microscopic velocity of the superfluid component) called quantum of vorticity and results
κ = h/m4, with h the Planck constant, and m4 the mass of 4He atom: κ ≃ 9.97 10−4cm2/s.
Since the vorticity is quantized, the increase of turbulence is manifested as an increase of the
total length of the vortex lines, rather than with a faster spinning of the vortices. Thus, the
dynamics of the vortex length is a central aspect of quantum turbulence.
A preliminary study of these interesting phenomena was made in (Jou et al., 2002), where
the presence of vortices was modeled through a pressure tensor Pω for which a constitutive
relationwas written. In homogeneous situations, the vortex tangle is described by introducing
a scalar quantity L, the average vortex line length per unit volume (briefly called vortex
line density). The evolution equation for L in counterflow superfluid turbulence has been
formulated by Vinen (Vinen, 1958), (Donnelly, 1991), (Barenghi et al., 2001)

dL

dt
= αvVnsL

3/2 − βvκL2, (2)

with Vns the modulus of the counterflow velocity Vns = vn − vs, which is proportional to the
heat flux q, and αv and βv dimensionless parameters. This equation assumes homogeneous
turbulence, i.e. that the value of L is the same everywhere in the system. In fact, homogeneity
may be expected if the average distance between the vortex filaments, of the order of L−1/2,
is much smaller than the size of the system.
Recent experiments show the formation of a new type of superfluid turbulence, which has
some analogies with classical one, as for instance using towed or oscillating grids, or stirring
liquid helium by means of propellers. In this situation, which has been called co-flow,
both components, normal and superfluid, flow along the same direction. To describe these
experiments it is necessary to build up a hydrodynamic model of quantum turbulence, in
which the interactions between both fields can be studied and the role of inhomogeneities is
explicitly taken into account.
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Hydrodynamical Models of Superfluid Turbulence 3

Our aim in this review is to show hydrodynamical models for turbulent superfluids, both in
linear and in non linear regimes. To this purpose, in Section 4we will choose as fundamental
fields the density ρ, the velocity v, the internal energy density E, in addition to the heat flux
q, and the averaged vortex line density L (Mongiovı̀ & Jou, 2007), (Ardizzone & Gaeta, 2009).
We will write general balance equations for the basic variables and we will determine the
constitutive equations for the fluxes; the nonlinear relations which constrain the constitutive
quantities will be deduced from the second law of thermodynamics, using the Liu method of
Lagrange multipliers (Liu, 1972). The physical meaning of the Lagrange multipliers both near
and far from equilibrium will be also investigated. Under the hypothesis of homogeneity in
the vortex tangle, the propagation of second sound in counterflow is studied, with the aim to
determine the influence of the vortex tangle on the velocity and attenuation of this wave.
In this model the diffusion flux of vortices JL is considered as a dependent variable, collinear
with the heat flux q. But, in general, this feature is not strictly verified because the vortices
move with a velocity vL, which is not collinear with the counterflow velocity. For this
reason, a more detailed model of superfluid turbulence would be necessary, by choosing as
fundamental fields, in addition to the fields previously used, also the velocity of the vortex
line vL. In Section 5we aim to study the interaction between second sound and vortex density
wave, a model which choose as field variables, the internal energy density E, the line density
L, and the vortex line velocity vL (Sciacca et al, 2008).
The paper is the first general review of the hydrodynamical models of superfluid turbulence
inferred using the procedures of E.T. Furthermore, the text is not exclusively a review of
already published results, but it contains some new interpretations and proposals which are
formulated in it for the first time.

2. The one-fluid model of liquid helium II derived by extended thermodynamics

Extended Thermodynamics (E.T.) is a macroscopic theory of non-equilibrium processes,
which has been formulated in various ways in the last decades (Müller & Ruggeri,
1998), (Jou et al., 2001), (Lebon et al., 2008). The main difference between the ordinary
thermodynamics and the E.T. is that the latter uses dissipative fluxes, besides the traditional
variables, as independent fields. As a consequence, the assumption of local equilibrium is
abandoned in such a theory. In the study of non equilibrium thermodynamic processes, an
extended approach is required when one is interested in sufficiently rapid phenomena, or
else when the relaxation times of the fluxes are long; in such cases, a constitutive description
of these fluxes in terms of the traditional field variables is impossible, so that they must be
treated as independent fields of the thermodynamic process.
From a macroscopic point of view, an extended approach to thermodynamics is required in
helium II because the relaxation time of heat flux is comparable with the evolution times of the
other variables; this is confirmed by the fact that the thermal conductivity of helium II cannot
be measured. As a consequence, this field cannot be expressed by means of a constitutive
equation as a dependent variable, but an evolution equation for it must be formulated.
From a microscopic point of view, E.T. offers a natural framework for the (macroscopic)
description of liquid helium II: indeed, as in low temperature crystals, using E.T., the
dynamics of the relative motion of the excitations is well described by the dynamics of the
heat flux.
The conceptual advantage of the one-fluid model is that, in fact, from the purely macroscopic
point of view one sees only a single fluid, rather than two physically different fluids. Indeed
the variables v and q used in E.T. are directly measurable, whereas the variables vn and vs,
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4 Thermodynamics

are only indirectly measured, usually from the measurements of q and v. The internal degree
of freedom arising from the relative motion of the two fluids is here taken into account by the
heat flux, whose relaxation time is very long. However, the two-fluid model provides a very
appealing image of the microscopic helium behavior, and therefore is the most widely known.

2.1 Laminar flows

A non standard one-fluid model of liquid helium II deduced by E.T. was formulated in
(Mongiovı̀, 1991). The model chooses as fundamental fields the mass density ρ, the velocity
v, the absolute temperature T and the heat flux density q. Neglecting, at moment, dissipative
phenomena (mechanical and thermal), the linearized evolution equations for these fields are:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ̇ + ρ∇ · v = 0,

ρv̇+∇p∗ = 0,

ρǫ̇ +∇ · q+ p∇ · v = 0,

q̇+ ζ∇T = 0.

(3)

In these equations, the quantity ǫ is the specific internal energy per unit mass, p the
thermostatic pressure, and ζ = λ1/τ, being τ the relaxation time of the heat flux and λ1

the thermal conductivity. As it will be shown, coefficient ζ characterizes the second sound
velocity, and therefore it is a measurable quantity. Upper dot denotes the material time
derivative.
Equations (3) describe the propagation in liquid helium II of two waves, whose speeds w are
the solutions of the following characteristic equation:

(

w2 −V2
1

)(

w2 −V2
2

)

−W1W2u
2 = 0, (4)

where

V2
1 = pρ, V2

2 =
ζ

ρcV
, W1 =

pT
ρ
, W2 =

TpT
ρcV

, (5)

and with cV = ∂ǫ/∂T the constant volume specific heat and pT = ∂p/∂T and pρ = ∂p/∂ρ.
Neglecting thermal expansion (W1 = 0, W2 = 0) equation (4) admits the solutions w1,2 = ±V1

and w3,4 = ±V2, corresponding to the two sounds typical of helium II: w = ±V1 implies
vibration of only density and velocity; while w = ±V2 implies vibration of only temperature
and heat flux. This agrees with the experimental observations. The coefficient ζ can be
determined by the second equation in 5, once the expression of the second sound velocity
is known.
Finally, we observe that the Gibbs equation for helium II can be written as

Tds = dǫ − p

ρ2
dρ − 1

ρζT
q · dq, (6)

where s is the specific entropy.

2.2 The viscous pressure tensor

It is experimentally known that dissipative effects both of mechanical and thermal origin
are present in the propagation of the two sounds in liquid helium II, also in the absence of
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Hydrodynamical Models of Superfluid Turbulence 5

vortices. To take into account of these effects, a symmetric dissipative pressure tensor PK

must be introduced:

[PK]ik = p<ik> + pVδik. (7)

In (Mongiovı̀, 1993) for the two fields p<ij> and pV , respectively deviator and trace of the
stress tensor, the following constitutive relations were determined:

pV = −λ0

∂vj

∂xj
+ β′Tλ0

∂qj

∂xj
, (8)

p<ik> = −2λ2
∂v<i

∂xk>
+ 2βTλ2

∂q<i

∂xk>
. (9)

In these equations λ0 and λ2 are the bulk and the shear viscosity, while β and β′ are coefficients
appearing in the general expression of the entropy flux in E.T. and take into account of the
dissipation of thermal origin.
Equations (8)–(9) contain, in addition to terms proportional to the gradient of velocity (the
classical viscous terms), terms depending on the gradient of the heat flux (which take into
account of the dissipation of thermal origin). The first terms in (8)–(9) allow us to explain the
attenuation of the first sound, the latter the attenuation of the second sound.
In the presence of dissipative phenomena, the field equations (3) are modified in:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ̇ + ρ∇ · v = 0,

v̇+ 1
ρ∇p+ 1

ρ∇pV + 1
ρ∇p<ji> = 0,

Ṫ +
TpT
ρcV

∇ · v+ 1
ρcV

∇ · q = 0,

q̇+ ζ∇T− β′T2ζ∇pV + βT2ζ∇p<ji> = 0.

(10)

The propagation of small amplitude waves was studied in (Mongiovı̀, 1993). Supposing zero
thermal expansion under the hypothesis of small dissipative losses (viscous and thermal)
approximation, one sees that in helium II two waves propagate (the first and the second
sound), whose velocities are identical to that found in the absence of dissipation, and the
attenuation coefficients are found to be:

k
(1)
s =

ω2

2ρw3
1

(

λ0 +
4

3
λ2

)

, k
(2)
s =

ω2T3ζ

2w3
2

(

λ0β′2 +
4

3
λ2β2

)

. (11)

2.3 Comparison with the two-fluid model

Comparing these results with the results of the two-fluid model (Mongiovı̀, 1993), we observe

that the expression of the attenuation coefficient k
(1)
s of the first sound is identical to the

one inferred by Landau and Khalatnikov, using the two-fluid model (Khalatnikov, 1965).
The attenuation coefficient of the second sound appears different from the one obtained in
(Khalatnikov, 1965). However, it contains a term proportional to the square of the frequency
ω, in agreement with the experimental results.
The main difference between the results of the one-fluid theory and the two-fluid model is
that, while in the latter the thermal dissipation (needed to explain the attenuation of the
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second sound) is due to a dissipative term of a Fourier type, in the extended model it is a
consequence of terms dependent on the gradient of the heat flux qi (which are present in the
expressions of the trace and the deviator of non equilibrium stress, besides the traditional
viscous terms).

3. Vortices in liquid helium II

From the historical and conceptual perspectives, the first observations of the peculiar aspects
of rotation in superfluids arose in the late 1950’s, when it was realized that vorticity may
appear inside superfluids and that it is quantized, its quantum κ being κ = h/m4, with h
the Planck constant and m4 the mass of the particles. According to the two-fluid model of
Tisza and Landau (Tisza, 1938), (Landau, 1941), the superfluid component cannot participate
to a rigid rotation, owing to its irrotationality. Consequently, owing to the temperature
dependence of the normal component fraction, different forms of the liquid free surface
should be observed at different temperatures. In order to check this prediction, Osborne
(Osborne, 1950) put in rotation a cylindrical vessel containing helium II, but no dependence
of the form of the free surface of temperature was observed. Feynman (Feynman, 1955) gave
an explanation of the rigid rotation of helium II without renouncing to the hypothesis of the
irrotationality of the velocity of the superfluid. Following the suggestion of the quantization of
circulation by Onsager (Onsager, 1949), he supposed that the superfluid component, although
irrotational at the microscopic level, creates quantized vortices at an intermediate level; these
vortices yield a non-zero value for the curl of the macroscopic velocity of the superfluid
component.
Another interesting experiment was performed by Hall and Vinen (Hall & Vinen,, 1956),
(Hall & Vinen,, 1956) about propagation of second sound in rotating systems. A resonant
cavity is placed inside a vessel containing He II, and the whole setting rotates at constant
angular velocity Ω. When the second sound propagates at right angles with respect to the
rotation axis, it suffers an extra attenuation compared to a non-rotating vessel of an amount
proportional to the angular velocity. On the other hand, a negligible attenuation of the second
sound is found when the direction of propagation is parallel to the axis of rotation. The large
increase of the attenuation observed by Hall and Vinen when the liquid is rotated can be
explained by the mutual friction, which finds its origin in the interaction between the flow
of excitations (phonons and rotons) and the array of straight quantized vortex filaments in
helium II. Indeed, such vortices have been directly observed and quantitatively studied.
In fact, vortices are always characterized by the same quantum of vorticity, in such a way that
for higher rotation rates the total length of the vortices increases. The vortices are seen to form
a regular array of almost parallel lines. This has strong similarities with electrical current
vortex lines appearing in superconductors submitted to a high enough external magnetic
field. In fact, this analogy has fostered the interest in vortices in superfluids, which allow
one to get a better understanding of the practically relevant vortices in superconductors
(Fazio & van der Zant, 2001).
The situation we have just mentioned would scarcely be recognized as ”turbulence”, because
its highly ordered character seems very far from the geometrical complexities of usual
turbulence. In fact, it only shares with it the relevance of vorticity, but it is useful to refer
to it, as it provides a specially clear understanding of the quantization of vorticity.
The interest in truly turbulent situations was aroused in the 1960’s in counterflow experiments
(Vinen, 1957), (Vinen, 1958). In these experiments a random array of vortex filaments appears,
which produces a damping force: the mutual friction force. The measurements of vortex
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Hydrodynamical Models of Superfluid Turbulence 7

lines are described as giving a macroscopic average of the vortex line density L. There
are essentially two methods to measure L in superfluid 4He: observations of temperature
gradients in the channel and of changes in the attenuation of the second-sound waves
(Donnelly, 1991), (Barenghi et al., 2001).
In the present section, our attention is focused on the study of the action of vortices on second
sound propagation in liquid helium II. This will be achieved by using the one-fluid model of
liquid helium II derived in the framework of E.T., modified in order to take into account of
the presence of vortices.

3.1 The vorticity tensor

To take into account the dissipation due to vortices, a dissipative pressure tensor Pω can be
introduced in equations (3) (Jou et al., 2002)

P = PK + Pω , (12)

where PK designates the kinetic pressure tensor introduced in the previous section (equation
(7)). In contrast with PK (a symmetric tensor), Pω is in general nonsymmetric. The
decomposition (12) is analogous to the one performed in real gases and in polymer solutions,
where particle interaction or conformational contributions are respectively included as
additional terms in the pressure tensor (Jou et al., 2001).
As in the description of the one-fluid model of liquid helium II made in Section 2 (see
also (Mongiovı̀, 1991), (Mongiovı̀, 1993)), the relative motion of the excitations may still be
described by the dynamics of the heat flux, but now the presence of the vortices modifies the
evolution equation for heat flux. For the moment, we will restrict our attention to stationary
situations, in which the vortex filaments are supposed fixed, and we focus our attention on
their action on the second sound propagation. In other terms, in this section, we do not
assume that Pω is itself governed by an evolution equation, but that it is given by a constitutive
relation. Furthermore, we neglect PK as compared to Pω , because the mutual friction effects
are much greater than bulk and shear forces acting inside the superfluid.
Let us now reformulate the evolution equation for the heat flux q. The experimental data
show that the extra attenuation due to the vortices is independent of the frequency. Therefore,
a rather natural generalization of the last equation in system (3) for the time evolution of the
heat flux q is the following:

q̇+ 2Ω × q+ ζ ∇T = −Pω · q. (13)

This relation is written in a noninertial system, rotating at uniform velocity Ω; the influence
of the vortices on the dynamics of the heat flux is modeled by the last term in the r.h.s. of
(13). In this equation all the non linear terms have been neglected, with the exception of the
production term�σq = −Pω · q, which takes into account the interaction between vortex lines
and heat flux.
To close the set of equations, we need a constitutive relation for the tensor Pω . The presence
of quantized vortices leads to a interaction force with the excitations in the superfluid known
as mutual friction. From a microscopic point of view, the major source of mutual friction
results from the collision of rotons with the cores of vortex lines: the quasiparticles scatter off
the vortex filaments and transfer momentum to them. The collision cross-section is clearly
a strong function of the direction of the roton drift velocity relative to the vortex line: it is a
maximumwhen the roton is travelling perpendicular to this line and a minimum (in fact zero)
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when the roton moves parallel to the line. The microscopic mechanism is the same in rotating
helium II and in superfluid turbulence.
We are therefore led to take:

Pω = λ < ω >< U− s′ ⊗ s′ > +λ′
< ω ><W · s′ >, (14)

where brackets denote (spatial and temporal) macroscopic averages. The unspecified
quantities introduced in (14) are the following: �ω is the microscopic vorticity vector, ω = |�ω|;
λ = λ(ρ,T) and λ′ = λ′(ρ,T) are coefficients relating the internal energy of the liquid to the
microscopic vorticity (Khalatnikov, 1965), s′ is a unit vector tangent to the vortices,U the unit
second order tensor and W the Ricci tensor, an antisymmetric third order tensor such that
W · s′ · q = −s′ × q. Finally, the quantity < ω > depends on the average vortex line length
per unit volume L. Neglecting the bulk and shear viscosity and under the hypothesis of small
thermal dilation (which in helium II are very small), the linearized system of field equations
for liquid helium II, in a non inertial frame and in absence of external force, is (Jou et al., 2002):

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ
∂t + ρ

∂vj
∂xj

= 0,

ρ ∂vi
∂t +

∂p
∂xi

+ i0i + 2ρ (Ω ∧ v)i = 0,

∂T
∂t +

1
ρcV

∂qj
∂xj

= 0,

∂qi
∂t + ζ ∂T

∂xi
+ 2(Ω ∧ q)i =

(
�σq
)

i
= − (Pω · q)i ,

(15)

where i0 + 2ρ (Ω ∧ v)i stands for the inertial force.
In this section we consider the three most characteristic situations: the wave propagation in
a rotating frame, the wave propagation in a cylindrical tube in presence of stationary thermal
counterflow (no mass flux), and the wave propagation in the combined situation of rotation
and thermal counterflow.

3.2 Rotating frame

Rotating helium II is characterized by straight vortex filaments, parallel to the rotation
axis, when the angular velocity exceeds a critical value. The amount of these vortices is
proportional to the absolute value of the angular velocity Ω of the cylinder by the Feynman’s
rule: LR = 2|Ω|/κ. Therefore

< ω >= κL = 2|Ω|. (16)

In this situation the averaged unit vector tangent to the vortices is < s′ >= Ω/Ω.
But, the state with all the vortex lines parallel to the rotation axis will not be reached, because
the vortex lines will always exhibit minuscule deviations with respect to the straight line, and
such deviations produce a mutual friction force parallel to the rotation axis. Indeed, in an
another experiment (Snyder & Putney, 1966) the component of the mutual friction along the
rotational axis was studied, and their result shows that this component is very small compared
with the orthogonal components but not exactly zero. In this subsection, in order to include
the axial component of the mutual friction force, the following more general expression for
vorticity tensor Pω is used:
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PR
ω =

1

2
κLR

[

(B− B′′)
(

U− Ω̂ ⊗ Ω̂

)

+ B′W · Ω̂ + 2B′′
Ω̂ ⊗ Ω̂

]

, (17)

where B and B′ are the Hall-Vinen coefficients (Hall & Vinen,, 1956) describing the orthogonal
dissipative and non dissipative contributions while B′′ is the friction coefficient along
the rotational axis. The production term in (15d) can be expressed as (Donnelly, 1991),
(Jou & Mongiovı̀, 2005), (Jou &Mongiovı̀, 2006):

�σR
q =

1

2
κLR

[

(B− B′′)Ω̂ ∧
(

Ω̂ ∧ q
)

+ B′
Ω̂ ∧ q− 2B′′

Ω̂ ⊗ Ω̂ · q
]

. (18)

Assuming the rotation axis as first axis, the vorticity tensor (17) can be written as:

Pω =
1

2
BκL

⎧

⎨

⎩

⎛

⎝

2b 0 0
0 1− b 0
0 0 1− b

⎞

⎠+

⎛

⎝

0 0 0
0 0 c
0 −c 0

⎞

⎠

⎫

⎬

⎭
. (19)

where we have put b = B′′/B and c = B′/B. Comparing (19) with (14): if B′′ = 0 then
B = 2λ, B′ = 2λ′, < (s′x1)

2 >= 1 and < (s′x2 )
2 >=< (s′x3)

2 >= 0; if B′′ �= 0 then the previous

identification is not possible but it results< (s′x1 )
2 >= 1− 2B′′/B and< (s′x2 )

2 >=< (s′x3)
2 >=

2B′′/B.

3.2.1 Wave propagation in a rotating frame

In the following we assume that Ω is small, so that the term i0 in (15b) can be neglected.
Substituting the expression (18) into the system (15) and choosing Ω = (Ω,0,0), the system
assumes the following form:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ
∂t + ρ

∂vj
∂xj

= 0,

ρ ∂vi
∂t +

∂p
∂xi

+ 2ρΩvjW1ji = 0,

∂T
∂t +

1
ρcV

∂qj
∂xj

= 0,

∂qi
∂t + ζ ∂T

∂xi
+
(

2Ω − 1
2B

′κLR
)

qjW1ji =
1
2κLR[(B− B′′) (−qi + q1δi1)− 2B′′q1δi1],

(20)

where δij is the unit tensor and Wkji the Ricci tensor.
It is easily observed that a stationary solution of this system is:

ρ = ρ0, v = 0, T = T0, q = 0. (21)

In order to study the propagation of plane harmonic waves of small amplitude (Whitham,
1974), we linearize system (20) in terms of the fields Γ = (ρ,vi,T,qi), and we look for solutions
of the form:

Γ = Γ0 + Γ̃ei(Knjxj−ωt), (22)
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where Γ0 = (ρ0,0,T0,0) denotes the unperturbed state, Γ̃ =
(
ρ̃, ṽi, T̃, q̃i

)
are small amplitudes

whose products can be neglected, K = kr + iks is the wavenumber, ω = ωr + iωs the frequency
and n = (ni) the unit vector orthogonal to the wave front. For the sake of simplicity, the
subscript 0, which denotes quantities referring to the unperturbed state Γ0, will be dropped
out.
First case: n parallel to Ω.
Assuming that the unit vector n orthogonal to the wave front is parallel to the rotating axis
(x1−axis), it follows that longitudinal and transversal modes evolve independently. The study
of the longitudinalmodes (ρ̃, ṽ1, T̃ and q̃1) furnishes the existence of twowaves: the first sound
(or pressure wave) in which density and velocity vibrate with velocity V1 := ω1,2

kr
=

√
pρ (ω

real), and the second sound (or temperature wave) in which temperature and heat flux vibrate
with velocity

w2 =

(
ω

kr

)2

= V2
2 − B′′2κL2R

4V2
2 k

2
r + B′′2κL2R

and ks =
wB′′κLR
2V2

2

, (23)

where V2
2 = ζ

ρcV
is the velocity of the second sound in the absence of vortices and ks is the

attenuation. The longitudinal modes are

ω1,2 = ±krV1 ω3,4 = ±
√

4V4
2 k

4
r

4V2
2 k

2
r+B′′2κL2R

ρ̃ = ψ ρ̃ = 0

ṽ1 = ±V1
ρ ψ ṽ1 = 0

T̃0 = 0 T̃ = T0ψ

q̃1 = 0 q̃1 = ±ρcVT0

√

4V4
2 k

4
r

4V2
2 k

2
r+B′′2κL2R

ψ

Therefore, as observed in (Snyder & Putney, 1966), when the wave is propagated parallel to
the rotation axis, the longitudinal modes are influenced by the rotation only through the axial
component of the mutual friction (B′′ coefficient).
On the contrary, the transversal modes (ṽ2, ṽ3, q̃2 and q̃3) are influenced by the rotation. In
fact, the ones of velocity v admit nontrivial solutions if and only if ω5,6 = ±2|Ω|, while the
ones related to q require the following dispersion relation:

ω7,8 = ±(2Ω − 1

2
κLRB

′)− i

2
κLR(B− B′′). (24)

These transversal modes are influenced from both dissipative and nondissipative
contributions B, B′ and B′′ in the interaction between quasi-particles and vortex lines
(Peruzza & Sciacca, 2007).
Second case: n orthogonal to Ω.
In the case in which the direction of propagation of the waves (for instance along x2) is
orthogonal to the rotation axis (along x1), the longitudinal and transversal modes do not
evolve independently. The first sound is coupled with one of the two transversal modes in
which velocity vibrates, whereas fields v1, T and q do not vibrate.
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ω1 = 0 ω2,3 ≃ ±KV1 +O(Ω2)

ρ̃ = ψ ρ̃ = ψ

ṽ2 = 0 ṽ2 =
±V1

ρ ψ

ṽ3 = i
KV2

1
2Ωρ ψ ṽ3 = − 2iΩ

ρK ψ

Second sound is coupled with a transversal mode in which T, q2 and q3 vibrate. Neglecting
the second-order terms in Ω, the dispersion relation becomes:

(

−ω − i

2
κLR(B− B′′)

)[

−ω

(

−ω − i

2
κLR(B− B′′)

)

− K2V2
2

]

= 0. (25)

For ω ∈ℜ and K= kr + iks complex, one gets the solution ω4= 0, which represents a stationary
mode; and two solutions which furnish the following phase velocity and attenuation
coefficient of the temperature wave (approximated with respect to (B− B′′)κLR/ω):

w ≃ ±V2

(

1− (B− B′′)2κ2L2R
32ω2

)

+O

(

(B− B′′)4κ4L4R
ω4

)

, (26)

ks ≃
(B− B′′)κLR

4V2
+O

(

(B− B′′)3κ3L3R
ω2

)

. (27)

The corresponding modes are ρ̃ = q̃1 = ṽ1 = ṽ2 = ṽ3 = 0 and

ω4 = 0 ω5,6 ≃ ±krV2

(

1− (B−B′′)2κ2L2R
32ω2

)

+O
(
(B−B′′)3κ3L3R

ω2

)

T̃ = − i(2Ω− 1
2 κLRB

′)
ζK ψ T̃ = T0ψ

q̃2 = 0 q̃2 =
T0ζ
V2

(

1− (B−B′′)2κ2L2R
32ω2

)

ψ

q̃3 = ψ q̃3 =
i(2Ω− 1

2 κLRB
′)T0ζ

(

1− (B−B′′)2κ2L2R
32ω2

)

V2

[

±krV2

(

1− (B−B′′)2κ2L2
R

32ω2

)

− i
2 (B−B′′)κLR

]ψ

We note that in the mode of frequency ω4 = 0, only the transversal component of the heat flux
is involved.
For ω = ωr + iωs complex and K ∈ ℜ, the first solution of the dispersion relation (25)

becomes ω4 = − i
2 (B − B′′)κLR. This first mode corresponds to an extremely slow relaxation

phenomenon involving the temperature and the transversal component of the heat flux

ω4 = − i
2 (B− B′′)κLR

ρ̃ = ṽ1 = ṽ2 = ṽ2 = ṽ3 = 0

T̃ = − i(2Ω− 1
2 κLRB

′)
ζK ψ

q̃2 = 0
q̃3 = ψ

which, when Ω → 0, converges to a stationary mode.
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3.3 Counterflow in a cylindrical tube

Here we apply the model proposed in Section 2 to study the superfluid turbulence, in a
cylindrical channel filled with helium II and submitted to a longitudinal stationary heat flux;
for simplicity we suppose that the vortex distribution is described as an isotropic tangle. This
allows us to suppose that the microscopic vorticity �ω (hence the unit vector s′) is isotropically
distributed, so that

< U− s′ ⊗ s′ >=
2

3
U. (28)

while < ω > depends on the average vortex line length L per unit volume, through the simple
proportionality law < ω >= κL and λ = B/2, λ′ = 0. As a consequence, the pressure tensor
(14) takes the simplified form

Pω = λ κL
2

3
U ⇒ �σH

q = −K1Lq, (29)

where K1 =
1
3κB.

3.3.1 Wave propagation in presence of thermal counterflow

Consider a cylindrical channel filled with helium II, submitted to a longitudinal heat
flux q0, exceeding the critical value qc. We refer now to the experimental device
(Donnelly & Swanson, 1986), (Donnelly, 1991) in which second sound is excited transversally
with respect to the channel. In this case, the heat flux q can be written as q = q0 + q′, with
q′ the contribution to the heat flux, orthogonal to q0, due to the temperature wave. Suppose
that the longitudinal heat flux q0 down the channel is much greater than the perturbation q′.
Under these hypotheses, neglecting second order terms in q′, the production term is linear in
the perturbation q′.
To study the second sound attenuation in the experiment described above, we use simplified
field equations, where all the nonlinear contributions are neglected. Under the above
hypotheses, omitting also the thermal dilation, the linearized set of field equations read as

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ
∂t + ρ

∂vj
∂xj

= 0,

ρ ∂vi
∂t +

∂p
∂xi

= 0,

∂T
∂t +

1
ρcV

∂qj
∂xj

= 0,

∂qi
∂t + ζ ∂T

∂xi
= − 1

3κBLqi.

(30)

A stationary solution of the system (30) is (Jou et al., 2002):

ρ = ρ0, v̇ = 0, T = T(x1) = T0 −
κBL

3ζ
q0x1, q = q0, (31)

where x1 is the direction of the heat flux q= q0. In order to study the propagation of harmonic
plane waves in the channel, we look for solutions of the system (30) of the form (22) with
Γ0 = (ρ0,0,T(x1),q0). The longitudinal modes are obtained projecting the vectorial equations
for the small amplitudes of velocity and heat flux on the direction orthogonal to the wave
front. It is observed that the first sound is not influenced by the thermal counterflow, while
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the velocity and the attenuation of the second sound are influenced by the presence of the
vortex tangle. The results are (Peruzza & Sciacca, 2007):

w1,2 = ±√
pρ,

with pρ standing for ∂p/∂ρ and:

w3,4 = ±V2

√
√
√
√

(

1+
k2sV

2
2

ω2

)−1

≃ ±V2

(

1− k2s
V2
2

2ω2

)

, ks =
1

6
κBLw. (32)

The transversal modes are obtained projecting the vectorial equations for the small amplitudes
of velocity and heat flux on the wave front. The solutions of this equation are: ω5 = 0 and

ω6 =
i
3κBL. The mode ω5 = 0 is a stationary mode.

3.4 Combined situation of rotating counterflow

The combined situation of rotation and heat flux, is a relatively new area of research
(Jou & Mongiovı̀, 2004), (Mongiovı̀ & Jou, 2005), (Tsubota et al., 2004). The first motivation
of this interest is that from the experimental observations one deduces that the two effects are
not merely additive; in particular, for q or Ω high, the measured values of L are always less
than LH + LR (Swanson et al., 1983).
Under the simultaneous influence of heat flux q and rotation speed Ω, rotation produces an
ordered array of vortex lines parallel to rotation axis, whereas counterflow velocity causes
a disordered tangle. In this way the total vortex line is given by the superposition of both
contributions so that the vortex tangle is anisotropic. Therefore, assuming that the rotation
is along the x1 direction Ω = (Ω,0,0) and isotropy in the transversal (x2 − x3) plane, for the
vorticity tensor Pω, in combined situation of counterflow and rotation, the following explicit
expression is taken

Pω =
B

2
κL

{
2

3
(1− D)U+ D

[(

1− B′′

B

)(

U− Ω̂ ⊗ Ω̂

)

+
B′

B
W · Ω̂ + 2

B′′

B
Ω̂ ⊗ Ω̂

]}

, (33)

where D is a parameter between 0 and 1 related to the anisotropy of vortex lines, describing
the relative weight of the array of vortex lines parallel to Ω and the disordered tangle of
counterflow (when D = 0 we recover an isotropic tangle – right hand side of Eq. (30d) –,

whereas when D= 1 the ordered array – Eq. (17)). Assuming b= 1
3 (1−D)+ DB′′

B and c= B′D
B ,

the vorticity tensor (33) can be written as:

Pω =
B

2
κL

⎧

⎨

⎩

⎛

⎝

2b 0 0
0 1− b 0
0 0 1− b

⎞

⎠+

⎛

⎝

0 0 0
0 0 c
0 −c 0

⎞

⎠

⎫

⎬

⎭
. (34)

Note that the isotropy in the x2 − x3 plane may only be assumed when both Ω and Vns are
directed along the x1 axis. A more general situations was studied in (Jou & Mongiovı̀, 2006).

3.4.1 Wave propagation with simultaneous rotation and counterflow

Substituting the expression (34) into the linearized set of field equations (15), it becomes
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⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ
∂t + ρ

∂vj
∂xj

= 0,

ρ ∂vi
∂t +

∂p
∂xi

+ 2ρΩvjW1ji = 0,

∂T
∂t +

1
ρcV

∂qj
∂xj

= 0,

∂qi
∂t + ζ ∂T

∂xi
+ 2ΩqjW1ji = − B

2 κL{2bq1δ1i + [(1− b)q2 + cq3] δ2i + [(1− b)q3 − cq2] δ3i} ,
(35)

A stationary solution of this system is:

ρ = ρ0, v̇ = 0, q = q0 ≡ (q0,0,0) , T = T(xi) = T0 − 2
BκL

2ζ
bq0δ1ixi.

In order to study the propagation of harmonic plane waves, we look for solutions of (35) of
the form (22), with Γ0 = (ρ0, 0, T(xi), q0).
Now, we investigate two different cases: n parallel to Ω and n orthogonal to Ω; the latter is
the only case for which experimental data exist (Swanson et al., 1983).
First case: n parallel to Ω.
Let x1 be the direction of the rotation axis and of the unit vector n orthogonal to the wave front.
In this case the longitudinal and transversal modes evolve independently. In particular, we

can observe that the first sound is not influenced by the presence of the vortex tangle k
(1)
s = 0

and T̃ = 0, q = 0

ω1,2 = ±krV1

ρ̃ = ψ

ṽ1 =
V1
ρ ψ

whereas the second sound suffers an extra attenuation due to the vortex tangle. This is
confirmed by the approximate solutions of the dispersion relation

w3,4 ≃ ±V2

(

1− B2κ2L2b2

8ω2

)

+O

(

B4κ4L4b4

16ω4

)

, (36)

k
(2)
s ≃ BκLb

2V2
+O

(
B3κ3L3b3

8ω2

)

. (37)

where ω is assumed real and K = kr + iks complex. When Ω = 0 and b= 1/3 the results of the
Section 3.3 are obtained again.
Now, we study the transversal modes, corresponding to ω5,6 = ±2|Ω|; in this case ρ̃ = T̃ =
q̃1 = q̃2 = q̃3 = ṽ1 = 0 and
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ω5,6 = ±2|Ω|

ṽ3 = ψ
ṽ2 = ±iψ

They correspond to extremely slow phenomena, which, when Ω → 0, tend to stationary
modes. Finally, the dispersion relation

ω7,8 = ±
(

2Ω − B

2
κLc

)

− i
B

2
κL (1− b) (38)

corresponds to the vibration of only these fields

ω7,8 = ±
(

2Ω − B
2 κLc

)

− i B2 κL (1− b)

q̃3 = ψ
q̃2 = ±iψ

From (36), (37) and (38) one may obtain the following quantities L, b and c:

L =
−ωsw+V2

2 ks
κwB/2

, b =
V2
2 ks

−ωsw+V2
2 ks

, c =
−ωrw+ 2Ωw

−ωsw+V2
2 ks

, (39)

where we have put ω7 = ωr + iωs.
The results of this section imply that measurement in a single direction are enough to give
information on all the variables describing the vortex tangle.
Second case: n orthogonal to Ω.
Now we assume that the direction of propagation of the waves is orthogonal to the rotation
axis (axis x1), i.e. for example, n = (0,1,0). In this case the longitudinal and the transversal
modes do not evolve independently. In particular, the first sound is coupled with one of the
two transversal modes in which velocity vibrates, while the second sound is coupled with a
transversal mode in which heat flux vibrates.
Fields ρ̃, ṽ2, ṽ3 have the same solutions and the same dispersion relation to the case of pure
rotation

− ω
[

ω2 − 4Ω
2 − K2pρ

]

= 0. (40)

The dispersion relation of fields T̃, q̃2, q̃3 is instead:

(

−ω − iγ
B

2
κL(1− b)

)[

ω

(

−ω − i
B

2
κL(1− b)

)

+ K2V2
2

]

+ ω

(

2iΩ − i
B

2
κLc

)2

= 0. (41)

Assuming ω ∈ ℜ and K = kr + iks and in the hypothesis of small dissipation (k2r ≫ k2s ), one
obtains:

ks =
B

2
κL(1− b)

(

2w2 −V2
2

2wV2
2

)

, (42)
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(
ω

kr

)2

= 0, and

(
ω

kr

)2

= w2 = V2
2

(
ω2 − B̃

)

(
ω2 + Ã

) = V2
2

1

1− (2Ω− B
2 κLc)

2

ω2+(B/2)2κ2L2(1−b)2

. (43)

where Ã= −
[(

2Ω − B
2 κLc

)2
− B2

4 κ2L2(1− b)2
]

and B̃ = − B2

4 κ2L2(1− b)2.

We can remark that the coefficients Ã and B̃ are negative and that w2 ≥ V2
2 because ω2 + Ã≤

ω2 − B̃ and, in particular, w2 = V2
2 for Ω = BκLc

4 .
Now, studying the transversal modes, i.e. that ones corresponding to non zero ṽ1 and q̃1, we
obtain ω7 = 0, which corresponds to a stationary mode, and

ω8 = −iBκLb. (44)

Summarizing, also in this case measurements in a single direction are enough to given
information on all the variables describing the vortex tangle, namely L, b and c, from equations
(42), (43) and (44)

L =
4kswV

2
2 − ωs

(
2w−V2

2

)

(
2w2 −V2

2

)
Bκ

, b = − ωs
(
2w2 −V2

2

)

4kswV2
2 − ωs

(
2w−V2

2

) ,

c =
4Ω(2w2 −V2

2 )−
√

(1−V2
2 )(4k

2
r (2w2 −V2

2 )
2 + 16k2sV

4
2 )

4kswV2
2 − ωs(2w2 −V2

2 )
, (45)

where we have put ω8 = iωs and ωs = −κLbB.
In this subsection we have analyzed wave propagation in the combined situation of rotation
and counterflow with the direction n orthogonal to Ω. In (Swanson et al., 1983) authors
experimented the same situation, but they didn’t represent the attenuation neither the speed
of the second sound but only the vortex line density L as function of Ω and Vns. Therefore,
it is unknown how they plotted these graphics, which hypothesis they made and what the
anisotropy considered. Instead, the results of these two subsections allow to know the spatial
distribution of the vortex tangle simply by performing experiments on waves propagating
orthogonally to Ω (equations (39)) or parallelly to Ω (equations (45)).
From the physical point of view it is interesting to note that our detailed analysis in this
subsection shows that, in contrast to which one could intuitively expect, measurements in
a single direction are enough to give information on all the variables describing the vortex
tangle, namely L, b and c, for instance, from one of (36)-(37) and (38) or of (42)-(43) and (44).
This is not an immediate intuitive result.

3.5 Comparison with the two-fluid model

To compare the one-fluid model of liquid helium II in a non-inertial frame with the two-fluid
one, we recall that in (Mongiovı̀, 1991), (Mongiovı̀, 1993) it is shown that the linearized field
equations (3) can be identified with those of the two-fluid non dissipative model if we define

ζ = ρ
ρs
ρn

Ts2, (46)
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and we make the following change of variables:

q = ρsTsVns, (47)

v =
ρs
ρ
vs +

ρn
ρ
vn, (48)

where, we recall, vn and vs are the mesoscopic velocities of the normal and superfluid
components and Vns = vn − vs is the counterflow velocity.
If we perform in the field equations (15) the change of variables (47–48), we check immediately
that the first three equations are identical to the ones of the two-fluid model for helium II, even
in non-inertial frame (Peruzza & Sciacca, 2007). We concentrate therefore on the field equation
for the heat flux. To the first order approximation with respect to the relative velocity Vns and
the derivatives of the field variables, we obtain:

∂Vns

∂t
+

ζ

ρsTs
∇T+ 2Ω ×Vns =

1

ρsTs
�σq, (49)

where �σq stands for �σR
q in rotation case, �σH

q in counterflow case and �σHR
q in rotating

counterflow. We multiply equation (49) by ρn/ρ and add it to the balance equation (15 b).
Making use of the result vs = v− (ρn/ρ)Vns, we find

∂vs
∂t

− s∇T +
1

ρ
∇p+ 2Ω × vs +

ρn
ρ

1

ρsTs
�σq = 0. (50)

In virtue of equation dμ = (1/ρ)dp − sdT, which relates the chemical potential μ = ǫ − Ts+
(p/ρ) to the equilibrium variables, the field equation for the superfluid velocity takes the form

ρs
∂vs
∂t

+ ρs∇μ + 2ρsΩ × vs +
ρn
ρ

1

Ts
�σq = 0. (51)

Expression (51) is identical to the correspondingfield equation for vs, obtained in the two-fluid
model. Of course in the pure counterflow case Ω has to be set zero in (51). This result is a
confirmation of the results derived in the framework of the one-fluid model based on E.T..
In counterflow experiments, equation (51) can be written as:

ρs
∂vs
∂t

+ ρs∇μ = F
(E)
ns , where F

(E)
ns =

1

3

ρsρn
ρ

κBγ2V2
nsVns (52)

and relation L = γ2V2
ns has been used.

To interpret the experimental results on stationary helium flow through channels using
the two-fluid model, Gorter and Mellink (Gorter & Mellink, 1949) and Vinen (Vinen, 1957)
postulate the existence, in the field equation for the superfluid component, of a dissipative
term proportional to the cube of the relative velocity Vns:

F
(GM)
ns = ρsρn ĀV

2
nsVns, (53)

Ā being a temperature dependent coefficient. It is interesting to note that, setting Ā =
κBγ2/(3ρ) in (52b), and using (47), the results of the present work are in full agreement with
those of Gorter and Mellink.
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4. Hydrodynamical model of inhomogeneous superfluid turbulence

In Section 3 a first model of superfluid turbulence was presented, where the vortices were
modeled through the pressure tensor Pω for which a constitutive relation was written.
Experiments (Vinen, 2000), (Vinen & Niemela, 2002), show the formation of a new type of
superfluid turbulence, which has some analogies with classical one, as for instance using
towed or oscillating grids, or stirring liquid helium by means of propellers. In this situation
(named co-flow) both components, normal and superfluid, flow along the same direction. To
describe these experiments it is necessary to build up a hydrodynamic model of quantum
turbulence, in which the interactions between both fields can be studied and the role of
inhomogeneities is explicitly taken into account (Mongiovı̀ & Jou, 2007), (Ardizzone & Gaeta,
2009).
In a more complete hydrodynamic model of superfluid turbulence the line density L acquires
field properties: it depends on the coordinates, it has a drift velocity vL, and it has associated
a diffusion flux. These features are becoming increasingly relevant, as the local vortex
density may be measured with higher precision, and the relative motion of vortices is
observed and simulated. Thus it is important to describe situations going beyond the usual
description of the vortex line density averaged over the volume. Our aim, in this Section, is
to formulate a hydrodynamical framework sufficiently general to encompass vortex diffusion
and to describe the interactions between the second sound waves and the vortices, instead of
considering the latter as a rigid framework where such waves are simply dissipated. This is
important because second sound provides the standard method of measuring the vortex line
density L, and the mentioned dynamical mutual interplay between second sound and vortex
lines may modify the standard results.

4.1 The line density and Vinen’s equation

Themost well known equation in the field of superfluid turbulence is Vinen’s equation (Vinen,
1958), which describes the evolution of L, the total length of vortex lines per unit volume, in
counterflow situations characterized by a heat flux q. Vinen suggested that in homogeneous
counterflow turbulence there is a balance between generation and decay processes, which
leads to a steady state of quantum turbulence in the form of a self-maintained vortex tangle.
The Vinen’s equation (2), written in terms of the variable q, is:

dL

dt
= αq|q|L3/2 − βqL

2, (54)

with αq = αvρssT and βq = κβv .
Vinen considered homogeneous superfluid turbulence and assumed that the time derivative
dL/dt is composed of two terms:

dL

dt
=

[
dL

dt

]

f

−
[
dL

dt

]

d

, (55)

the first is responsible for the growth of L, the second for its decay. Vinen assumes that the
production term [dL/dt] f depends linearly on the instantaneous value of L and the force f

between the vortex line and the normal component, which is linked to the modulus |q| of the
heat flux, and he obtained:

[
dL

dt

]

f

= αvκVnsL
3/2 = αq|q|L3/2. (56)
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The form of the term responsible for the vortex decay was determined assuming Feynman’s
model of vortex breakup, analogous to Kolmogorov’s cascade in classical turbulence

[
dL

dt

]

d

= −βvκL2 = −βqL
2, (57)

thus obtaining equation (54). A microscopic derivation of this equation was made by Schwarz
(Schwarz, 1988).
The stationary solutions of this equation are L = 0 and L1/2 = (αq/βq)|q|. The non-zero
solution is proportional to the square of the heat flux and describes well the full developed
turbulence.

4.2 Derivation of the hydrodynamical model

The starting point here is to formulate a theory for a turbulent superfluid, which uses the
averaged vortex line density L in addition to the fields ρ, v, E and q, used in Sections 2 and 3.
Because we want to formulate a general nonlinear theory, we will suppose that the dynamics
of the excitations is described by a vector field mi, which must be considered as an internal
variable, linked to the heat flux qi through a constitutive relation, but not identical to it.
We consider for the fields ρ, v, E andm and L the following balance equations written in terms
of the non-convective terms (Ardizzone & Gaeta, 2009):

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ̇ + ρ ∂vk
∂xk

= 0,

ρv̇i +
∂Jvik
∂xk

= 0,

Ė+ E ∂vk
∂xk

+
∂qk
∂xk

+ Jvik
∂vi
∂xk

= 0,

ṁi +mi
∂vk
∂xk

+ ∂Jmik
∂xk

= σm
i ,

L̇+ L ∂vk
∂xk

+
∂JLk
∂xk

= σL.

(58)

where Jvij is the stress tensor, J
m
ij the flux of the field mi, and JLi the flux of vortex lines; σm

i and

σL are terms describing the net production of the field mi characterizing the dynamics of the
excitations and the production of vortices. Dot denotes the material time derivative.
Since in the system (58) there are more unknowns than equations, it is necessary to complete
it by adding constitutive equations, relating the variables mi, J

v
ik, J

m
ik and JLi to the independent

fields ρ, E, qi and L. As a consequence of the material objectivity principle, the constitutive
equations can be expressed in the form:

mi = α(ρ,E,q2,L)qi,

Jvik = p(ρ,E,q2,L)δik + a(ρ,E,q2,L)q<iqk>,

Jmik = β(ρ,E,q2,L)δik + γ(ρ,E,q2,L)q<iqk>,

JLi = ν(ρ,E,q2,L)qi.

(59)
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where α, β, a, p, γ, ν are scalar functions, δik is the Kronecker symbol and q<iqk> = qiqk −
1
3 q

2δik is the deviatoric part of the diadic product qiqj.

4.2.1 Restrictions imposed by the entropy principle

Further restrictions on these constitutive relations are deduced from the second law of
thermodynamics. Accordingly, there exists a convex function S = S(ρ,E,q2,L), the entropy
per unit volume, and a vector function JSk = φ(ρ,E,q2,L)qk, the entropy flux density, such that

the rate of production of entropy σS is non-negative

σS = Ṡ+ S
∂vk
∂xk

+
∂JSk
∂xk

≥ 0. (60)

Note that this inequality does not hold for any value of the fundamental variables, but only for
the thermodynamic processes, i.e. only for those values which are solution of the system (58).
This means that we can consider the equations (58) as constraints for the entropy inequality
to hold. A way to take these constraints into account was proposed by Liu (Liu, 1972): he
showed that the entropy inequality becomes totally arbitrary provided that we complement
it by the evolution equations for the fields ρ, vi, E, mi and L affected by Lagrange multipliers:
Λρ = Λρ(ρ,E,q

2,L), Λ
v
i = Λv(ρ,E,q

2,L)qi, ΛE = ΛE(ρ,E,q
2,L), Λ

m
i = λ(ρ,E,q2,L)qi, ΛL =

ΛL(ρ,E,q
2,L). One obtains the following inequality, which is satisfied for arbitrary values of

the field variables:

Ṡ+ S
∂vk
∂xk

+
∂JSk
∂xk

− Λρ

[

ρ̇ + ρ
∂vk
∂xk

]

− Λ
v
i

[

v̇i +
1

ρ

∂Jvik
∂xk

]

− ΛE

[

Ė+ E
∂vk
∂xk

+
∂qk
∂xk

+ Jvik
∂vi
∂xk

]

− Λ
m
i

[

ṁi +mi
∂vk
∂xk

+
∂Jmik
∂xk

− σm
i

]

− ΛL

[

L̇+ L
∂vk
∂xk

+
∂JLk
∂xk

− σL

]

≥ 0. (61)

Imposing that the coefficients of the time derivatives of ρ, vi, E, qi and L vanish, one gets:
Λv = 0 and

dS = Λρdρ + ΛEdE+ ΛLdL+ Λ
m
i dmi, (62)

Imposing that the coefficients of space derivatives of ρ, E, qi and L vanish, one finds:

dJSk = Λ
m
i dJ

m
ik + ΛLdJ

L
k + ΛEdqk. (63)

From these relations in (Ardizzone et al., 2009) we have found:

Λv = 0, a= 0, (64)

dS = Λρdρ + ΛEdE+ λqid(αqi) + ΛLdL, (65)

S− ρΛρ − ΛE(E+ p)− λαq2 − ΛLL = 0, (66)
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dφ = λ

(

dβ +
1

6
γdq2 +

2

3
q2dγ

)

+ ΛLdν, (67)

φ = ΛE + λγq2 + ΛLν. (68)

We note that all the relations (65)-(68) are exact, because no approximation has been used for
their determination and maintain their validity also far from equilibrium.
It remains the following residual inequality for the entropy production:

σS = Λ
m
i σm

i + Λ
LσL ≥ 0. (69)

Introducing the specific internal energy ǫ = E/ρ, substituting the constitutive equations (59)
in system (58) and the restriction a = 0, the following system of field equations is obtained:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ̇ + ρ ∂vk
∂xk

= 0,

ρv̇i +
∂p
∂xi

= 0,

ρǫ̇ +
∂qk
∂xk

+ p ∂vk
∂xk

= 0,

˙︷︸︸︷
αqi + αqi

∂vj
∂xj

+
∂[βδik+γq<iqk>]

∂xk
= σm

i ,

L̇+ L ∂vk
∂xk

+
∂(νqk)

∂xk
= σL.

(70)

Observe that in these equations there are the unknown quantities α, p, ǫ, β, γ and ν, which are
not independent, because they must satisfy relations (65)-(68), and the productions σm

i and σL

which must satisfy inequality (69).
In (Ardizzone et al., 2009) it is shown that, using a Legendre transformation, the constitutive
theory is determined by the choice of only two scalar functions S′ and φ′ of the intrinsic
Lagrange multipliers, defined as:

S′ = −S+ Λρρ + ΛEE+ ΛLL+ Λ
m
i mi, (71)

Φ
′
k = φ′

Λ
m
k = −JSk + ΛEqk + ΛL J

L
k + Λ

m
i Jmik , (72)

Furthermore, if one chooses as state variables the fields

Λ̃ρ = Λρ +
1

2
ΛEv

2, Λ̃vi = −ΛEvi, Λ̃mi
= Λmi

, Λ̃E = ΛE, Λ̃L = ΛL, (73)

the system of field equation (58) assumes the form of a symmetric hyperbolic system and,
therefore, for it the Cauchy problem is well posed, i.e. the existence, uniqueness and
continuous dependence of its solutions by the initial data is assured.

4.2.2 Physical interpretation of the constitutive quantities and of the Lagrange multipliers

As shown, the use of the Lagrange multipliers as independent variables results very useful
from a mathematical point of view. In order to single out the physical meaning of the
constitutive quantities and of the Lagrange multipliers, we analyze now in detail the relations
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obtained in the previous section. First we will determine the equilibrium values for these
multipliers. Denoting with Υ any of the scalar quantities α, h, φ, p, β, γ, ν, Λρ, ΛE, λ, ΛL and
making the position

Υ0(ρ,E,q
2,L) = Υ0(ρ,E,L) +O(q2), (74)

the following relations are obtained:

dS0 = Λ
ρ
0dρ + Λ

E
0 dE+ Λ

L
0dL,

S0 − ρΛ
ρ
0 − Λ

E
0 (E+ p0)− Λ

L
0 L = 0,

dφ0 = λ0dβ0 + Λ
L
0 dν0,

φ0 = Λ
E
0 + Λ

L
0 ν0.

(75)

Introduce now a ”generalized temperature” as the reciprocal of the first-order part of the
Lagrange multiplier of the energy

Λ
E
0 =

[
∂S0
∂E

]

ρ,L
=

1

T
(76)

and observe that, in the laminar regime (when L= 0), Λ
E
0 reduces to the absolute temperature

of thermostatics. In the presence of a vortex tangle the quantity (76) depends also on the line
density L. Writing equations (75a) and (75b) as

dE = TdS0 − TΛ
ρ
0dρ − TΛ

L
0 dL, (77)

− TΛ
ρ
0 =

E

ρ
− T

S0
ρ

+
p0 + LTΛ

L
0

ρ
, (78)

and defining the quantity −Λ
ρ
0/Λ

E
0 = −TΛ

ρ
0 as the ”mass chemical potential” in turbulent

superfluid

− TΛ
ρ
0 = −T

[
∂S0
∂ρ

]

E,L

= μ
ρ
0, (79)

and the quantity −Λ
L
0/Λ

E
0 = −TΛ

L
0 as the ”chemical potential of vortex lines”, which is

denoted with μL
0 ,

− TΛ
L
0 = −T

[
∂S0
∂L

]

ρ,L

= μL
0 , (80)

one can write equations (77) and (78) in the following form:

dS0 =
1

T
dE− 1

T
μ

ρ
0dρ − 1

T
μL
0dL, (81)

ρμ
ρ
0 + LμL

0 = E− Th0 + p0. (82)

Indeed, in absence of vortices (L= 0) equation (77) is just Gibbs equation of thermostatics and
the quantity (79) is the equilibrium chemical potential. The presence of vortices modifies the
energy density E, and introduce a new chemical potential.
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Consider now the consequences of equations (75c) and (75d) which concern the expressions
of the fluxes. Using definitions (76) and (80), we get:

λ0dβ0 = d

(
1

T

)

− ν0d

(

μL
0

T

)

. (83)

From this equation, recalling that in (Mongiovı̀ & Jou, 2007) it has shown that μL
0 depends

only on T and L, one obtains ∂β0/∂ρ = 0 and

∂β0

∂T
= ζ0 = − 1

T2λ0

[

1+ ν0T
2 ∂

∂T

(

μL
0

T

)]

,
∂β0

∂L
= χ0 = − ν0

Tλ0

∂μL
0

∂L
. (84)

In (Mongiovı̀ & Jou, 2007) it was shown also that it results λ0 < 0, ζ0 ≥ 0, ν0 ≤ 0 and χ0 ≤ 0.

4.2.3 The constitutive relations far from equilibrium

Finally, we analyze the complete mathematical expressions far from equilibrium of the
constitutive functions and of the Lagrange multipliers.
Non-equilibrium temperature. First, we introduce the following quantity:

θ =
1

ΛE(ρ,E,L,q2)
, (85)

which, near equilibrium (L = 0, qi = 0) can be identified with the local equilibrium
absolute temperature. In agreement with (Jou et al., 2001), we will call θ ”non-equilibrium
temperature”, a topic which is receiving much attention in current non-equilibrium
Thermodynamics (Casas-Vázquez & Jou, 2003).
Using this quantity, the scalar potential S′ is expressed as:

S′ = − p

θ
. (86)

Non-equilibrium Chemical Potentials. As we have seen, at equilibrium the quantities −Λρ/ΛE

and −ΛL/ΛE can be interpreted as the equilibrium mass chemical potential and the
equilibrium vortex line density chemical potential. Therefore, we define as non-equilibrium
chemical potentials the quantities:

μρ = − Λρ

ΛE
, and μL = −ΛL

ΛE
. (87)

Generalized Gibbs equation. Using equations (65) and (66) and defining s = S/ρ the
non-equilibrium specific entropy, one obtains

θd(ρs) = dE− μρdρ − μLdL+ θλqid(αqi), (88)

μρ +
L

ρ
μL = ǫ − θs+

p

ρ
+

θ

ρ
αλq2. (89)

One gets also:

dp = ρdμρ + LdμL + ρsdθ − αqid(θλqi). (90)

For the interested reader, in (Ardizzone & Gaeta, 2009), the complete constitutive theory can
be found.
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Non-equilibrium Entropy Flux. The theory developed here furnishes also the complete
non-equilibrium expression of the entropy flux JSk . Remembering relation (68), we can write:

JSi =

(
1

θ
+ νΛL + γλq2

)

qi =
1

θ

(

qi − μL J
L
i + θγλq2qi

)

. (91)

This equation shows that, in a nonlinear theory of Superfluid Turbulence, the entropy flux is
different from the product of the reciprocal non-equilibrium temperature and the heat flux,
but it contains additional terms depending on the flux of heat flux and on the flux of line
density.

4.3 Linearized field equations

Now we will apply the general set of equations derived to the analysis of two specific
situations: vortex diffusion and wave propagation. First of all, we note that, substituting in
(70) the constitutive expressions obtained in Subsection 4.2.2, and neglecting nonlinear terms
in the fluxes, the following system is obtained (Mongiovı̀ & Jou, 2007):

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ̇ + ρ∇ · v = 0,

ρv̇+∇p0 = 0,

ρǫ̇ +∇ · q+ p0∇ · v = 0,

q̇+ ζ0∇T+ χ0∇L = σq,

L̇+ L∇ · v+∇ · (ν0q) = σL,

(92)

with ζ0 and χ0 defined by (84) and satisfying (ν0/χ0) = −(Tλ
q
0L/ǫV).

The total pressure of the turbulent superfluid has the form (Mongiovı̀ & Jou, 2007):

p0 = p∗ + ǫVL, (93)

p∗ being the pressure of the bulk superfluid and ǫVL the contribution of the tangle, with ǫV
the energy per unit length of the vortices (Donnelly, 1991).
For the production terms σq and σL, we will take

σq = −K1Lq σL = −βqL
2 + αq|q|L3/2, (94)

where K1 =
1
3κB. In this approximation, the unknown coefficients, which must be determined

from experimental data, are the specific energy ǫ, the pressure p0, and the three coefficients
ζ0, χ0 and ν0, which are functions only of T and L. Here, we will focus a special attention on
the coefficients χ0 and ν0, which are the new ones appearing in the present formulation, as
compared with the formulation presented in (58).

4.3.1 The drift velocity of the tangle

As observed, in a hydrodynamical model of turbulent superfluids, the line density L acquires
field properties and its rate of change must obey a balance equation of the general form:

∂L

∂t
+∇ · (LvL) = σL, (95)
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with vL the drift velocity of the tangle. If we now observe that the last equation of system (92)
can be written:

∂L

∂t
+∇ · (Lv+ ν0q) = σL, (96)

we conclude that the drift velocity of the tangle, with respect to the container, is given by

vL = v+
ν0
L
q. (97)

Note that the velocity vL does not coincide with the microscopic velocity of the vortex line
element, but represents an averaged macroscopic velocity of this quantity. It is to make
attention to the fact that often in the literature the microscopic velocity ṡ is denoted with
vL.
Observing that in counterflow experiments (v = 0) results vL = ν0q/L, and recalling that
measurements (in developed superfluid turbulence) show that the vortex tangle drifts as a
whole toward the heater, we conclude that ν0 ≤ 0. The measurement of the drift velocity vL

of the vortex tangle, together with the measurement of q and L, would allow one to obtain
quantitative values for the coefficient ν0. In the following section we will propose a way to
measure the coefficient χ0 too.
Another possibility is to interpret ν0q= JL as the diffusion flux of vortices, which since ν0 ≤ 0,
would be opposite to the direction of q. Note that, in this model, if q = 0, JL is also zero.

4.3.2 Vortex diffusion

An interesting physical consequence from the generalized equations (92) is the description of
vortex diffusion. A diffusion equation for the vortex line density was proposed for the first
time by van Beelen et al. (van Beelen et al., 1988), in an analysis of vorticity in capillary flow
of superfluid helium, in situations with a step change in L arising when the tube is divided
in a region with laminar flow and another one with turbulent flow. Assume, for the sake
of simplicity, that T = constant and that q varies very slowly, in such a way that q̇ may be
neglected. We find from (92d) and (94a) that

q = − χ0

K1L
∇L. (98)

Introducing this expression in equation (92e), we find:

dL

dt
+ L∇ · v− ν0χ0

K1
∇ ·
(∇L

L

)

= σL = −βqL
2 + αqqL

3/2, (99)

where q denotes the modulus of (98). Equation (99) can be written (if ∇L �= 0)

dL

dt
+ L∇ · v− ν0χ0

K1L
∆L+

(
ν0χ0

K1L2

)

(∇L)2 = σL. (100)

Then, we have for L a reaction-diffusion equation, which generalizes the usual Vinen’s
equation (54) to inhomogeneous situations. The diffusivity coefficient is (Mongiovı̀ & Jou,
2007)

Ddi f f =
ν0χ0

K1L
. (101)

Since K1 > 0, it turns out that Ddi f f > 0, as it is expected. Thus, the vortices will diffuse from

regions of higher L to those of lower L. Note that Ddi f f must have dimensions (length)2/time,
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the same dimensions as κ. Then, a dimensional ansatz could be Ddi f f ∝ κ. Indeed, Tsubota et
al. (Tsubota et al., 2003b) have studied numerically the spatial vortex diffusion in a localized
initial tangle allowed to diffuse freely, and they found for Ddi f f at very low temperatures
(when there is practically no normal fluid), a value Ddi f f ≈ (0.1± 0.05)κ.

If v vanishes, or if its divergence vanishes, equation (99), neglecting also the term in (∇L)2,
yields

L̇ = −βqL
2 + αqqL

3/2 + Ddi f f ∆L. (102)

Equation (102) indicates two temporal scales for the evolution of L: one of them is due to the
production-destruction term (τdecay) and another one to the diffusion

τdecay ≈ [βqL− αqqL
1/2]−1, τdi f f ≈

X2

Ddi f f
, (103)

where X is the size of the system. For large values of L, τdecay will be much shorter and the
production-destruction dynamics will dominate over diffusion; for small L, instead, diffusion
processes may be dominant. This may be also understood from a microscopic perspective
because the mean free path of vortex motion is of the order of intervortex spacing, of the
order of L−1/2, and therefore it increases for low values of L.
A more general situation for the vortex diffusion flux is to keep the temperature gradient in
(92d). In this more general case, q is not more parallel to ∇L but results

q = − χ0

K1L
∇L− ζ0

K1L
∇T, (104)

in which case, it is:

JL = ν0q = −Ddi f f∇L− Ddi f f
ζ0
χ0

∇T. (105)

Thus, if ∇L = 0, (105) will yield

q = −λe f f∇T, (106)

with an effective thermal conductivity λe f f =
Ddi f f ζ0

χ0ν0
> 0. As in the case of the diffusion

coefficient Ddi f f , λe f f is expected to be positive. Note that λe f f > 0 implies again χ0ν0 > 0.
The second term in (105) plays a role analogous to thermal diffusion — or Soret effect — in
usual diffusion of particles. In this case, equation (99) modifies as

dL

dt
+ L∇ · v− ν0χ0

K1L
∆L− ν0ζ0

K1L
∆T = σL. (107)

This kind of situations have not been studied enough in the context of vortex tangles, but they
would arise in a natural way when trying to understand the behavior of quantum turbulence
in the presence of a temperature gradient.
Expression (105) yields a coupling between the heat flux and an inhomogeneity in L; in other
terms, it means that a heat flux may influence the vortex line density. In view of (104), we
have

− χ0∇L = K1Lq+ ζ0∇T. (108)
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From here, it follows that there should be a slight inhomogeneity in L in such a way that
∇L points in the same direction as K1Lq + ζ0∇T. It follows, in contrast with the standard
assumption that the vortex line density is longitudinally homogeneous in counterflow
experiments, that the vortex tangle would be slightly inhomogeneous. Thus, an experiment
suggested by our formalismwould be to carefully measure the longitudinal profile of L along
the heat flux, to check whether there is a slight increase in L. Furthermore, equation (108)
would allow one to measure the coefficient χ0, in the linear approximation.
Since below (97) we have mentioned a way to measure ν0, it turns out that the new coefficients
ν0 and χ0 could be measured independently of each other.

4.3.3 Propagation of plane harmonic waves

Here, we will study wave propagation in counterflow vortex tangles, assuming that only
fields T, q and L are involved. The equations for these fields, expressing the energy in terms
of T and L, are simply:

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρcV Ṫ + ρǫL L̇+∇ · q = 0,

q̇+ ζ0∇T+ χ0∇L = −K1Lq,

L̇+∇ · (ν0q) = −βqL
2 + αqqL

3/2.

(109)

where cV = ∂ǫ/∂T is the specific heat at constant volume, ǫL = ∂ǫ/∂L ≃ ǫV .
These equations are enough for the discussion of the physical effects of the coupling of
second-sound and the distortion of the vortex tangle (represented by the inhomogeneities
in L), which must be taken into account in an analysis of the vortex tangle by means of second
sound. In fact, some of the previous hydrodynamical analyses of turbulent superfluids had
this problem as one of their main motivations (Tsubota et al., 2003a), (Tsubota et al., 2003b).
As we can easily see, a stationary solution of system (109) is:

q = q0 = (q10,0,0), L = L0 =
α2q

β2
q
[q10]

2, T = T0(x) = T∗ − K1L0q10
ζ0

x1, (110)

with q10 > 0.
To study the wave propagation in a neighborhood of this solution, we substitute σq and σL

with

σq ≃ −K1 [L0q+ q0(L− L0)] , (111)

σL ≃ −
[

2βqL0 −
3

2
αqq10L

1/2

]

(L− L0) + αqL
3/2
0 q̂0 · (q− q0), (112)

obtaining:

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρcV
∂T
∂t + ρǫL

∂L
∂t +∇ · q = 0,

∂q
∂t + ζ0∇T+ χ0∇L = −K1 [L0q+ q0(L− L0)] ,

∂L
∂t + ν0∇ · q = −

[

2βqL0 − 3
2αqq10L

1/2
]

(L− L0) + αqL
3/2
0 q̂0 · (q− q0).

(113)
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Consider the propagation of harmonic plane waves, seeking for solutions of equations (109)
of the form

T = T0(x) + T̃ei(kn·x−ωt), q = q0 + q̃ei(kn·x−ωt), L = L0 + L̃ei(kn·x−ωt), (114)

where K = kr + iks is the complex wave number, ω the real frequency and n the unit vector
in the direction of the wave propagation. Furthermore, we suppose that the oversigned
quantities denote small amplitudes, whose products can be neglected. Inserting (114) in the
linearized field equations (109), and making the positions:

N1 = K1L0, N2 = 2βqL0 −
3

2
αqL

1/2
0 q10, N3 = Kq10, N4 = αqq10L

3/2
0 , (115)

we obtained in (Mongiovı̀ & Jou, 2007), when the wave is collinear with the heat flux q, the
following dispersion relation:

ω2 = K2
[

V2
2 (1− ρǫLν0) + ν0χ0

]

+

−iω(N1 + N2) + i
K2

ω
V2
2 N2 − iK

[

(χ0 +V2
2 ρǫL)N4 − ν0N3

]

, (116)

while, when the wave is orthogonal with the heat flux q, we obtained

ω2 = K2
[

V2
2 (1− ρǫLν0) + ν0χ0

]

+ N1N2 − iω(N1 + N2) + i
K2

ω
V2
2

(

N2 −
N3N4

ω + iN1

)

. (117)

We compare these resultswith the result obtained in Section 3(see also (Jou et al., 2002)), where
we supposed L a fixed quantity, and the term ν0 was assumed to vanish, eliminating in this
way the effects of the oscillations of q on the vortex line density L of the tangle. Assuming
ν0 = N2 = N4 = 0 in (116) and (117), the same dispersion relation for the second sound is
obtained

ω2 = V2
2 K

2 − iωK1L0. (118)

Comparison of (116) and (117) with (118) shows that the distortion of the vortex tangle
under the action of the heat wave, and its corresponding back reaction on the latter, implies
remarkable changes in the velocity and the attenuation of the second sound, the latter effect
depending on the relative direction between q0 and n.

4.3.4 High-frequency waves

In the hypothesis of high-frequency waves, which means ω ≫ N1, ω ≫ N2 and |K̄| ≫
max

(

K1q10
χ0

,
αqq10L

3/2
0

ν0

)

, the dispersion relation (n parallel or orthogonal to the initial heat flux)

is

w2 = V2
2 (1− ν0ρǫL) + v2∞, (119)

where w = ω/kr is the speed of the wave, V2
2 = ζ0/ρcV is the second sound speed in the

absence of vortices and

v2∞ = χ0ν0 (120)
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is the speed of the vortex density wave, which was found in (Jou et al., 2007).
If we try to read the relation (119) in terms of the second sound, we note that the vortex
vibrations modify this second sound speed through the two contributions −V2

2 ν0ρǫL and v2∞,
the latter due to the presence of the vortex density waves and the former due to the reciprocal
existence of two waves. The correction for the speed of the second sound is not important,
because V2 is of the order of 20 m/s near 1,7 K, whereas, for L0 = 106cm−2, the speed of
vortex density waves would be of the order 0,25 cm/s, much lower than V2 (Jou et al., 2007).
To obtain approximate solutions of equations (116) and (117), we assume that the quantities
N1, N2, N3 and N4 are coefficients small enough to assume them as perturbations of the
physical system. This is reasonable at high-frequencies, since we have assumed that ω ≫ N1,

ω ≫ N2 and |K̄| ≫ max

(

Kq10
χ0

,
Aq10L

3/2
0

ν0

)

.

Therefore, let assume that the speed of the wave has the following expression

w̃ =
ω

kr
= w+ δ, (121)

for which substituting it in the equations (116) and (117), we obtain at the lowest order the
relation (119) for the speed w. From the next order follows that δ = 0, that is the perturbations
due to the coefficients N1, N2, N3 and N4 do not modify the speed of the wave while they
modify the coefficients ks related to the attenuation in the form, which in the parallel case is

k
‖
s =

N2

(
w2 −V2

2

)
+ w
(
ρǫLN4V

2
2 + N1w+ N3ν0 − N4χ0

)

2w3
. (122)

and in the orthogonal case is

k⊥s =
N2

(
w2 −V2

2

)
+ N1w

2

2w3
, (123)

From a comparison between the two relations of ks, (122) and (123), one may note that

k
‖
s = k⊥s +

(
ρǫLV

2
2 − χ0

)
N4 + N3χ0

2w2
. (124)

Anyway, the modification of the attenuation coefficients, due to Ni, will be small because w2−
V2
2 is small and the coefficients Ni are also small in the considered situation. This is in contrast

with what happens at low frequency, or when the vortex tangle is assumed as perfectly rigid,
not affected by the second sound, in which case the relative motion of the normal fluid with
respect to the vortex lines yields an attenuation which allows to determine the vortex line
density L of the tangle. However, the wave character of vortex density perturbations at high
frequency makes that vortex lines and the second sound become two simultaneous waves
with a low joint dissipation, in the first-order approach. Thus, from the practical point of
view, it seems that, at high frequency, second sound will not provide much information on
the vortex tangle because the influence of the average vortex line density L is small both in the
speed as in the attenuation. In the next section we will propose an extended hydrodynamical
model which includes flux of vortices as independent variable in order to study vortex density
waves.

5. The flux of line density L as new independent variable, vortex density waves

The vortex lines and their evolution are investigated by second sound waves, so that it is
necessary to analyze in depth their mutual interactions. In particular, high-frequency second
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sound may be of special interest to probe small length scales in the tangle, which is necessary
in order to explore, for instance, the statistical properties of the vortex loops of several sizes.
In fact, the reduction of the size of space averaging is one of the active frontiers in second
sound techniques applied to turbulence, but at high-frequencies, the response of the tangle
to the second sound is expected to be qualitatively different than at low frequencies, as its
perturbations may change from diffusive to propagative behavior (Mongiovı̀ & Jou, 2007),
(Nemirovskii & Lebedev, 1983), (Yamada et al, 1989), (Jou et al., 2007).
In Section 4 and in the paper (Mongiovı̀ & Jou, 2007) a thermodynamical model of
inhomogeneous superfluid turbulence was built up with the fundamental fields: density ρ,
velocity v, internal energy density E, heat flux q and average vortex line length per unit
volume L. In (Jou et al., 2007), starting from this model, a semiquantitative expression for
the vortex diffusion coefficient was obtained and the interaction between second sound and
the tangle in the high-frequency regime was studied. In both these works the diffusion flux
of vortices J was considered as a dependent variable, collinear with the heat flux q, which is
proportional to the counterflow velocityVns. But, in general, this feature is not strictly verified
because the vortices move with a velocity vL, which is not collinear with the counterflow
velocity (for more detail see paper (Sciacca et al, 2008)).

5.1 Balance equations and constitutive theory

In this section we build up a thermodynamical model of inhomogeneous counterflow
superfluid turbulence, which chooses as fundamental fields the energy density E, the heat flux
q, the averaged vortex line length per unit volume L, and the vortex diffusion flux J. Because
experiments in counterflow superfluid turbulence in the linear regime are characterized by a
zero value of the barycentric velocity v, in this paper one does not consider v as independent
variable. In a more complete model v and ρ will be also fundamental fields.
Consider the following balance equations

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂E
∂t +

∂qk
∂xk

= 0

∂qi
∂t +

∂J
q
ik

∂xk
= σ

q
i

∂L
∂t +

∂Jk
∂xk

= σL

∂Ji
∂t +

∂Fik
∂xk

= σ
J
i

(125)

where E is the specific energy per unit volume of the superfluid component plus the normal
component plus the vortex lines, J

q
ij the flux of the heat flux, Ji the flux of vortex lines (which

was denoted with JLi in the previous Section), and Fij the flux of the flux of vortex lines; σ
q
i ,

σL and σ
J
i are the respective production terms. Since here one is interested to study the linear

propagation of the second sound and vortex density waves, the convective terms have been
neglected.
If one supposes that the fluid is isotropic, the constitutive equations for the fluxes J

q
ij and Fij,

to the first order in qi and Ji, can be expressed in the form

J
q
ik = β1(E,L)δik,

Fik = ψ1(E,L)δik.
(126)
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Restrictions on these relations are obtained, as in Section 4, imposing the validity of the second
law of thermodynamics, applying Liu’s procedure.
In order to make the theory internally consistent, one must consider for entropy density S and
entropy flux density JSk approximate constitutive relations to second order in qi and Ji

S = S0(E,L) + S1(E,L)q
2 + S2(E,L)J

2 + S3(E,L)qi Ji, Jsk = φq(E,L)qk + φJ(E,L)Jk. (127)

The quantities Λ
E, Λ

q
i , Λ

L and Λ
J
i are Lagrange multipliers, which are also objective functions

of E, qi, L and Ji; in particular, one sets

Λ
E = Λ

E(E,L,qi, Ji) = Λ
E
0 (E,L) + Λ

E
1 (E,L)q

2 + Λ
E
2 (E,L)J

2 + Λ
E
3 (E,L)qi Ji,

Λ
L = Λ

L(E,L,qi, Ji) = Λ
L
0 (E,L) + Λ

L
1 (E,L)q

2 + Λ
L
2 (E,L)J

2 + Λ
L
3 (E,L)qi Ji,

Λ
q
i = λ11qi + λ12 Ji and Λ

J
i = λ21qi + λ22 Ji, (128)

with λmn = λmn(E,L). Imposing that the coefficients of the time derivatives are zero, one
obtains

dS = Λ
EdE+ Λ

q
i dqi + Λ

LdL+ Λ
J
i dJi . (129)

In the same way, imposing that the coefficients of space derivatives vanish, one finds

dJSk = Λ
Edqk + Λ

q
i dJ

q
ik + Λ

LdJk + Λ
J
i dFik. (130)

Substituting now (126), (127) and (128) in (129-130), one gets

S1 =
1

2
λ11, S2 =

1

2
λ22, S3 = λ12 = λ21, (131)

φq = Λ
E
0 , φJ = Λ

L
0 , (132)

dS0 = Λ
E
0 dE+ Λ

L
0dL, dS1 = Λ

E
1 dE+ Λ

L
1 dL, (133)

dS2 = Λ
E
2 dE+ Λ

L
2dL, dS3 = Λ

E
3 dE+ Λ

L
3 dL, (134)

dφq = λ11dβ1 + λ21dψ1, dφJ = λ12dβ1 + λ22dψ1. (135)

In particular, one obtains to the second order in q and J the following expressions for the
entropy and for the entropy flux

S = S0 +
1

2
λ11q

2 +
1

2
λ22 J

2 + λ12qi Ji, Jsk = Λ
E
0 qk + Λ

L
0 Jk. (136)

It remains the following residual inequality for the entropy production

σS = Λ
q
i σ

q
i + Λ

LσL + Λ
J
i σ

J
i ≥ 0. (137)

Now, the obtained relations are analyzed in detail. As in Section 4 we first introduce a
generalized temperature as the reciprocal of the first-order part of the Lagrange multiplier
of the energy:
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Λ
E
0 =

[
∂S0
∂E

]

L

=
1

T
. (138)

and the chemical potential of vortex lines (near equilibrium):

− TΛ
L
0 = μL. (139)

Neglecting in (129) second order terms in q and J, and using relations (131), (138) and (139),
the following expression for the entropy density S is obtained

dS =
1

T
dE− μL

T
dL+ λ11qidqi + λ22 JidJi + λ12(Jidqi + qidJi). (140)

Consider now equations (135), which one rewrites using (132) and (139) as

d

(
1

T

)

= λ11dβ1 + λ21dψ1, d

(

−μL

T

)

= λ12dβ1 + λ22dψ1. (141)

After some calculations (Sciacca et al, 2008), we find:

ζ1 =
∂β1

∂T
=

1

N

[

− 1

T2
λ22 + λ12

∂

∂T

(

μL
0

T

)]

, χ1 =
∂β1

∂L
=

1

T

λ12

N

∂μL
0

∂L
, (142)

η1 =
∂ψ1

∂T
=

1

N

[

1

T2
λ12 − λ11

∂

∂T

(

μL
0

T

)]

, ν1 =
∂ψ1

∂L
= − 1

T

λ11

N

∂μL
0

∂L
, (143)

where N = λ11λ22 − λ12
2. A physical meaning for the coefficient λ22 was furnished in

(Sciacca et al, 2008). Finally, one obtains for the entropy flux

Jsk =
1

T
qk −

μL
0

T
Jk, (144)

which is analogous to the usual expression of the entropy flux in the presence of a mass
flux and heat flux, but with the second term related to vortex transport rather than to mass
transport.
Substituting the constitutive equations (126) in system (125), using the relations (142-143),
and expressing the energy E in terms of T and L, the following system of field equations is
obtained

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρcV
∂T
∂t + ρǫL

∂L
∂t +

∂qj
∂xj

= 0

∂qi
∂t + ζ1

∂T
∂xi

+ χ1
∂L
∂xi

= σ
q
i

∂L
∂t +

∂Jj
∂xj

= σL

∂Ji
∂t + η1

∂T
∂xi

+ ν1
∂L
∂xi

= σJi

(145)

where cV is the specific heat at constant volume and ǫL = ∂E/∂L. The coefficients χ1 and η1
describe cross effects linking the dynamics of q and J with L and T, respectively. Thus, they
are expected to settle an interaction between heat waves and vortex density waves. These
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equations are analogous to those proposed in Section 4 (Mongiovı̀ & Jou, 2007) except for
the choice of Ji: in fact here Ji is assumed to be an independent field whereas in Section 4
(Mongiovı̀ & Jou, 2007) Ji was assumed as dependent on qi. However, at high frequency, Ji
will become dominant and will play a relevant role, as shown in the following.
The production terms σ must also be specified. Regarding σ

q
i and σL, since only counterflow

situation is considering, as in Section 4, we assume

σq = −K1Lq, σL = −βqL
2 + αq|q|L3/2, (146)

where K1 =
1
3κB. For the production term of vortex line diffusion, one assumes the following

relaxational expression:

�σJ = − J

τJ
= −γ1κLJ, (147)

where γ1 is a positive coefficient which can depend on the temperature T (Sciacca et al, 2008).
Note that in (146) one has assumed that the production terms of q and J depend on q and J,
respectively, but not on both variables. In more general terms, one could assume that both
production terms depend on the two fields q and J simultaneously.
In order to determine the physical meaning of the coefficients appearing in equations
(145)–(147), concentrate first the attention on the equations for L and J. Supposing that J
varies very slowly, one obtains (Sciacca et al, 2008)

∂

∂t
L =

η1
γ1κL

∇2T +
ν1

γ1κL
∇2L+ σL. (148)

It is then seen that the coefficient ν1
γ1κL ≡ D1 represents the diffusion coefficient of vortices.

Coefficient
η1

γ1κL ≡ D2 may be interpreted as a thermodiffusion coefficient of vortices because

it links the temperature gradient to vortex diffusion. In other terms, this implies a drift of the
vortex tangle. Detailed measurements have indeed shown [(Donnelly, 1991), pag.216] a slow
drift of the tangle towards the heater; this indicates that η1 < 0 and small. The hypothesis
η1 = 0 corresponds to D2 = 0, i.e. the vortices do not diffuse in response to a temperature
gradient.

5.2 Interaction of second sound and vortex density waves

In this Section wave propagation in counterflow vortex tangles is studied, with the aim to
discuss the physical effects of the interaction between high-frequency second sound and
vortex density waves. A stationary solution of the system (145), with the expressions of the
production terms (146–147), is

q = q0 = (q01,0,0), L = L0 =
α2q

β2
q
q201, (149)

T = T0(x) = T∗ − 1

3

κB

ζ1
L0q01x1, J0 =

(
1

3

κB

ζ1γ1κ
q01,0,0

)

, (150)

with q01 > 0.
Consider the propagation of harmonic plane waves of the four fields of the equation (145) in
the following form
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⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T = T0(x) + T̃ei(Kn·x−ωt)

q = q0 + q̃ei(Kn·x−ωt)

L = L0 + L̃ei(Kn·x−ωt)

J = J0 + J̃ei(Kn·x−ωt)

(151)

where K = kr + iks is the wave number, ω the real frequency, n the unit vector along the
direction of the wave propagation.
Substituting (151) in the system (145), and linearizing the quantities (146), and (147) around
the stationary solutions, the following equations for the small amplitudes are obtained

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ω[ρcV ]0T̃ − ω[ρǫL]0L̃+ Kq̃ · n = 0

[

−ω − i
3κBL0

]

q̃+ ζ10KT̃n−
(

−χ10Kn+ i
3κBq0

)

L̃ = 0

[

−ω − i
(

2βqL0 − 3
2αqL

1/2
0 q01

)]

L̃+ KJ̃ · n+ iαqL
3/2
0 q̃1 = 0

(−ω − iγ1κL0) J̃+ η10KnT̃+ (ν10Kn− iγ1κJ0) L̃ = 0

(152)

Note that the subscript 0 refers to the unperturbed state; in what follows, this subscript will
be dropped out to simplify the notation.
First case: n parallel to q0.
Now, impose the condition that the direction of the wave propagation n is parallel to the heat
flux q0, namely n = (1,0,0). Through these conditions the system (152) becomes

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ωρcV T̃ + Kq̃1 − ωρǫLL̃ = 0

ζ1KT̃−
(

ω + i
3κBL

)

q̃1 −
(

−χ1K+ iκ B
3 q1

)

L̃ = 0

iαqL
3/2q̃1 −

(

ω + iτ−1
L

)

L̃+ KJ̃1 = 0

η1KT̃+ (ν1K − iγ1κJ1) L̃+ (−ω − iγ1κL) J̃1 = 0

(

−ω − i
3κBL

)

q̃2 = 0
(

−ω − i
3κBL

)

q̃3 = 0

(−ω − iγ1κL) J̃2 = 0
(−ω − iγ1κL) J̃3 = 0

(153)

where τ−1
L =

(

2βqL− 3
2αqL

1/2q1

)

.

Note that the transversal modes, those corresponding to the four latter equations, evolve
independently with respect to the longitudinal ones, corresponding to the four former
equations.
One will limit the study to the case in which ω and the modulus of the wave number K assume
values high enough to make considerable simplification in the system. Indeed, it is for high
values of the frequency that the wave behavior of the vortex tangle can be evidenced because
the first term in (145c) will become relevant. Note that the assumption |K| = |kr + iks| large
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w1,2 = ±V2 w3,4 = ±√
ν1

T̃ = ψ T̃ = − 1
ρcV

(
χ1−ν1ρǫL
V2
2 −ν1

)

ψ

q̃1 = ±V2ρcVψ q̃1 = ±
√

ν1(ρǫLV
2
2 −χ1)

V2
2 −ν1

ψ

L̃ = 0 L̃ = ψ
J̃1 = 0 J̃1 = ±√

ν1ψ

Table 1. Modes corresponding to second sound velocity and vortex density waves,
respectively.

refers to a large value of its real part kr, which is related to the speed of the vortex density
wave, whereas the imaginary part ks, corresponding to the attenuation factor of the wave,
will be assumed small.
This problem is studied into two steps: first assuming |K| and ω extremely high to neglect
all terms which do not depend on them. Then, the solution so obtained is perturbed in
order to evaluate the influence of the neglected terms on the velocity and the attenuation
of high-frequency waves.
Denoting with w= ω/kr the speed of the wave, and assuming |K| and ω large, the following
dispersion relation is obtained:

w4 −
[

V2
2 + ν1 −

η1
ρcV

(

ρǫL −
χ1

ν1

)]

w2 +V2
2 ν1 = 0, (154)

where V2 =
(
−λ22T

2ρcV
)−1/2

is the second sound speed in the absence of vortex tangle (see

previous sections) and from (142b) it is related to the coefficient ζ1 by the relation ζ1=V2
2 ρcV −

λ12η1/λ11. Further, if one assumes that the coefficient η1 is zero

η1 = 0 ⇒ λ12

λ11
= T2 ∂

∂T

(
μL

T

)

=
2S3
S2

= −χ1

ν1
, (155)

then the dispersion relation (154) has the solutions

w1,2 = ±V2, w3,4 = ±√
ν1, (156)

to which correspond the propagation modes shown in Table 1.
As one sees from the first column of Table 1, under the hypothesis (155) the high-frequency
wave of velocity w1,2 = ±V2 is a temperature wave (i.e. the second sound) in which the
two quantities L̃ and J̃1 are zero, whereas in the second column the high-frequency wave
of velocity w3,4 = ±√

ν1 is a wave in which all fields vibrate. The latter result is logic because
when the vortex density wave is propagated in the superfluid helium, temperature T and
heat flux q1 cannot remain constant. This behavior is different from that obtained in Section
4, because using that model in the second sound also the line density L vibrates. In fact, there
the flux of vortices J was chosen proportional to q, so that vibrations in the heat flux (second
sound) produce vibrations in the vortex tangle. Experiments on high-frequency second sound
are needed to confirm this new result.
Now we consider all the neglected terms of the system (153) and the coefficient η1 as small
perturbations of the velocity w of the wave and of the attenuation term ks of the wave number
K. Substituting the following assumptions
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w̄=
ω

kr
= w+ δ and K = kr + iks

in the system (153), one find the expression (156), at the zeroth order in δ and ks, whereas at
the first order in δ and ks, one obtains

w̄
‖
1,2 =

⎛

⎝1− η1

2ρcV

(

w2
1,2 − w2

3,4

)

(

ρǫL −
χ1

w2
3,4

)⎞

⎠w1,2, (157)

w̄
‖
3,4 =

⎛

⎝1+
η1

2ρcV

(

w2
1,2 − w2

3,4

)

(

ρǫL −
χ1

w2
3,4

)⎞

⎠w3,4, (158)

and

k
(1,2)
s =

κLB

6w1,2
+

αqL
3/2
(

w2
1,2ρǫL − χ1

)

2
(

w2
1,2 − w2

3,4

) , (159)

k
(3,4)
s =

κLγ1 + τ−1
L

2w3,4
−

αqL
3/2
(

w2
1,2ρǫL − χ1

)

2
(

w2
1,2 − w2

3,4

) +
J1κγ1

2w2
3,4

. (160)

Observe that in this approximation all thermodynamical fields vibrate simultaneously and
the attenuation coefficients ks are influenced by the choice of J as independent variable, as one
easily sees by comparing expressions (159–160) with those obtained in Section 4 (Jou et al.,
2007). Looking at these results, in particular the two speeds (157–158), one sees that these
velocities are not modified when one makes the simplified hypothesis that the coefficient η1
is equal to zero. In Section 4 (Jou et al., 2007) it was observed that the second sound velocity
is much higher than that of the vortex density waves, so that the small quantity η1 should
influence the two velocities (157-158) in a different way: negligible for the second sound
velocity but relevant for the vortex density waves. Regarding the attenuation coefficients
(159–160), one sees that the first term in (159) is identical to that obtained in (Jou et al., 2002),
when the vortices are considered fixed. The new term, proportional to αq, comes from the
interaction between second sound and vortex density waves.

Note that the second term of the dissipative coefficient k
(1,2)
s is the same as the third term of

k
(3,4)
s , but with an opposite sign. This means that this term contributes to the attenuation of the
two waves in opposite ways; and its contribution depends also on whether the propagation of

forward waves or of backward waves is considered. The first term of k
(3,4)
s produces always

an attenuation of the wave, while the behavior of the third term is analogous to the first one.
Second case: n orthogonal to q0

In order to make a more detailed comparison with the model studied in Section 4
(Mongiovı̀ & Jou, 2007), (Jou et al., 2007), one proceeds to analyze another situation, in which
the direction of the wave propagation is perpendicular to the heat flux, that is, for example,
assuming n = (0,0,1). This choice simplifies the system (152) in the following form
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⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ωρcV T̃ + Kq̃3 − ωρǫL L̃ = 0
(

−ω − i
3κBL

)

q̃1 − i
3κBq1 L̃ = 0

ζ1KT̃−
(

ω + i
3κBL

)

q̃3 + χ1KL̃= 0

iαqL
3/2q̃1 −

(

ω + iτ−1
L

)

L̃+ KJ̃3 = 0

η1KT̃+ ν1KL̃+ (−ω − iγ1κL) J̃3 = 0

(

−ω − i
3κBL

)

q̃2 = 0

−iγ1κJ1 L̃+ (−ω − iγ1κL) J̃1 = 0
(−ω − iγ1κL) J̃2 = 0

(161)

Note that, in contrast with what was seen before, but in agreement with the corresponding
situation of the model described in Section 4, here the transversal and the longitudinal modes
in general do not evolve independently, as shown from the first five equations. However, one
will see that this is the case if high-frequency waves are considered.
As in the previous situation, we assume that the values of the frequencies ω and of the real
part of the wave number, kr, are high enough, such that the system (161) may be easily solved.
The other terms will be considered as perturbations to w = ω/kr and ks. Note that in this
special case, as in the previous case and in (Jou et al., 2007), only the longitudinal modes are
present, so that the dispersion relation assumes the form

w

(

w4 −
[

V2
2 + ν1 −

η1
ρcV

(

ρǫL +
λ12

λ11

)]

w2 +V2
2 ν1

)

= 0, (162)

which is similar to equation (154).
Assuming the same hypothesis (155), the dispersion relation (162) takes the form

w(w2 − ν1)(w
2 −V2

2 ) = 0, (163)

where V2 is the second sound velocity and
√

ν1 is the velocity of the vortex density waves
in helium II. The conclusions which one achieves here are the same to those of the previous
situation. Indeed, ω0 = 0 corresponds to q̃1 = ψ and T̃ = q̃3 = L̃ = J̃3 = 0; while w1,2 = ±V2

and w3,4 = ±√
ν1 correspond to those in Table 1.

Now, as in the previous case, we assume that all the neglected terms in (161) modify w and K
by small quantities δ and ks, that is

w̄=
ω

kr
= w+ δ and K = kr + iks.

Substituting them in the dispersion relation of the system (161), one finds the relation (163), at
the zeroth order in δ and ks, and the following two expressions at the first order in δ and ks

w̄⊥
1,2 = w̄

‖
1,2, (164)

w̄⊥
3,4 = w̄

‖
3,4, (165)

and

k
(1,2)
s =

κLB

6w1,2
, (166)
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k
(3,4)
s =

τ−1
L + κLγ1

2w3,4
. (167)

As regards the expression (166) for the dissipative term k
(1,2)
s , note that it is the same

as the expression obtained when the vortices are assumed fixed (Jou & Mongiovı̀, 2006),

(Peruzza & Sciacca, 2007), whereas the attenuation term k
(3,4)
s is the same as the second term

of k
(3,4)
s of the first case (n parallel to q0). As in (Mongiovı̀ & Jou, 2007), (Jou et al., 2007),

in this case one has the propagation of two kinds of waves, namely heat waves and vortex
density waves, which cannot be considered as propagating independently from each other. In
fact, the uncoupled situation (equation (156)), in which the propagation of the second sound
is not influenced by the fluctuations of the vortices, is no more the case when the quantities

N1 =
1
3κBL, N2 =

1
3κBq1, N3 = AL3/2, N4 = γ1κJ1, N5 = γ1κL, τ−1

L and η1, are considered.
Indeed, from (157–158) and from the results of (Jou et al., 2007) one makes in evidence that
heat and vortex density waves cannot be considered separately, that is as two different waves,
but as two different features of the same phenomena. Of course, the results obtained here are
more exhaustive than those of Section 4: in fact, comparing the velocities at the first order of
approximation in bothmodels, one deduces that the expressions (157–158) depend not only on
the velocities of heat waves and vortex density waves, as in (Mongiovı̀ & Jou, 2007), (Jou et al.,
2007), but also on the coefficient η1, which comes from the equation (145d) of the vortex flux J,
and whose physical meaning is a thermodiffusion coefficient of vortices. The fourth equation
of the system (153) shows that the vortex flux J̃1 is not proportional to the heat flux, as it
was assumed in Sections 2 and 4, but it satisfies an equation in which also the fields L̃ and T̃,
through η1, are present.
It is to note that the attenuation of the second sound depends on the relative direction of
the wave with respect to the heat flux: in some experiments this dependence was shown
for parallel and orthogonal directions (Awschalom et al, 1984). These results were explained
assuming an anisotropy of the tangle of vortices. But, looking at the expressions (159) and
(166) of the attenuation of the second sound in the high-frequency regime, one notes that
these expressions are not equal. In particular, the term

αqL
3/2
(

w2
1,2ρǫL − χ1

)

2
(

w2
1,2 −w2

3,4

) (168)

in (159) causes a dependence of the attenuation depending on whether the wave direction
agrees with the direction of the heat flux q or not. This term is absent if the wave
propagates orthogonal to the heat flux. In (Sciacca et al, 2008) vortex tangle was assumed

to be anysotropic. The result was that w̄⊥
1,2,3,4 = w̄

‖
1,2,3,4 and that the behavior of speed of

propagation is isotropic and does not depend on the isotropy or anisotropy of the tangle.
In conclusion, it could be that an anisotropy of the behavior of high-frequency second sound
does not necessarily imply an actual anisotropy of the tangle in pure counterflow regime, but
only a different behavior of the second sound due to the interaction with the vortex density
waves. This may be of interest if one wants to explore the degree of isotropy at small spatial
scales. Of course, some more experiments are needed in order to establish the presence and
the sign of these additional terms.
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6. Conclusions and perspectives

Helium behaves in a very strange way when temperature is dropped down below the lambda
line, different to any classical fluid. This review is a first attempt to put together some of our
results concerning the application of the Extended Thermodynamics to superfluid helium,
both in laminar and turbulent flows.
In Section 2 a one-fluid model for superfluid helium in absence of vortices is shown, which
chooses heat flux as an independent variable, and a comparison between this non-standard
model and the more well-known two-fluid model is faced. The main part of the review
is devoted to the macroscopic description of the interesting behaviour of this liquid in the
presence of quantized vortex lines. They are very thin dynamical defects of superfluid helium,
which are usually sketched by geometrical lines, representing the quantized vorticity of the
superfluid motion. The amount of quantized vortices is high enough in turbulent superfluid
helium, so they are usually expressed by means of the line length per unit volume L. Different
hydrodynamical models of superfluids in the presence of vortices are dealt with, that have
more detailed successive descriptions. First, in Section 3 the one-fluid model for laminar flow
(no presence of vortices) is extended introducing a vorticity tensor (in the heat flux equation),
which takes into account the presence of vortices as a fixed structure. The influence of vortices
to the main fields is studied, mainly in the three experimental situations: rotating helium
(vortices are basically straight lines parallel to the rotating axis), pure counterflow (an enough
high heat flux, without mass flux, which causes an almost isotropic vortex tangle), and then
the combined situation of rotating counterflow turbulence.
Since vortex lines density may experimentally be detected by means of the second sound
(temperature waves), the propagation of harmonic waves is investigated in all the situations
above mentioned. Section 4 is devoted to build up a new model in which the line density
L acquires field properties: it depends on the coordinates, it has a drift velocity, and it
has associated a diffusion flux. These features are becoming increasingly relevant today, as
the local vortex density may be measured with higher precision, and the relative motion
of vortices is observed and simulated. The hydrodynamical model built in this section is
sufficiently general to encompass vortex diffusion and to describe the interactions between the
usual waves and the vortices, which in Section 3were simply considered as a rigid framework
where second sound waves are dissipated. A hint about vortex density waves is also shown,
which is then better considered in Section 5. In this section we further generalize the model,
in order to include the velocity of the vortex tangle as a new independent variable. This is
motivated by the fact that this velocity (or the flux of the vortex line density) is not always
properly parallel to the heat flux, so it needs an own evolution equation. Also this model
is formulated using Extended Thermodynamics, determining the restrictions imposed by the
second law of Thermodynamics by means of the Liu’s procedure. One of the results of this
section is that when the high frequency harmonic plane waves are considered, vortex density
waves are found out. The interesting thing is that heat waves and vortex density waves cannot
be considered separately, that is as two different waves, but as two different features of the
same phenomena. Another interesting result is that attenuation of the second sound depends
on the relative direction of the wave with respect to the heat flux: it seems that the anisotropy
in the behavior of high-frequency second sound does not mean anisotropy in the tangle in
counterflow regime.
These results are important because second sound provides the standard methods of
measuring the vortex line density L, and we have shown that the dynamical mutual interplay
between second sound and vortex lines modifies the standard results. In the case when there
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is a net motion of the mass, the model is useful to study Couette and Poiseuille flow, where the
bulk motion of the system contribute to the production of new vortex lines (Jou et al., 2008).
The renewed interest in superfluid turbulence lies on the fact that at some length scales it
appears similar to classical hydrodynamic turbulence, and therefore a better understanding
of it can throw new light on problems in classical turbulence. Our results are relevant also to
modelize the influence of the bulk motion on the vortex production in Couette and Poiseuille
flows, and in towed or oscillating grids, including the important application of superfluid
helium as a coolant for superconducting devices.
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