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1. Introduction

In most introductory physics texts, a discussion on (human) food consumption centers around
the available work. For example, the altitude is calculated a person can hike after eating a
snack. This connection is natural at first glance: food is burned in a bomb calorimeter and its
energy content is measured in “Calories,” which is the unit of heat. We say that “we go to
the gym to burn calories.” This discussion implies that the human body acts as a sort of “heat
engine,” with food playing the role of ‘fuel.’
We give two arguments to show that this view is flawed. First, the conversion of heat into
work requires a heat engine that operates between two heat baths with different temperatures
Th and Tc < Th. The heat input Qh can be converted into work W and heat output Qc < Qh so
that Qh = Qc + W subject to the condition that entropy cannot be destroyed: ∆S = Qh/Th −
Qc/Tc > 0. However, animals act like thermostats, with their body temperature kept at a
constant value; e.g., 37◦C for humans and 1 − 2◦C higher for domestic cats and dogs. Second,
the typical diet of an adult is roughly 2,000 Calories or about 8 MJ. If we assume that 25%
of caloric intake is converted into useable work, a 100-kg adult would have to climb about
2,000 m [or approximately the height of Matterhorn in the Swiss Alps from its base] to convert
daily food intake into potential energy. While this calculation is too simplistic, it illustrates that
caloric intake through food consumption is enormous, compared to mechanical work done by
humans [and other animals]. In particular, the discussion ignores heat production of the skin.

At rest, the rate of heat production per unit area is F/A ≃ 45W/m2 (Guyton & Hall 2005).
Given that the surface area of a 1.8-m tall man is about A ≃ 2m2, the rate of energy conversion
at rest is approximately 90 W. Since 1d ≃ 9 × 104 s, we find that the heat dissipated through
the skin is F ≃ 8MJ/d, which approximately matches the daily intake of ‘food calories.’
An entirely different focus of food consumption is emphasized in physiology texts. All living
systems require the input of energy, whether it is in the form of food (for animals) or sun
light (for plants). The chemical energy content of food is used to maintain concentration
gradients of ions in the body, which is required for muscles to do useable work both inside
and outside the body. Heat is the product of this energy transformation. That is, food intake
is in the form of Gibbs free energy, i.e., work, and entropy is created in the form of heat and
other waste products. In his classic text What is Life?, Schrödinger coined the expression that
living systems “feed on negentropy” (Schrödinger 1967). Later, Morowitz explained that the
steady state of living systems is maintained by a constant flow of energy: the input is highly
organized energy [work], while the output is in the form of disorganized energy, and entropy
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2 Thermodynamics

is produced. Indeed, energy flow has been identified as one of the principles governing all
complex systems (Schneider & Sagan 2005).
As an example of the steady-state character of living systems with non-zero-gradients,
we discuss the distribution of ions inside the axon and extracellular fluid. The ionic
concentrations inside the axon ci and in the extracellular fluid co are measured in units of
millimoles per liter (Hobbie & Roth 2007):

Ion ci co co/ci

Na+ 15 145 9.7
K+ 150 5 0.0033

Cl− 9 125 13.9
Misc.− 150 30 0.19

In thermal equilibrium, the concentration of ions across a cell membrane is determined by
the Boltzmann-Nernst formula, ci/co = exp[−ze(vi − vo)/kBT], where ∆G = ze(vi − vo) is
the Gibbs free energy for the potential between the inside and outside the cell, ∆v = vi − vo.
If the electrostatic potential in the extracellular fluid is chosen vo = 0, the ‘resting’ potential
inside the axon is found vi = −70mV. For T = 37◦C, this gives ci/co = 13.7 and ci/co =
1/13.7 = 0.073 for univalent positive and negative ions, respectively. That is, the sodium
concentration is too low inside the axon, while there are too many potassium ions inside it.
The concentration of chlorine is approximately consistent with thermal equilibrium. Non-zero
gradients of concentrations and other state variables are characteristic for systems that are not
in thermal equilibrium (Berry et. al. 2002).
A discussion of living and complex systems within the framework of physics is difficult.
It must include an explanation of what is meant by the phrase “biological systems are in
nonequilibrium stationary states (NESS).” This is challenging, because there is not a unique
definition of ’equilibrium state;’ rather entirely different definitions are used to describe closed
and open systems. For a closed system, the equilibrium state can be characrterized by a
(multi-dimensional) coordinate xs, so that x �= xs describes a nonequilibrium state. However,
the notion of “state of the system” is far from obvious for open systems. For a population
model in ecology, equilibrium is described by the number of animals in each species. A
nonequilibrium state involves populations that are changing with time, so a ‘nonequilibrium
stationary state’ would correspond to dynamic state with constant (positive or negative)
growth rates for species. Thus, any discussion of nonequilibrium thermodynamics for
biological systems must involve an explanation of ‘state’ for complex systems. For many-body
systems, the macroscopic behavior is an “emergent behavior;” the closest analogue of ‘state’ in
physics might be the order parameter associated with a broken symmetry near a second-order
phase transition.
This chapter is not a comprehensive overview of nonequilibrium thermodynamics, or
the flow of energy as a mechanism of pattern formation in complex systems. We
begin by directing the reader to some of the texts and papers that were useful in the
preparation of this chapter. The text by de Groot and Mazur remains an authoritative
source for nonequilibrium thermodynamics (de Groot & Mazur 1962). Applications in
biophysics are discussed in Ref. (Katchalsky & Curram 1965). The text by Haynie is an
excellent introduction to biological thermodynamics (Haynie 2001). The texts by Kubo
and coworkers are an authoritative treatment of equilibrium and nonequilibrium statistical
mechanics (Toda et al 1983; Kubo et al 1983). Stochastic processes are discussed in Refs.
(Wax 1954; van Kampen 1981). Sethna gives a clear explanation of complexity and entropy
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Nonequilibrium Thermodynamics for Living Systems: Brownian Particle Description 3

(Sethna 2006). Cross and Greenside overview pattern formation in dissipative systems
(Cross & Greenside 2009); a non-technical introduction to pattern formation is found in Ref.
(Ball 2009). The reader is directed to Refs. (Guyton & Hall 2005) and (Nobel 1999) for
background material on human and plant physiology. Some of the physics underlying human
physiology is found in Refs. (Hobbie & Roth 2007; Herman 2007).
The outline of this paper is as follows. We discuss the meaning of state and equilibrium
for closed systems. We then discuss open systems, and introduce the concept of order
parameter as the generalization of “coordinate” for closed systems. We use the motion of a
Brownian particle to illustrate the two mechanisms, namely fluctuation and dissipation, how
a system interacts with a much larger heat bath. We then briefly discuss the Rayleigh-Benard
convection cell to illustrate the nonequilibrium stationary states in dissipative systems. This
leads to our treatment of a charged object moving inside a viscous fluid. We discuss how the
flow of energy through the system determines the stability of NESS. In particular, we show
how the NESS becomes unstable through a seemingly small change in the energy dissipation.
We conclude with a discussion of the key points and a general overview.

2. Closed systems

The notion of ‘equilibrium’ is introduced for mechanical systems, such as the familiar
mass-block system. The mass M slides on a horizontal surface, and is attached to a spring
with constant k, cf. Fig. (1). We choose a coordinate such that xeq = 0 when the spring force

vanishes. The potential energy is then given by U(x) = kx2/2, so that the spring force is given
by Fsp(x) = −dU/dx = −kx. In Fig (1), the potential energy U(x) is shown in black.
If the coordinate is constant, xns = const �= 0, the spring-block system is in a nonequilibrium
stationary state. Since Fsp = −dU/dx|ns �= 0, an external force must be applied to maintain the
system in a steady state: Fnet = Fsp + Fext = 0. If the object with mass M also has an electric
charge q, this external force can be realized by an external electric field E, Fext = qE.
The external force can be derived from a potential energy Fext =−dUext/dx with Uext =−qEx,
and the spring-block system can be enlarged to include the electric field. Mathematically. this
is expressed in terms of a total potential energy that incorporates the interaction with the
electric field: U → U′ = U + Uext, where

U′(x) =
1

2
kx2 − Fextx =

1

2
k (x − xns)

2 −
(qE)2

4k
. (1)

The potential U′(x) is shown in red. That is, the nonequilibrium state for the potential U(x),
xns corresponds to the equilibrium state for the potential U′(x), x′s:

xns = x′s =
qE

k
. (2)

That is, the nonequilibrium stationary state for the spring-block system is the equilibrium
state for the enlarged system. We conclude that for closed systems, the notion of equilibrium
and nonequilibrium is more a matter of choice than a fundamental difference between them.
For a closed system, the signature of stability is the oscillatory dynamics around the
equilibrium state. Stability follows if the angular frequency ω is real:

ω2 =
1

M

d2U

dx2
> 0 (stability), (3)
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4 Thermodynamics

That is, stability requires that the potential energy is a convex function. Since d2U/dx2 =
d2U/dx2, the stability of the system is not affected by the inclusion of the external electric
force. On the other hand, if the angular frequency is imaginary ω = iω̃, such that

d2U

dx2
< 0 (instability). (4)

The corresponding potential energy is shown in Fig. (2). The solution of the equation of
motion describes exponential growth. That is, a small disturbance from the stationary state is
amplified by the force that drives the system towards smaller values of the potential energy
for all initial deviations from the stationary state x = 0,

x(t) −→±∞, t −→ ∞; (5)

the system is dynamically unstable. We conclude that a concave potential energy is the
condition for instability in closed systems.

3. Equilibrium thermodynamics

Open systems exchange energy (and possibly volume and particles) with a heat bath at a fixed
temperature T. The minimum energy principle applies to the internal energy of the system,
rather than to the potential energy. This principle states that “the equilibrium value of any
constrained external parameter is such as to minimize the energy for the given value of the
total energy” (Callen 1960). A thermodynamic description is based on entropy, which is a
concave function of (constrained) equilibrium states. In thermal equilibrium, the extensive
parameters assume value, such that the entropy of the system is maximized. This statement is
referred to as maximum entropy principle [MEP]. The stability of thermodynamic equilibrium
follows from the concavity of the entropy, d2S < 0.
Thermodynamics describes average values, while fluctuations are described by equilibrium
statistical mechanics. The distribution of the energy is given by the Boltzmann factor
p(E) = Z−1 exp(−E/kBT), where Z =

∫

exp(−E/kBT)dE is the partition function. The
equilibrium value of the energy of the system is equal to the average value, Eeq = 〈E〉 =
∫

dEp(E)E. The fluctuations of the energy are δE = E − 〈E〉. The mean-square fluctuations

can be written
〈

[δE]2
〉

= kBT2 · d 〈E〉/dT, or in terms of the inverse temperature β = 1/T,
〈

[δE]2
〉

= −kB d 〈E〉/dβ. Thus, the variance of energy fluctuations
〈

[δE]2
〉

is proportional
to the response of the systems d 〈E〉/dβ. The proportionality between fluctuations and
dissipation is determined by the Boltzmann constant kB = 1.38× 10−23 J/K. Einstein discussed
that “the absolute constant kB (therefore) determines the thermal stability of the system. The
relationship just found is particularly interesting because it no longer contains any quantity
that calls to mind the assumption underlying the theory” (Klein 1967).
In general, the state of an open system is described by an order parameter η. This
concept is the generalization of coordinates used for closed systems, and was introduced
by Landau to describe the properties of a system near a second-order phase transition
(Landau & Lifshitz 1959a). For the Ising spin model, for example, the order parameter is the
average the average magnetization (Chaikin & Lubensky 1995). In general, the choice of order
parameter for a particular system is an “art” (Sethna 2006).
For simplicity, we assume a spatially homogenous system, so that η(�x) = const and there is
no term involving the gradient ∇η. The order parameter can be chosen such that η = 0 in
the symmetric phase. The thermodynamics of the system is defined by the Gibbs free energy
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Nonequilibrium Thermodynamics for Living Systems: Brownian Particle Description 5

G = G(η). The equation of state follows from the expression for the external field h = ∂G/∂η.
The susceptibility χ = ∂ 〈η〉/∂h characterizes the response of the system. In the absence of an
external magnetic field, the appearance of a non-zero value of the order parameter is referred
to as spontaneous symmetry breaking (Chaikin & Lubensky 1995; Forster 1975). The Gibbs free
energy is written as a power series G(η) = G0 + Aη2 + Bη4 with B > 0. The symmetric
phase η = 0, corresponds to A > 0, while A < 0 in the asymmetric phase. The second-order
coefficient vanishes at the transition point A = 0. We only consider the case when the system
is away from the transition point, so that A �= 0, and write η̄ = 0 and η̄ = ±A/2B for the
respective minima of the Gibbs free energy, respectively. Since ∂2G/∂η2

∣

∣

η=η̄ = χ−1 > 0, the

susceptibility is finite and the variance of fluctuations of the order parameter is finite as well,
with

〈

[η − η̄]2
〉

∼ χkBT, which is referred to as fluctuation-dissipation theorem [FDT].
A Brownian particle can be used to illustrate some aspects of equilibrium statistical mechanics
(Forster 1975). In a microscopic description, a heavy particle with mass M is immersed in a
fluid of lighter particles of mass m < M. The time evolution is described by the Liouville
operator for the entire system, and projection operator methods are used to eliminate the
lighter particles’ degrees of freedom [i.e., the heat bath]. It is shown that the interaction
with a heat bath results in dissipation, described by a memory function and fluctuations
characterized by stochastic forces. Because these two contributions have a common origin,
it is not surprising that they are related to each other: the memory function is proportional to
the autocorrelation function of the stochastic forces. The average kinetic energy of the heavy
particle is given by the equipartition principle: (M/2)

〈

v2
〉

= kBT/2. The memory function

defines a correlation time ζ−1. For times t > ζ−1, a Langevin equation for the velocity of the
heavy particle follows (Wax 1954). In one spatial dimension,

∂

∂t
v(t) + ζv(t) =

1

M
ζ(t). (6)

We have the averages 〈 f (t)〉 = 0 and 〈 f (t)v〉 = 0. In Eq. (6), the stochastic force ζ is Gaussian
“white noise:”

〈

ζ(t)ζ(t′)
〉

= 2ζMkBTδ(t − t′). (7)

The factor 2ζMkBT follows from the requirement that the stochastic process is “stationary.” In
fact, following Kubo, Eq. (7) is sometimes called the ‘second fluctuation-dissipation theorem.’
For long times, t >> ζ−1, the mean-square displacement increases diffusively:

〈

[x(t)− x(0)]2
〉

=
2kBT

Mζ
t = 2Dt. (8)

The expression for the diffusion constant D = kBT/Mζ is the Einstein relation for Brownian
motion, and is a version of the fluctuation-dissipation theorem. The diffusion constant can be
written in terms of the velocity autocorrelation, D =

∫

∞

0 dt 〈�v(t)�v(0)〉.

If the Brownian particle moves in a harmonic potential well, U(x) = Mω2
0x2/2, the Langevin

equation is written as a system of two coupled first-order differential equations: dx/dt = v
and dv/dt + ζv + ω2

0x = ζ/M. If the damping constant is large, the inertia of the particle can

be ignored, so that the coordinate is described by the equation: dx/dt + (ω2
0/ζ)x = ζ/M. At

zero temperature, the stochastic force vanishes, and the deterministic time evolution of the
coordinate describes its relaxation towards the equilibrium x = 0: dx/dt = −(ω2

0/ζ)x so that

x(t) = x0 exp[−(ω2
0/ζ)t].

In general, the relaxation of an initial nonoequilibrium state is governed by Onsager’s
regression hypothesis: the decay of an initial nonequilibrium state follows the same law as that
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6 Thermodynamics

of spontaneous fluctuations (Kubo et al 1983). The fluctuation-dissipation theorem implies
that the time-dependence of equilibrium fluctuations is governed by the minimum entropy
production principle. The stochastic nature of time-depedent equilibrium fluctuations is
characterized by the conditional probability, or propagator P(x, t|x0, t0). Onsager and
Machlup showed that the conditional probability, or propagator, for diffusion can be written
as a path integral (Hunt et. al. 1985):

P(x, t|x0, t0) =
∫

D[x(t)]exp

[

−
ζ

2kBT

∫ t

t0

K(s)ds

]

, (9)

where K(t) = (M/2)(dx/dt)2 is the kinetic energy of the Brownian particle. The action
∫ t

t0
K(s)ds is minimized for the deterministic path (Feynman 1972). For fixed start (x0, t0)

and endpoints (x, t), we find K = (M/2)[(x − x0)/(t − t0)]
2. Gaussian fluctuations around

the deterministic path yields: P(x, t|x0, t0) = (4πD[t − t0])
−1/2 exp[−(x − x0)

2/4D(t − t0)],
which is the Greens function for the diffusion equation in one dimension ∂P/∂t = D∂2P/∂x2

subject to the initial condtion P(x, t0|x0, t0) = δ(x − x0).

4. Systems far from equilibrium

We conclude that dissipation tends to ‘dampen’ the oscillatory motion around the equilibrium
value η̄, so that limt→∞ 〈η(t)〉= η̄. Thus, a nonequilibrium stationary state ηs �= η̄ requires the
input of energy through work done on the system: highly-organized energy is destroyed, and
dissipated energy is associated with the production of heat.
This mechanism is often illustrated by the Rayleigh-Benard convection cell, with a fluid being
placed between two horizontal plates. If the two plates are at the same temperature, there
is no macroscopic fluid flow, and the system is in the symmetric phase. An energy input is
used to maintain a constant temperature difference across the plates. If ∆T is large enough,
the component of the velocity along the vertical is non-zero, vz �= 0. A state with vz �= 0 is the
asymmetric state of the fluid. Stationary patterns such as “stripes” and “hexagons” develop
inside the fluid. Thus, the temperature difference ∆T can be viewed as the “force” maintaining
stationary patterns in the fluid. Swift and Hohenberg showed that a potential V(u) can be
defined, such that the different stationary patterns correspond to local potential minima, cf.
Fig (3). The dynamic of the system is first-order in time ∂u/∂t = −δV/δu, where δ/δu is the
functional derivative. If this energy flow stops, the velocity field in the fluid dissipates and
the nonequilibrium patterns disappear.
A careful study of this system provides important insights into the behavior of nonequilibrium
systems. Here, we are interested in systems for which nonequilibrium states are characterized
by non-zero values of dynamic variables. A particularly simple model is discussed in Ref.
(Taniguchi and Cohen 2008): a Brownian particle immersed in a viscous fluid moves at a
constant velocity under the the influence of an electric force. The authors refer to it as,
a Brownian particle immersed in a fluid “NESS model of class A.” This model was used
earlier by this author to illustrate nonequilibrium stationary states (Zurcher 2008). We note,
however, that this model is not appropriate to discuss important topics in nonequilibrium
thermodynamics, such as pattern formation in driven-diffusive systems.
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Nonequilibrium Thermodynamics for Living Systems: Brownian Particle Description 7

5. Nonequilibrium stationary states: brownian particle model

Our system is a particle with mass M and the “state” of the system is characterized by the
velocity v. The kinetic energy plays the role of Gibbs free energy:

K(v) =
M

2
v2. (10)

The particle at rest v = 0 corresponds to the equilibrium state, while v = const in a
nonequilibrium state. We assume that the particle has an electric charge q, so that an
external force is applied by an electric field Fext = qE. Under the influence of this electric
force, the (kinetic) energy of the particle would grow without bounds, K(t) → ∞ for
t → ∞. The coupling to a ‘thermostat’ prevents this growth of energy. Here, we use a
velocity-dependent force to describe the interaction with a thermostat. In the terminology
of Ref. (Gallavotti & Cohen 2004), our model describes a mechanical thermostat.
Dissipation is described by velocity-dependent forces, f = f (v). For a particle immersed in a
fluid, the force is linear in the velocity fl = 6πaκv for viscous flow, while turbulent flow leads
to quadratic dependence ft = C0πρa2v2/2 for turbulent flow (Landau & Lifshitz 1959b). Here,
κ is the dynamic viscosity, ρ is the density of the fluid, and a is the radius of the spherical object.
These two mechanisms of dissipation are generally present at the same time; the Reynolds
number determines which mechanism is dominant. It is defined as the ratio of inertial and
viscous forces, i.e., Re = ft/ fl = ρav/κ. Laminar flow applies to slowly moving objects, i.e.,
small Reynolds numbers (Re < 1), while turbulent flow dominates at high speeds, i.e., large
Reynolds numbers (Re > 105).
In the stationary state, the velocity is constant so that the net force on the particle vanishes,
Fnet = qE − f = 0. We find for laminar flow,

vs =
qE

6πκa
, Re < 1, (11)

and for turbulent flow

vs =

√

qE

C0πρa2
, Re > 105. (12)

In either case, we have Fnet > 0 for v < vs and Fnet < 0 for v > vs; we conclude that the steady
state is dynamically stable. These are, of course, elementary results discussed in introductory
texts, where the nonequilibrium stationary state vs is referred to as “terminal speed.”
In general, the “forces” acting on a complex system are not known, so that the time
evolution cannot be derived from a (partial-) differential equation. We will show how a
discrete version of the equation can be derived from energy fluxes. To this end, we recall
that in classical mechanics, velocity-dependent forces enter via the appropriate Rayleigh’s
dissipation function (Goldstein 1980). We deviate from the usual definition and define F as
the negative value of the dissipation function such that f = ∂F/∂v, and F is associated with
entropy production in the fluid. If the Lagrangian is not an explicit function of time, the total
energy of the system E decreases, dE/dt = −F . For laminar flow, we have

Fl = 3πaκv2 (laminar flow), (13)

and for turbulent flow

Ft =
C0π

3
ρa2v3, (turbulent flow). (14)
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8 Thermodynamics

The Reynolds number can be expressed as a ratio of the dissipation functions, Re ∼ Ft/Fl .
Since Fl > Ft for v → 0 and Ft > Fl for v → ∞, we conclude that the dominant mechanism
for dissipation in the fluid maximizes the production of entropy.
The loss of energy through dissipation must be balanced by energy input in highly organized
form, i.e., work for a Brownian particle. We write dW = qEdx for the work done by the electric
field, if the object moves the distance dx parallel to the electric field. Since v = dx/dt, the
energy input per unit time follows,

dW

dt
=W = qEv. (15)

We thus have for the rate of change of the kinetic energy,

dK

dt
=W −F , (16)

cf. Ref. (Zurcher 2008). This is equivalent to Newton’s second law for the object. In Fig. (5),
we plot F (black) and W (in blue) as a function of the velocity v. The two curves intersect at
vs, so that F = W , and the kinetic energy of the particle is constant dK/dt = 0. We conclude
that vs corresponds to the nonequilibrium stationary state of the system, cf. Fig. (4).
The energy input exceeds the dissipated energy, F > W , for 0 < v0 < vs so that the excess
W − F drives the system towards the stationary state v0 → vs. For v0 > vs, the dissipated
energy is higher than the input, W >F , so that the excess damping drives the system towards
vs. That is, the nonequilibrium stationary state is stable,

v0 −→ vs. (17)

This result is independent of detailed properties of the open system. For ∂2W/∂v2 = 0, the
stability is a consequence of the convexity of the dissipative function

d2F

dv2
≥ 0. (18)

While a mechanical thermostat allows for a description of the system’s time evolution in terms
of forces, this is not possible for an open system in contact with an arbitrary thermostat.
Indeed, a discrete version of the dynamics can be found from the energy fluxes W and F .
We assume that the particle moves at the initial velocity 0 < v0 < vs, so that F0 > W0. We
keep the energy input fixed, and increase the velocity until the dissipated energy matches
the input W1 = F0 at the new velocity v1 > v0. This first iteration step is indicated by a
horizontal arrow in Fig (5). The energy input is now at the higher value W1 >W0, indicated
by the vertical arrow. By construction, the inequality W1 > F1 holds, so that the procedure
can be repeated to find the the second iteration, v2, cf. Fig. (5). A similar scheme applies for
vs < v0 < ∞. We find the sequence {vi}i for i = 0,1,2, ... with vi+1 < vi so that limi→∞ vi = vs.
Thus, for both v0 < vs and v0 > vs, the initial state converges to the stationary state,

v0 −→ vs. (19)

We obtain a graphical representation of the dynamics by plotting the velocity vi+1 versus vi.
This is sometimes called a cobweb or Verhulst plot (Otto & Day 2007). The discrete version
of the time evolution is indicated by the arrows, which shows that vs is the fixed point of the
time evolution, cf. Fig. (6).
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Nonequilibrium Thermodynamics for Living Systems: Brownian Particle Description 9

We generalize this result to the case when the dissipation function is concave,

∂2F

∂v2
< 0, (20)

while keeping the behavior of the energy input fixed, i.e., ∂2W/∂v2 = 0. We assume power
law behavior for the dissipative function, so that concave behavior implies

F ∼ vα, 0 < α < 1. (21)

Since f = ∂F/∂v ∼ 1/v1−α, the velocity-dependent force diverges as the system slows down,
i.e., f → ∞ for v → 0. The concave form of the dissipation function is unphysical for
v < vc, where vc is a cutoff. We ignore this cutoff in the following discussion. While this
velocity-dependent function does not correspond to the behavior of any fluid, we retain the
language appropriate for a Brownian particle. We now have the plot of the energy fluxes F
and W as a function of velocity v, cf. Fig. (7).
The two curves intersect at the velocity vs which characterizes the stationary state of the
system. In this case, the dissipated energy exceeds the energy input for 0 < v0 < vs, so that
the excess dissipation drives the system towards the equilibrium state v = 0. For v0 > vs, the
energy input is not balanced by the dissipated energy W > F . It follows that the excess input
W −F drives the state of the system away from the nonequilibrium stationary state.
We follow the same procedure as above, and assume that the initial velocity is (slightly) less
than the stationary value, 0 < v0 < vs so that F0 > W0. We keep the energy input fixed, and
decrease the velocity until F1 =W0 at the velocity v1 < v0. The iteration v0 → v1 is indicated
by a horizontal arrow. We now have F1 > W1, so that the steps can be repeated, cf. Fig. (6).
In the case v0 > vs, we have W0 > F0 so that the damping is not sufficient to act as a sink for
the energy input into the system. Thus, the kinetic energy of the Brownian particle and the
velocity increases, v1 > v0. This step is indicated by a horizontal arrow. Since W1 > W0, we
find W1 > F1, and the step can be repeated to find v2 > v1. The corresponding phase portrait
is shown in Fig. (7).
We conclude that the nonequilibrium stationary state vs is unstable when the the dissipation
function is concave. For v0 < vs, the initial state relaxes the towards the equilibrium state of
the system,

v0 −→ 0, v0 < vs, (22)

while for v0 > vs, we find a runaway solution,

v0 −→ ∞, v0 > vs. (23)

This instability is unique for nonequilibrium systems, and does not correspond to any
behavior found for equilibrium systems. In fact, equilibrium thermodynamics excludes
instabilities, because it is defined only for systems near local minima of the (free) energy.
Exceptions are systems near a critical point, for which the free energy has a local maxima in
the symmetric phase, and fluctuations diverge algebraically.

6. Discussion

A Brownian particle moving in a potential well can be used toexplain some aspects
of equilibrium statistical physics. We used this model to explain certain aspects of
nonequilibrium thermodynamics. A nonequilibrium stationary state corresponds to the
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particle moving at a constant velocity, under the influence of aexternal force. We also used
this model to show how a NESS is sustained by a constant energy flow through the system.
It is believedthat this is a key principle for steady states in open and complex systems
(Schneider & Sagan 2005); however, the behavior of open systems cannot be explained by the
second law of thermodynamics alone (Farmer 2005; Callendar 2007).
We started from a heavy sphere immersed in a viscous fluid, so that in general, both
viscous and laminar forces are acting on the sphere. Laminar flow applies to slowly moving
spheres, whereas turbulent flow applies when spheres are moving fast. The crossover
between linear and quadratic velocity-dependent forcesis based on the Reynolds number.
We showed that this criterion coincides with maximum entropy production: laminar and
turbulent flows are the dominant mechanisms for entropy production at small and large
flow speeds, respectively. Ifa generalized version of Onsager’s regression hypothesis holds
for driven diffusive systems, the analysis of competing mechanismsfor entropy production
may shed insight into the origin of the MEP principle. This principle was proposed as the
generalization of Onsager’s regression theorem to fluctuations in nonequilibrium systems
(Martyushev & Seleznev 2006; Niven 2009). MEP has beenused to explain complex behavior
in ecology (Rhode 2005), earth science, and meteorology (Kleidon & Lorenz 2005).
For the Brownian particle immersed in a fluid, the dissipation function is convex, ∂2F/∂v2,
and the NESS is dynamically stable. That is, v0 → vs for arbitrary initial velocity. We
generalized our discussion to more open systems, in which the particle velocity would
correspond to a growth rate. We considered thecase whenentropy production is associated
with a concave dissipation function ∂2F/∂v2 < 0, and found that the NESS is dynamically
unstable:The system either relaxes towards the equilibrium statev0 → 0, or approaches a
runaway solution, v0 → ∞. The dynamics of an open system can be changed from stable to
unstable by a variation in the dissipation function, or in the entropy production. Changes
in metabolic rates have also been associated with disease (Macklem 2008): a decrease in
the metabolic rate has been linked with a decrease in heart rate fluctuations in myocardial
ischemia, while an increase in metabolic rate may be related to asthma.
It has also been proposed that the economy of a country or region can be considered an open
system (Daley 1991), where an economy growing at a fixed rate, i.e., change of gross domestic
power [GDP] per year would be in a nonequilibrium stationary state, or steady state. The
population increase would correspond to an external force, while ‘inefficiencies’ such as wars,
contribute to entropy production. If the analogue of a dissipation function for an economic
system is concave, it might explain why monetary policies often fail to achieve stable growth
of GDP over a sustained period. It would suggest that fluctuations of socio-economic variables
are important since they can drive the system away from its steady state.
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8. Figures
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(b)

xs

xns = x s

Fig. 1. The spring-block system (a) and with external force (b).
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U (x)

U(x)

xs xns = x s

Fig. 2. The harmonic potential U(x) = kx2/2 [black] and the shifted potential
U′(x) = U(x)− Fextx [red].

Fig. 3. The concave potential corresponding to a local maximum.
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Fig. 4. The Gibbs free energy for the Rayleigh-Bernard connection cell.
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Fig. 5. The rate of energy input and energy dissipation for the Brownian particle immersed in
a fluid.
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v0 v1 v2 v3

Fig. 6. Iterative time evolution for a Brownian particle with v0 < vs.

vi
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Fig. 7. The phase portrait for the discrete time evolution of the Brownian particle.
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F,W

Fig. 8. The rate of energy input and energy dissipation for an open system with unstable
dynamics.
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Fig. 9. Iterative time evolution for a unstable open system with v0 < vs.
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Fig. 10. The phase portrait for the discrete time evolution of an open system with unstable
dynamics.

192 Thermodynamics

www.intechopen.com



Thermodynamics

Edited by Prof. Mizutani Tadashi

ISBN 978-953-307-544-0

Hard cover, 440 pages

Publisher InTech

Published online 14, January, 2011

Published in print edition January, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Progress of thermodynamics has been stimulated by the findings of a variety of fields of science and

technology. The principles of thermodynamics are so general that the application is widespread to such fields

as solid state physics, chemistry, biology, astronomical science, materials science, and chemical engineering.

The contents of this book should be of help to many scientists and engineers.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Ulrich Zurcher (2011). Nonequilibrium Thermodynamics for Living Systems: Brownian Particle Description,

Thermodynamics, Prof. Mizutani Tadashi (Ed.), ISBN: 978-953-307-544-0, InTech, Available from:

http://www.intechopen.com/books/thermodynamics/nonequilibrium-thermodynamics-for-living-systems-

brownian-particle-description



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


