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1. Introduction

Limitations of thermodynamics based on the quantum statistical mechanics

An increased interest in using equilibrium thermodynamics as an independent macrotheory
can be observed in recent years. From a fundamental standpoint, thermodynamics gives
an universal macrodescription of nature in which using specific micromodels of objects
is unnecessary. From a pragmatic standpoint, there is obviously a demand for using
thermodynamics both to describe the behavior of relatively small objects (nanoparticles, etc.)
at low temperatures and to study high-energy physics (including the quark–gluon plasma).
As is well known, phenomenological thermodynamics is based on four laws. Among them,
the zero law is basic. It relates the fundamental idea of thermal equilibrium of an object to
its environment, called a heat bath. In this theory, in which all macroparameters are exactly
defined, the zero law is a strict condition determining the concept of temperature:

T ≡ T0, (1)

where T is the object temperature and T0 is the heat bath temperature.
In the same time there exists also statistical thermodynamics (ST). In its nonquantum version
founders of which were Gibbs and Einstein {LaLi68},{Su05} all macroparameters are
considered random values fluctuating about their means. It is assumed here that the concept
of thermal equilibrium is preserved, but its content is generalized. It is now admitted that the
object temperature experiences also fluctuations δT because of the thermal stochastic influence
of the heat bath characterized by the Boltzmann constant kB. As a result, the zero law takes
the form of a soft condition, namely,

T = T0 ± δT = 〈T〉 ± δT. (2)

Here the average object temperature 〈T〉 coincides with T0 and 〈(δT)2〉 ≡ (∆T)2 has the
meaning of the object temperature dispersion.
To preserve the thermodynamic character of this description, it is simultaneously assumed
that the values of the dispersion of any macroparameter Ai is bounded by the condition
(∆Ai)

2/〈Ai〉2 ≤ 1. This means that for the dispersion (∆T)2 there is the requirement

(∆T)2

T2
0

≤ 1. (3)
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2 Thermodynamics

In other words, the zero law of the nonquantum version of statistical thermodynamics is not
just one condition (2) but the set of conditions (2) and (3).
We stress that nonquantum version of statistical thermodynamics (see chap. 12 in {LaLi68})
absolutely does not take the quantum stochastic influence characterized by the Planck
constant h̄ into account. At the same time, it is well known from quantum dynamics that
the characteristics of an object can experience purely quantum fluctuations when there are
no thermal effects. In the general case, both quantum and thermal types of environment
stochastic influences determining macroparameters and their fluctuations are simultaneously
observed in experiments. In this regard, it is necessary to develop a theory such that the
approaches of quantum mechanics and nonquantum version of statistical thermodynamics
can be combined.
Today, there exists a sufficiently widespread opinion that thermodynamics based on quantum
statistical mechanics (QSM-based thermodynamics) has long played the role of such a theory
quite effectively. But this theoretical model is probably inadequate for solving a number of
new problems. In our opinion, this is due to the following significant factors.
First, QSM-based thermodynamics is not a consistent quantum theory because it plays the
role of a quasiclassical approximation in which the nonzero energy of the ground state is not
taken into account. Second, the theory is not a consistent statistical theory because it does
not initially contain fluctuations of intensive macroparameters (primarily, of temperature).
However, the temperature fluctuations in low-temperature experiments are sufficiently
noticeable for small objects, including nanoparticles and also for critical phenomena. Third,
the assertion that the minimal entropy is zero in it, is currently very doubtful. Fourth, in this
theory, the expression Θ = kBT is used as a modulus of the distribution for any objects at any
temperature. This corresponds to choosing the classical model of the heat bath {Bog67} as a
set of weakly coupled classical oscillators. Then a microobject with quantized energy is placed
in it. Thus, quantum and thermal influences are considered as additive. Fifth, in this theory at
enough low temperatures the condition (3) is invalid for relative fluctuations of temperature.
As a result, in QSM-based thermodynamics, it is possible to calculate the means of the majority
of extensive macroparameters with the account of quantum stochastic influence. However,
using the corresponding apparatus to calculate fluctuations of the same macroparameters
leads to the violation of condition that is analogical one (3). This means that full value
statistical thermodynamics as a macrotheory cannot be based completely on QSM as a
microtheory.
To obtain a consistent quantum-thermal description of natural objects, or modern stochastic
thermodynamics (MST), in our opinion, it is possible to use two approaches. Nevertheless,
they are both based on one general idea, namely, replacing the classical model of the heat bath
with an adequate quantum model, or a quantum heat bath (QHB) {Su99}.
The first of these approaches is described in the Sect. 1 {Su08}. We modify the
macrodescription of objects in the heat bath by taking quantum effects into account in
the framework of nonquantum version of statistical thermodynamics with an inclusion of
temperature fluctuations but without using the operator formalism. In this case, based
on intuitive considerations, we obtain a theory of effective macroparameters (TEM) as a
macrotheory.
In the Sect. 2 we modify standard quantum mechanics taking thermal effects into account
{SuGo09}. As a result, we formulate a quantum-thermal dynamics or, briefly, (h̄,k)-dynamics
(h̄kD) as a microtheory. The principal distinction from QSM is that in such a theory, the state
of a microobject under the conditions of contact with the QHB is generally described not by
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Modern Stochastic Thermodynamics 3

the density matrix but by a temperature-dependent complex wave function.
In the Sect. 3 we overcome the main paradox appearing in QSM-based thermodynamics
at calculation of macroparameters fluctuations. It is that at account of quantum effects its
results fall outside the scope of the thermodynamics. We develop the theory of the effective
macroparameters fluctuations (TEMF) combining TEM and h̄kD. We also investigate effective
macroparameters obeying the uncertainties relations (URs) and offer a criterion for the choice
of conjugate quantities.

2. Theory of effective macroparameters as a macroscopic ground of modern

stochastic thermodynamics

At first we construct MST in the form of a macrotheory or TEM. That is a generalization of
nonquantum version of statistical thermodynamics. The development of this theory is based
on a main MST postulate reduced to statements:

A. Stochastic influences of quantum and thermal types are realized by an environment to
which the QHB model is assigned.

B. The state of thermal equilibrium between the object and the QHB is described by an
effective temperature.

C. The physical characteristics of objects of any complexity at any temperature are described
by effective macroparameters to which random c-number quantities are assigned.

D. The main thermodynamic relations are formulated for the corresponding effective macro-
parameters; moreover, their standard forms are preserved, including zero law (2)-(3).

2.1 Effective temperature

We note that by changing the form of the zero law from (1) to (2) - (3), we take into
account that the object temperature can fluctuate. Therefore, the only possibility (probably still
remaining) is to modify the model of the heat bath, which is a source of stochastic influences,
by organically including a quantum-type influence in it.
Because an explicit attempt to modify the heat bath model is made by as for the first time, it
is useful first to make clear what is tacitly taken for such a model in the nonquantum version
of statistical thermodynamics. As follows from Chap. 9 in the Gibbs’s monograph {Gi60}, it
is based on the canonical distribution

dw(E) = e(F−E)/Θ dE (4)

in the macroparameters space 1. The object energy E = E(V, T) in it is a random quantity
whose fluctuations (for V = const) depend on object temperature fluctuations according
to zero law (2)-(3); F is the free energy determined by the normalization condition. The
distribution modulus

Θ ≡ kBT0 (5)

has a sense of the energy typical of a definite heat bath model.
Up to now, according to the ideas of Bogoliubov {Bog67}, a heat bath is customarily modeled
by an infinite set of normal modes each of which can be treated as an excitation of a chain

1We emphasize that distribution (4) is similar to the canonical distribution in classical statistical
mechanics (CSM) only in appearance. The energy ε = ε(p,q) in the latter distribution is also a random
quantity, but its fluctuations depend on the fluctuations of the microparameters p and q at the object
temperature defined by the formula (1).
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4 Thermodynamics

of weakly coupled oscillators. As follows from experiments, the quantity kBT0 in relatively
narrow ranges of frequencies and temperatures has the meaning of the average energy 〈εcl〉
of the classical normal mode. It can therefore be concluded from formulae (4) and (5) that the
heat bath model that can be naturally called classical is used in the nonquantum version of
statistical thermodynamics. From a modern standpoint, the experimental data in some cases
cannot be interpreted using such a model, on which, we stress, QSM is also based.
In what follows, we propose an alternative method for simultaneously including quantum-
and thermal-type stochastic influences. According to the main MST postulate, we pass from
the classical heat bath model to a more general quantum model, or QHB. As a result, all effects
related to both types of environment stochastic influences on the objects can be attributed to
the generalized heat bath. However, the thermodynamic language used to describe thermal
equilibrium can be preserved, i.e., we can explicitly use no the operator formalism in this
language. For this, as the QHB model, we propose to choose the set consisting of an infinite
number of quantum normal modes, each with the average energy

〈εqu〉 =
h̄ω

2
+ h̄ω

(
eh̄ω/(kBT0) − 1

)−1
=

h̄ω

2
coth

h̄ω

2kBT0
(6)

over the entire ranges of frequencies and temperatures, which agrees with experiments. This
means that in the QHB, we determine the expression for the distribution modulus Θ by the
more general condition Θ = 〈εqu〉, instead of the condition Θ = 〈εcl〉 typical of the classical
model.
Further, according to the main MST postulate, we propose to write the quantity Θ as

Θ ≡ kB(Te f )0. (7)

It is significant that the introduced quantity

(Te f )0 ≡
〈εqu〉

kB

=
h̄ω

2kB

coth
h̄ω

2kBT0
(8)

has the meaning of the effective QHB temperature. It fixes the thermal equilibrium condition
in the case when stochastic influences of both types are taken into account on equal terms. It
depends on both fundamental constants h̄ and kB.
We could now formulate a zero law similar to (2)-(3) as the interrelation condition for the
effective object and QHB temperatures Te f and (Te f )0. But we restrict ourself here to the
consideration of problems in which it is not necessary to take the fluctuations of the effective
object temperature into account. We therefore set

(Te f )0 ≡ Te f and T0 ≡ T

in all formulae of Sections 1 and 2. The quantum generalization of macroparameters
fluctuations theory (TEMF) is the subject of the Sect 3.
We call attention to the fact that the effective object temperature Te f is a function of two
object characteristics ω and T. In this case, equilibrium thermal radiation with a continuous
spectrum is manifested as a QHB with a temperature T on the Kelvin scale. Under these
conditions, we have not only T = T0 but also ω = ω0 as the thermal equilibrium state is
reached, i.e., it is as if the object made a resonance choice of one of the QHB modes whose
frequency ω0 coincides with its characteristic frequency ω. It is necessary to choose the
corresponding frequency from either the experiment or some intuitive considerations. In
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Modern Stochastic Thermodynamics 5

this regard, we can assume that the MST can at least be applied to a wide class of objects
whose periodic or conditionally periodic motions can be assigned to independent degrees of
freedom.
We note that the frequency ω and the temperature T (and consequently the effective
temperature Te f ) are intensive quantities, which stresses that they are conceptually close to
each other but makes them qualitatively different from extensive quantities (for example,
energy), for which additivity is typical. They are holistic characteristics of the state of
the object–environment system and have the transitivity property. It is significant that the
characteristics ω, T, and Te f , being c-number quantities, are not initially related to the number
of observables to which operators are assigned in quantum theory.
We can elucidate the physical meaning of the effective temperature Te f by considering its
behavior in the limiting cases. Thus, as the temperature (on the Kelvin scale) T → 0, the
effective temperature Te f becomes nonzero,

Te f →
h̄ω

2kB

≡ T0
e f , (9)

where T0
e f has the meaning of the minimal effective temperature of the object with the

characteristic frequency ω.
The effective temperature in turn becomes

Te f ≡ T0
e f coth

T0
e f

T
→ T

[
1 +

1

3

(T0
e f

T

)2

+ · · ·
]

(10)

in the limit of high temperatures T. Of course, the concepts of low and high temperatures for
each object essentially depend on the ratio T0

e f /T.

2.2 Effective entropy

To calculate the effective macroparameters in terms of the corresponding distribution
function, we must generalize canonical distribution (4) introduced by Gibbs in the
nonquantum version of statistical thermodynamics. As above, according to the main MST
postulate, this generalization reduces to replacing expression (5) for the distribution modulus
Θ with expression (7), i.e., to replacing T = T0 with Te f = (Te f )0. The desired distribution thus
becomes

dw(E) = ρ(E)dE =
1

kBTe f
e−E/(kBTe f ) dE , (11)

where E is the random energy of the object’s independent degree of freedom to which the
model of the oscillator with the frequency ω is assigned.
Based on distribution (11), we can calculate the internal energy of the object as a
macroparameter:

Ee f =
∫
Eρ(E)dE = kBTe f . (12)

Because Ee f with account (8) coincides with 〈εqu〉 of form (6), this means that the quantum
oscillator in the heat bath is chosen as an object model.
To calculate the effective entropy Se f of such an object, it is convenient to write formula (11)
in the form in which the distribution density ρ̃(E) = ρ(E)h̄ω/2 is dimensionless,

dw(E) = ρ̃(E)
(

h̄ω

2

)−1

dE = e(Fe f −E)/(kBTe f )
(

h̄ω

2

)−1

dE , (13)
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where the effective free energy is given by

Fe f = −kBTe f log

(
Te f

T0
e f

)
. (14)

We then obtain

Se f = −kB

∫
ρ̃(E) log ρ̃(E)

(
h̄ω

2

)−1

dE =

= kB

[
1 + log

(
coth

h̄ω

2kBT

)]
= kB

[
1 + log

(
coth

T0
e f

T

)]
. (15)

It follows from formula (15) that in the high-temperature limit T ≫ T0
e f , the effective entropy

is written as
Se f → kB log T + const, (16)

which coincides with the expression for the oscillator entropy in thermodynamics based
on classical statistical mechanics (CSM-based thermodynamics). At the same time, in the
low-temperature limit T ≪ T0

e f , the effective entropy is determined by the world constant

kB:

Se f → S0
e f = kB. (17)

Thus, in TEM, the behavior of the effective entropy of the degree of freedom of the object
for which the periodic motion is typical corresponds to the initial formulation of Nernst’s
theorem, in which the minimum entropy is nonzero. Moreover, the range of temperatures T
where we have Se f ≈ S0

e f can be very considerable, depending on the ratio T0
e f /T.

It is obvious that using the model of the QHB, we can combine the quantum- and thermal-type
influences (traditionally considered as specific influences only for the respective micro- and
macrolevels) to form a holistic stochastic influence in the TEM framework. But using such an
approach, we need not restrict ourself to generalizing only the traditional macroparameters,
such as temperature and entropy. It becomes possible to give a meaning to the concept of
effective action, as a new macroparameter which is significantly related to the quantum-type
stochastic influence on the microlevel.

2.3 Effective action as a new macroparameter

The problem of introducing the concept of action into thermodynamics and of establishing the
interrelation between the two widespread (but used in different areas of physics) quantities
(entropy and action) has attracted the attention of many the most outstanding physicists,
including Boltzmann {Bol22}, Boguslavskii, de Broglie. But the results obtained up to now
were mainly related to CSM-based thermodynamics, and quantum effects were taken into
account only in the quasiclassical approximation. Our aim is to extend them to the TEM. To
do this, we choose the harmonic oscillator as an initial model of a periodically moving object.
If we pass from the variables p and q to the action–angle variables when analyzing it in the
framework of classical mechanics, then we can express the action j (having the meaning of a
generalized momentum) in terms of the oscillator energy ε as

j =
ε

ω
. (18)
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Modern Stochastic Thermodynamics 7

In passing to thermodynamics, we should preserve interrelation (18) between the action and
the energy. In the same time, in place of the microparameters j and ε we use the corresponding
macroparameters in this case, namely, the average quantities 〈j〉 and 〈ε〉. Their specific
expressions depend on the choice of the heat bath model (classical or non-classical) used for
averaging.
It is quite natural that in the framework of CSM-based thermodynamics, Boltzmann assumed
that

JT ≡ 〈j〉 = 〈εcl〉
ω

=
kBT

ω
. (19)

Following the same idea, we determine the effective action Je f in the TEM framework by the
formula

Je f = 〈j〉 = 〈εqu〉
ω

=
Ee f

ω
=

kBTe f

ω
. (20)

This means that in the TEM, we start from the fact that the effective action for all objects to
which the model of the quantum oscillator in the QHB is applicable has the form

Je f =
h̄

2
coth

h̄ω

2kBT
= J 0

e f coth
T0

e f

T
, (21)

where accordingly (20)

J 0
e f =

kBT0
e f

ω
=

h̄

2
(22)

is the minimal effective action for T → 0. Of course, in the limit T ≫ T0
e f , we have the effective

action

Je f →JT

[
1 +

1

3

(T0
e f

T

)2

+ · · ·
]

,

i.e., it goes to expression (19) obtained in the CSM-based thermodynamics. Thus, both at low
and high temperatures the formulae (22) and (19) for the effective action Je f are written by

the minimal effective temperature T0
e f . This means that even purely quantum influence (at T =

0) can be interpreted as a peculiar thermal influence. Thus, one cannot assume that quantum
and thermal influences can be considered separately. In other words, they are non-additive
notions.
As is well-known, the original Planck formula for the average energy of the quantum oscillator
in QSM

Equasi =
h̄ω

eh̄ω/(kBT) − 1
≡ Ee f −

h̄ω

2
(23)

is only applicable in the quasiclassical approximation framework. Substituting the expression
Equasi of form (23) in formula (20) instead of Ee f , we also obtain the effective action in the
quasiclassical approximation:

Jquasi =
Equasi

ω
=

h̄

eh̄ω/(kBT) − 1
≡ Je f −

h̄

2
. (24)

The quasiclassical nature of expressions (23) and (24) is manifested, in particular, in the fact
that these both quantities tend to zero as T → 0.
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8 Thermodynamics

2.4 The interrelation between the effective action and the effective entropy

To establish the interrelation between the action and the entropy, Boltzmann assumed that
the isocyclic motions of the oscillator in mechanics for which ω = const correspond to the
isothermal processes in thermodynamics. In this case, the oscillator energy can be changed
under external influence that can be treated as the work δAdis of dissipative forces equivalent
to the heat δQ.
Generalizing this idea, we assume that every energy transferred at stochastic influence
(quantum and thermal) in the TEM can be treated as the effective work δAdis

e f of dissipative

forces equivalent to the effective heat δQe f . This means that for isothermal processes, the same
change in the effective energy dEe f of the macroobject to which the model of the quantum
oscillator in the QHB can be assigned can be represented in two forms

dEe f = δAdis
e f = ω dJe f or dEe f = δQe f = Te f dSe f . (25)

Furthermore, following Boltzmann, we choose the ratio dEe f /Ee f as a measure of energy
transfer from the QHB to the object in such processes. The numerator and denominator in this
ratio can be expressed in terms of either the effective action Je f or the effective entropy Se f

and effective temperature Te f using formulas (25) and (20). Equating the obtained expressions
for the ratio dEe f /Ee f , we obtain the differential equation

dEe f

Ee f
=

ω dJe f

ωJe f
=

Te f dSe f

kBTe f
(26)

relating the effective entropy to the effective action. Its solution has the form

Se f = kB

∫ dJe f

Je f
= kB log

Je f

J0
= kB log

(
h̄

2J0
coth

h̄ω

2kBT

)
, (27)

where J0 is the arbitrary constant of action dimensionality.
Choosing the quantity h̄/2e as J0, where e is the base of the natural logarithms, we can make
expression (27) coincides with the expression for the effective entropy Se f of form (15). Taking

into account that S0
e f = kB, we have

Se f = S0
e f

[
1 + log

Je f

J 0
e f

]
= S0

e f

[
1 + logcoth

T0
e f

T

]
. (28)

For the entropy of the quantum oscillator in QSM-based thermodynamics, i.e. in the
quasiclassical approximation, the well-known expression

Squasi = −kB

{
h̄ω

kBT

(
1 − eh̄ω/(kBT))−1

+ log
(
1 − e−h̄ω/(kBT))

}
(29)

is applicable. It will be interesting to compare (28) with the analogical expression from
QSM-based thermodynamics. For this goal we rewrite the formula (29), taking into account
(24) in the form

Squasi =
ω

T
Jquasi + kB log(1 +

Jquasi

h̄
). (30)

In contrast to Se f in the form (28) the quantity Squasi tends to zero as T → 0.
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Modern Stochastic Thermodynamics 9

2.5 The first holistic stochastic-action constant

We note that according to formulas (21) and (28), the ratio of the effective action to the effective
entropy is given by

Je f

Se f
=

J 0
e f

S0
e f

·
coth(T0

e f /T)

1 + logcoth(T0
e f /T)

= κ

coth(κω/T)

1 + logcoth(κω/T)
. (31)

In this expression,

κ ≡
J 0

e f

S0
e f

=
h̄

2kB

(32)

is the minimal ratio (31) for T ≪ T0
e f .

In our opinion, the quantity

κ = 3.82 · 10−12 K · s (33)

is not only the notation for one of the possible combinations of the world constants h̄ and
kB. It also has its intrinsic physical meaning. In addition to the fact that the ratio Je f /Se f

of form (31) at any temperature can be expressed in terms of this quantity, it is contained in
definition (2.5) of the effective temperature

Te f = κω coth
κω

T
(34)

and also in the Wien’s displacement law T/ωmax = 0.7κ for equilibrium thermal radiation.
Starting from the preceding, we can formulate the hypothesis according to which the quantity
κ plays the role of the first constant essentially characterizing the holistic stochastic action of
environment on the object.
Hence, the minimal ratio of the action to the entropy in QSM-based thermodynamics is
reached as T → 0 and is determined by the formula

Jquasi

Squasi
=

T

ω

[
1 +

kBT

ωJquasi
log

(
1 +

Jquasi

h̄

)]−1

→ T

ω

[
1 +

kBT

h̄ω

]−1

→ 0. (35)

We have thus shown that not only Jquasi → 0 and Squasi → 0 but the ratio Jquasi/Squasi → 0
in this microtheory too. This result differs sharply from the limit Je f /Se f → κ 
= 0 for the
corresponding effective quantities in the TEM. Therefore, it is now possible to compare the
two theories (TEM and QSM) experimentally by measuring the limiting value of this ratio.
The main ideas on which the QST as a macrotheory is based were presented in the foregoing.
The stochastic influences of quantum and thermal types over the entire temperature range are
taken into account simultaneously and on equal terms in this theory. As a result, the main
macroparameters of this theory are expressed in terms of the single macroparameter Je f and
combined fundamental constant κ = h̄/2kB. The experimental detection κ as the minimal
nonzero ratio Je f /Se f can confirm that the TEM is valid in the range of sufficiently low
temperatures. The first indications that the quantity κ plays an important role were probably
obtained else in Andronikashvili’s experiments (1948) on the viscosity of liquid helium below
the λ point.
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10 Thermodynamics

3. (h̄,k)-dynamics as a microscopic ground of modern stochastic thermodynamics

In this section, following ideas of paper {Su06}, where we introduced the original notions
of h̄kD, we develop this theory further as a microdescription of an object under thermal
equilibrium conditions {SuGo09}. We construct a model of the object environment, namely,
QHB at zero and finite temperatures. We introduce a new microparameter, namely, the
stochastic action operator, or Schrödingerian. On this ground we introduce the corresponding
macroparameter, the effective action, and establish that the most important effective
macroparameters —internal energy, temperature, and entropy—are expressed in terms of this
macroparameter. They have the physical meaning of the standard macroparameters for a
macrodescription in the frame of TEM describing in the Sect.1.

3.1 The model of the quantum heat bath: the “cold” vacuum

In constructing the h̄kD, we proceed from the fact that no objects are isolated in nature. In
other words, we follow the Feynman idea, according to which any system can be represented
as a set of the object under study and its environment (the “rest of the Universe”). The
environment can exert both regular and stochastic influences on the object. Here, we study
only the stochastic influence. Two types of influence, namely, quantum and thermal influences
characterized by the respective Planck and Boltzmann constants, can be assigned to it.
To describe the environment with the holistic stochastic influence we introduce a concrete
model of environment, the QHB. It is a natural generalization of the classical thermal bath
model used in the standard theories of thermal phenomena {Bog67}, {LaLi68}. According
to this, the QHB is a set of weakly coupled quantum oscillators with all possible frequencies.
The equilibrium thermal radiation can serve as a preimage of such a model in nature.
The specific feature of our understanding of this model is that we assume that we must apply
it to both the “thermal” (T 
= 0) and the “cold” (T = 0) vacua. Thus, in the sense of Einstein,
we proceed from a more general understanding of the thermal equilibrium, which can, in
principle, be established for any type of environmental stochastic influence (purely quantum,
quantum-thermal, and purely thermal).
We begin our presentation by studying the “cold” vacuum and discussing the description of
a single quantum oscillator from the number of oscillators forming the QHB model for T = 0
from a new standpoint. For the purpose of the subsequent generalization to the case T 
= 0,
not its well-known eigenstates Ψn(q) in the q representation but the coherent states (CS) turn
out to be most suitable.
But we recall that the lowest state in the sets of both types is the same. In the occupation
number representation, the “cold” vacuum in which the number of particles is n = 0
corresponds to this state. In the q representation, the same ground state of the quantum
oscillator is in turn described by the real wave function

Ψ0(q) = [2π(∆q0)
2]−1/4e−q2/4(∆q0)2

. (36)

In view of the properties of the Gauss distribution, the Fourier transform Ψ0(p) of this
function has a similar form (with q replaced with p); in this case, the respective momentum
and coordinate dispersions are

(∆p0)
2 =

h̄mω

2
, (∆q0)

2 =
h̄

2mω
. (37)

As is well known, CS are the eigenstates of the non-Hermitian particle annihilation operator
â with complex eigenvalues. But they include one isolated state |0a〉 of the particle vacuum in
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which the eigenvalue of â is zero

â|0a〉 = 0|0a〉, or âΨ0(q) = 0. (38)

In what follows, it is convenient to describe the QHB in the q representation. Therefore, we
express the annihilation operator â and the creation operator â† in terms of the operators p̂
and q̂ using the traditional method. We have

â =
1

2

(
p̂√
∆p2

0

− i
q̂√
∆q2

0

)
, â† =

1

2

(
p̂√
∆p2

0

+ i
q̂√
∆q2

0

)
. (39)

The particle number operator then becomes

N̂a = â† â =
1

h̄ω

(
p̂2

2m
+

mω2q̂2

2
− h̄ω

2
Î

)
, (40)

where Î is the unit operator. The sum of the first two terms in the parentheses forms the
Hamiltonian Ĥ of the quantum oscillator, and after multiplying relations (40) by h̄ω on the
left and on the right, we obtain the standard interrelation between the expressions for the
Hamiltonian in the q and n representations:

Ĥ =
p̂2

2m
+

mω2q̂2

2
= h̄ω

(
N̂a +

1

2
Î

)
. (41)

From the thermodynamics standpoint, we are concerned with the effective internal energy of
the quantum oscillator in equilibrium with the “cold” QHB. Its value is equal to the mean of
the Hamiltonian calculated over the state |0a〉 ≡ |Ψ0(q)〉:

E0
e f = 〈Ψ0(q)|Ĥ|Ψ0(q)〉 = h̄ω〈Ψ0(q)|N̂a|Ψ0(q)〉+

h̄ω

2
=

h̄ω

2
= ε0. (42)

It follows from formula (42) that in the given case, the state without particles coincides with
the state of the Hamiltonian with the minimal energy ε0. The quantity ε0, traditionally treated
as the zero point energy, takes the physical meaning of a macroparameter, or the effective
internal energy E0

e f of the quantum oscillator in equilibrium with the “cold” vacuum.

3.2 The model of the quantum heat bath: passage to the “thermal” vacuum

We can pass from the “cold” to the “thermal” vacuum using the Bogoliubov (u,v)
transformation with the complex temperature-dependent coefficients { SuGo09}

u =

(
1

2
coth

h̄ω

2kBT
+

1

2

)1/2

eiπ/4, v =

(
1

2
coth

h̄ω

2kBT
− 1

2

)1/2

e−iπ/4. (43)

In the given case, this transformation is canonical but leads to a unitarily nonequivalent
representation because the QHB at any temperature is a system with an infinitely large
number of degrees of freedom.
In the end, such a transformation reduces to passing from the set of quantum oscillator CS to
a more general set of states called the thermal correlated CS (TCCS) {Su06}. They are selected
because they ensure that the Schrödinger coordinate–momentum uncertainties relation is
saturated at any temperature.
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From the of the second-quantization apparatus standpoint, the Bogoliubov (u,v)
transformation ensures the passage from the original system of particles with the “cold”
vacuum |0a〉 to the system of quasiparticles described by the annihilation operator b̂ and the
creation operator b̂† with the “thermal” vacuum |0b〉. In this case, the choice of transformation
coefficients (43) is fixed by the requirement that for any method of description, the expression
for the mean energy of the quantum oscillator in thermal equilibrium be defined by the Planck
formula (6)

EPl =
[
〈ΨT(q)|Ĥ|ΨT(q)〉

]
= 〈εqu〉 =

h̄ω

2
coth

h̄ω

2kBT
, (44)

which can be obtained from experiments. As shown in {Su06}, the state of the “thermal”
vacuum |0b〉 ≡ |ΨT(q)〉 in the q representation corresponds to the complex wave function

ΨT(q) = [2π(∆qe f )
2]−1/4 exp

{
− q2

4(∆qe f )2
(1 − iα)

}
, (45)

where

(∆qe f )
2 =

h̄

2mω
coth

h̄ω

2kBT
, α =

[
sinh

h̄ω

2kBT

]−1

. (46)

For its Fourier transform ΨT(p), a similar expression with the same coefficient α and

(∆pe f )
2 =

h̄mω

2
coth

h̄ω

2kBT
(47)

holds. We note that the expressions for the probability densities ρT(q) and ρT(p) have
already been obtained by Bloch (1932), but the expressions for the phases that depend on
the parameter α play a very significant role and were not previously known. It is also easy
to see that as T → 0, the parameter α → 0 and the function ΨT(q) from TCCS passes to the
function Ψ0(q) from CS.
Of course, the states from TCCS are the eigenstates of the non-Hermitian quasiparticle
annihilation operator b̂ with complex eigenvalues. They also include one isolated state of
the quasiparticle vacuum in which the eigenvalue of b is zero,

b̂|0b〉 = 0|0b〉, or b̂ΨT(q) = 0. (48)

Using condition (48) and expression (45) for the wave function of the “thermal” vacuum, we
obtain the expression for the operator b̂ in the q representation:

b̂ =
1

2

(
coth

h̄ω

2kBT

) 1
2
[

p̂√
∆p2

0

− i
q̂√
∆q2

0

(
coth

h̄ω

2kBT

)−1

(1 − iα)

]
. (49)

The corresponding quasiparticle creation operator has the form

b̂† =
1

2

(
coth

h̄ω

2kBT

) 1
2
[

p̂√
∆p2

0

+ i
q̂√
∆q2

0

(
coth

h̄ω

2kBT

)−1

(1 + iα)

]
. (50)

We can verify that as T → 0, the operators b̂† and b̂ for quasiparticles pass to the operators â†

and â for particles.
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Acting just as above, we obtain the expression for the effective Hamiltonian, which is
proportional to the quasiparticle number operator in the q representation

Ĥe f = h̄ωN̂b = coth
h̄ω

2kBT

(
p̂2

2m
+

mω2q2

2

)
− h̄ω

2

(
Î +

α

h̄
{ p̂, q̂}

)
, (51)

where we take 1 + α2 = coth2(h̄ω/2kBT) into account. Obviously, Ĥe f ΨT(q) = 0, i.e. ΨT(q)-

an eigenfunction of Ĥe f .
Passing to the original Hamiltonian, we obtain

Ĥ = h̄ω

(
coth

h̄ω

2kBT

)−1[
N̂b +

1

2

(
Î +

α

h̄
{ p̂, q̂}

)]
. (52)

We stress that the operator { p̂, q̂} in formula (52) can also be expressed in terms of bilinear
combinations of the operators b̂† and b̂, but they differ from the quasiparticle number operator.
This means that the operators Ĥ and N̂b do not commute and that the wave function of
form (45) characterizing the state of the “thermal” vacuum is therefore not the eigenfunction
of the Hamiltonian Ĥ.
As before, we are interested in the macroparameter, namely, the effective internal energy Ee f

of the quantum oscillator now in thermal equilibrium with the “thermal” QHB. Calculating it
just as in Sec. 3.1, we obtain

Ee f = h̄ω
[
〈ΨT(q)|N̂b|ΨT(q)〉

]
+

h̄ω

2coth(h̄ω/2kBT)

(
1 +

α

h̄
〈ΨT(q)|{p,q}|ΨT(q)〉

)
(53)

in the q representation. Because we average over the quasiparticle vacuum in formula (53),
the first term in it vanishes. At the same time, it was shown by us {Su06} that

〈ΨT(q)|{ p̂, q̂}|ΨT(q)〉 = h̄α. (54)

As a result, we obtain the expression for the effective internal energy of the quantum oscillator
in the “thermal” QHB in the h̄kD framework:

Ee f =
h̄ω

2coth(h̄ω/2kBT)
(1 + α2) =

h̄ω

2
coth

h̄ω

2kBT
= EPl , (55)

that coincides with the formula (44). This means that the average energy of the quantum
oscillator at T 
= 0 has the meaning of effective internal energy as a macroparameter in
the case of equilibrium with the “thermal” QHB. As T → 0, it passes to a similar quantity
corresponding to equilibrium with the “cold” QHB.
Although final result (55) was totally expected, several significant conclusions follow from it.
1. In the h̄kD, in contrast to calculating the internal energy in QSM, where all is defined by
the probability density ρT(q), the squared parameter α determining the phase of the wave
function contributes significantly to the same expression, which indicates that the quantum
ideology is used more consistently.
2. In the h̄kD, the expression for coth(h̄ω/2kBT) in formula (55) appears as an holistic quantity,
while the contribution ε0 = h̄ω/2 to the same formula (6) in QSM usually arises separately as
an additional quantity without a thermodynamic meaning and is therefore often neglected.
3. In the h̄kD, the operators Ĥ and N̂b do not commute. It demonstrates that the
number of quasiparticles is not preserved, which is typical of the case of spontaneous
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symmetry breaking. In our opinion, the proposed model of the QHB is a universal model
of the environment with a stochastic influence on an object. Therefore, the manifestations
of spontaneous symmetry breaking in nature must not be limited to superfluidity and
superconductivity phenomena.

3.3 Schrödingerian as a stochastic action operator

The effective action as a macroparameter was postulated in the Section 1 in the framework
of TEM by generalizing concepts of adiabatic invariants. In the h̄kD framework, we base
our consistent microdescription of an object in thermal equilibrium on the model of the QHB
described by a wave function of form (45).
Because the original statement of the h̄kD is the idea of the holistic stochastic influence of the
QHB on the object, we introduce a new operator in the Hilbert space of microobject states
to implement it. As leading considerations, we use an analysis of the right-hand side of the
Schrödinger coordinate–momentum uncertainties relation in the saturated form {Su06}:

(∆p)2(∆q)2 = |R̃pq|2. (56)

For not only a quantum oscillator in a heat bath but also any object, the complex quantity in
the right-hand side of (56)

R̃pq = 〈∆p|∆q〉 = 〈 |∆ p̂ ∆q̂ | 〉 (57)

has a double meaning. On one hand, it is the amplitude of the transition from the state |∆q〉
to the state |∆p〉; on the other hand, it can be treated as the mean of the Schrödinger quantum
correlator calculated over an arbitrary state | 〉 of some operator.
As is well known, the nonzero value of quantity (57) is the fundamental attribute of
nonclassical theory in which the environmental stochastic influence on an object plays a
significant role. Therefore, it is quite natural to assume that the averaged operator in the
formula has a fundamental meaning. In view of dimensional considerations, we call it the
stochastic action operator, or Schrödingerian

ĵ ≡ ∆ p̂∆q̂. (58)

Of course, it should be remembered that the operators ∆q̂ and ∆ p̂ do not commute and their
product is a non-Hermitian operator.
To analyze further, following Schrödinger (1930) {DoMa87}, we can express the given
operator in the form

ĵ =
1

2
{∆ p̂,∆q̂}+ 1

2
[ p̂, q̂] = σ̂ − i ĵ0, (59)

which allows separating the Hermitian part (the operator σ̂) in it from the anti-Hermitian one,
in which the Hermitian operator is

ĵ0 =
i

2
[ p̂, q̂] ≡ h̄

2
Î. (60)

It is easy to see that the mean σ = 〈|σ̂|〉 of the operator σ̂ resembles the expression for the
standard correlator of coordinate and momentum fluctuations in classical probability theory;
it transforms into this expression if the operators ∆q̂ and ∆ p̂ are replaced with c-numbers.

It reflects the contribution to the transition amplitude R̃pq of the environmental stochastic
influence. Therefore, we call the operator σ̂ the external stochastic action operator in what
follows. Previously, the possibility of using a similar operator was discussed by Bogoliubov
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and Krylov (1939) as a quantum analogue of the classical action variable in the set of
action–angle variables.
At the same time, the operators ĵ0 and ĵ were not previously introduced. The operator of
form (60) reflects a specific peculiarity of the objects to be “sensitive” to the minimal stochastic
influence of the “cold” vacuum and to respond to it adequately regardless of their states.
Therefore, it should be treated as a minimal stochastic action operator. Its mean J0 = 〈| ĵ0|〉 =
h̄/2 is independent of the choice of the state over which the averaging is performed, and it
hence has the meaning of the invariant eigenvalue of the operator ĵ0.
This implies that in the given case, we deal with the universal quantity J0, which we call
the minimal action. Its fundamental character is already defined by its relation to the Planck
world constant h̄. But the problem is not settled yet. Indeed, according to the tradition dating
back to Planck, the quantity h̄ is assumed to be called the elementary quantum of the action.
At the same time, the factor 1/2 in the quantity J0 plays a significant role, while half the
quantum of the action is not observed in nature. Therefore, the quantities h̄ and h̄/2, whose
dimensions coincide, have different physical meanings and must hence be named differently,
in our opinion. From this standpoint, it would be more natural to call the quantity h̄ the
external quantum of the action.
Hence, the quantity h̄ is the minimal portion of the action transferred to the object from the
environment or from another object. Therefore, photons and other quanta of fields being
carriers of fundamental interactions are first the carriers of the minimal action equal to h̄. The
same is also certainly related to phonons.
Finally, we note that only the quantity h̄ is related to the discreteness of the spectrum of the
quantum oscillator energy in the absence of the heat bath. At the same time, the quantity h̄/2
has an independent physical meaning. It reflects the minimal value of stochastic influence of
environment at T = 0, specifying by formula (42) the minimal value of the effective internal
energy E0

e f of the quantum oscillator.

3.4 Effective action in (h̄,k)-dynamics

Now we can turn to the macrodescription of objects using their microdescription in the h̄kD
framework. It is easy to see that the mean J̃ of the operator ĵ of form (59) coincides with the

complex transition amplitude R̃pq and, in thermal equilibrium, can be expressed as

J̃ = 〈ΨT(q)| ĵ|ΨT(q)〉 = σ − iJ0 = (R̃pq)e f . (61)

In what follows, we regard the modulus of the complex quantity J̃ ,

|J̃ | =
√

σ2 + J 2
0 =

√

σ2 +
h̄2

4
≡ Je f (62)

as a new macroparameter and call it the effective action. It has the form

Je f =
h̄

2
coth

h̄ω

2kBT
, (63)

that coincides with a similar quantity Je f postulated as a fundamental macroparameter in
TEM framework (see the Sect.1.) from intuitive considerations.
We now establish the interrelation between the effective action and traditional
macroparameters. Comparing expression (63) for |J̃ | with (55) for the effective internal
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energy Ee f , we can easily see that

Ee f = ω|J̃ | = ωJe f . (64)

In the high-temperature limit, where

σ →JT =
kBT

ω
≫ h̄

2
, (65)

relation (64) becomes
E = ωJT . (66)

Boltzmann {Bol22} previously obtained this formula for macroparameters in CSM-based
thermodynamics by generalizing the concept of adiabatic invariants used in classical
mechanics.
Relation (64) also allows expressing the interrelation between the effective action and the
effective temperature Te f (8) in explicit form:

Te f =
ω

kB
Je f . (67)

This implies that

T0
e f =

ω

kB
J 0

e f =
h̄ω

2kB

= 0, (68)

where J 0
e f ≡ J0. Finally, we note that using formulas (56), (61)– (64), (46), and (47), we can

rewrite the saturated Schrödinger uncertainties relation for the quantum oscillator for T 
= 0
as

∆pe f · ∆qe f = Je f =
Ee f

ω
=

h̄

2
coth

h̄ω

2kBT
. (69)

3.5 Effective entropy in the (h̄,k)-dynamics

The possibility of introducing entropy in the h̄kD is also based on using the wave function
ΨT(q) instead of the density operator. To define the entropy as the initial quantity, we take the
formal expression

− kB

{∫
ρ(q) logρ(q)dq +

∫
ρ(p) logρ(p)dp

}
(70)

described in {DoMa87}. Here, ρ(q) = |Ψ(q)|2 and ρ(p) = |Ψ(p)|2 are the dimensional
densities of probabilities in the respective coordinate and momentum representations.
Using expression (45) for the wave function of the quantum oscillator, we reduce ρ(q) to the
dimensionless form:

ρ̃(q̃) =

[
2π

δ
coth

h̄ω

2kBT

]−1

e−q̃2/2, q̃2 =
q2

(∆qe f )2
, (71)

where δ is an arbitrary constant. A similar expression for its Fourier transform ρ̃( p̃) differs by
only replacing q with p.
Using the dimensionless expressions, we propose to define entropy in the h̄kD framework by
the equality

Sqp = −kB

{∫
ρ̃(q̃) log ρ̃(q̃)dq̃ +

∫
ρ̃( p̃) log ρ̃( p̃)dp̃

}
. (72)
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Substituting the corresponding expressions for ρ̃(q̃) and ρ̃( p̃) in (72), we obtain

Sqp = kB

{(
1 + log

2π

δ

)
+ logcoth

h̄ω

2kBT

}
. (73)

Obviously, the final result depends on the choice of the constant δ.
Choosing δ = 2π, we can interpret expression (73) as the quantum-thermal entropy or,
briefly, the QT entropy SQT because it coincides exactly with the effective entropy Se f

(15). This ensures the consistency between the main results of our proposed micro- and
macrodescriptions, i.e. h̄kD and TEM, and their correspondence to experiments.
We can approach the modification of original formal expression (70) in another way.
Combining both terms in it, we can represent it in the form

− kB

∫
dεW(ε) logW(ε). (74)

It is easy to see that W(ε) is the Wigner function for the quantum oscillator in the QHB:

W(ε) = {2π∆q∆p}−1 exp

{
− p2

2(∆p)2
− q2

2(∆q)2

}
=

ω

2πkBTe f
e−ε/kBTe f . (75)

After some simple transformations the expression (74) takes also the form Se f = SQT .
Modifying expressions (70) (for δ = 2π) or (74) in the h̄kD framework thus leads to the
expression for the QT, or effective, entropy of form (15). From the microscopic standpoint,
they justify the expression for the effective entropy as a macroparameter in MST. We note that
the traditional expression for entropy in QSM-based thermodynamics turns out to be only a
quasiclassical approximation of the QT, or effective entropy.

3.6 Some thermodynamics relations in terms of the effective action

The above presentation shows that using the h̄kD developed here, we can introduce
the effective action Je f as a new fundamental macroparameter. The advantage of this
macroparameter is that in the given case, it has a microscopic preimage, namely, the
stochastic action operator ĵ, or Schrödingerian. Moreover, we can in principle express the
main macroparameters of objects in thermal equilibrium in terms of it. As is well known,
temperature and entropy are the most fundamental of them. It is commonly accepted that
they have no microscopic preimages but take the environment stochastic influence on the
object generally into account. In the traditional presentation, the temperature is treated as a
“degree of heating,” and entropy is treated as a “measure of system chaos.”
If the notion of effective action is used, these heuristic considerations about Te f and Se f can
acquire an obvious meaning. For this, we turn to expression (67) for Te f , whence it follows that
the effective action is also an intensive macroparameter characterizing the stochastic influence
of the QHB. In view of this, the zero law of MST can be rewritten as

Je f = (Je f )0 ± δJe f , (76)

where (Je f )0 is the effective action of a QHB and Je f and δJe f are the means of the effective
reaction of an object and its fluctuation. The state of thermal equilibrium can actually
be described in the sense of Newton, assuming that “the stochastic action is equal to the
stochastic counteraction” in such cases.
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We now turn to the effective entropy Se f . In the absence of a mechanical contact, its differential
in MST is

dSe f =
δQe f

Te f
=

dEe f

Te f
. (77)

Substituting the expressions for effective internal energy (64) and effective temperature (67)
in this relation, we obtain

dSe f = kB

ω dJe f

ωJe f
= kB · d

(
log

Je f

J 0
e f

)
= dSQT . (78)

It follows from this relation that the effective or QT entropy, being an extensive

macroparameter, can be also expressed in terms of Je f .
As a result, it turns out that two qualitatively different characteristics of thermal phenomena
on the macrolevel, namely, the effective temperature and effective entropy, embody the
presence of two sides of stochastization the characteristics of an object in nature in view of
the contact with the QHB. At any temperature, they can be expressed in terms of the same
macroparameter, namely, the effective action Je f . This macroparameter has the stochastic
action operator, or Schrödingerian simultaneously dependent on the Planck and Boltzmann
constants as a microscopic preimage in the h̄kD.

4. Theory of effective macroparameters fluctuations and their correlation

In the preceding sections we considered effective macroparameters as random quantities
but the subject of interest were only problems in which the fluctuations of the effective
temperature and other effective object macroparameters can be not taken into account.
In given section we consistently formulate a noncontradictory theory of quantum-thermal
fluctuations of effective macroparameters (TEMF) and their correlation. We use the apparatus
of two approaches developed in sections 2 and 3 for this purpose.
This theory is based on the rejection of the classical thermostat model in favor of the quantum
one with the distribution modulus Θqu = kBTe f . This allows simultaneously taking into
account the quantum and thermal stochastic influences of environment describing by effective
action. In addition, it is assumed that some of macroparameters fluctuations are obeyed the
nontrivial uncertainties relations. It appears that correlators of corresponding fluctuations are
proportional to effective action Je f .

4.1 Inapplicability QSM-based thermodynamics for calculation of the macroparameters

fluctuations

As well known, the main condition of applicability of thermodynamic description is the
following inequality for relative dispersion of macroparameter Ai :

(∆Ai)
2

〈Ai〉2
� 1, (79)

where
(∆Ai)

2 ≡ 〈(δAi)
2〉 = 〈A2

i 〉 − 〈Ai〉2

is the dispersion of the quantity Ai.
In the non-quantum version of statistical thermodynamics, the expressions for
macroparameters dispersions can be obtained. So, for dispersions of the temperature
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and the internal energy of the object for V = const we have according to Einstein {LaLi68}

(∆T)2 =
1

kBCV
Θ

2
cl =

kB

CV
T2 and (∆E)2 =

CV

kB
Θ

2
cl = kBCV T2, (80)

where CV = ∂〈E〉
∂T

∣∣∣
V

is the heat capacity for the constant volume. At high temperatures the

condition (79) is satisfies for any macroparameters and any objects including the classical
oscillator.
For its internal energy E = 〈ε〉 = kBT with account CV = kB we obtain its dispersion

(∆E)2 = kBCV T2 = k2
BT2 = E2. (81)

So, the condition (79) is valid for E and this object can also be described in the framework of
thermodynamics.
For the account of quantum effects in QSM-based thermodynamics instead of (80) are used
the following formulae

(∆T)2 = 0 and (∆Equ)
2 = kB(CV)quT2. (82)

The difference is that instead of CV , it contains

(CV)qu =
∂Equ

∂T

∣∣∣∣
V

,

where Equ = 〈εqu〉 is the internal energy of the object calculated in the QSM framework.
For a quantum oscillator in this case we have

〈Equ〉 =
h̄ω

exp{2κ ω
T } − 1

=
h̄ω

2
· exp{−κ

ω
T }

sinh(κ ω
T )

, (83)

and its heat capacity is

(CV)qu = kB

(
h̄ω

kBT

)2 exp{2κ ω
T }

(exp{2κ ω
T } − 1)2

= kB

(
κ

ω

T

)2 1

sinh2(κ ω
T )

. (84)

According to general formula (82), the dispersion of the quantum oscillator internal energy
has the form

(∆Equ)
2 = kB(CV)quT2 =

(
h̄ω

2

)2

· 1

sinh2(κ ω
T )

=

= h̄ω〈Equ〉+ 〈Equ〉2 = exp{2κ
ω

T
}〈Equ〉2, (85)

and the relative dispersion of its energy is

(∆Equ)2

〈Equ〉2
=

h̄ω

〈Equ〉
+ 1 = exp{2κ

ω

T
}. (86)

We note that in expression (83) the zero-point energy ε0 = h̄ω/2 is absent. It means that the
relative dispersion of internal energy stimulating by thermal stochastic influence are only the
subject of interest. So, we can interpret this calculation as a quasiclassical approximation.
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A similar result exists for the relative dispersion of the energy of thermal radiation in the
spectral interval (ω,ω + ∆ω) for the volume V :

(∆Eω)2

〈Eω〉2
=

h̄ω

〈Eω〉
+

π2c3

Vω2∆ω
=

π2c3

Vω2∆ω
exp{2κ

ω

T
}. (87)

We can see that at T → 0 expressions (86) and (87) tend to infinity. However, few people paid
attention to the fact that thereby the condition (79) of the applicability of the thermodynamic
description does not satisfy. A.I. Anselm {An73} was the only one who has noticed that
ordinary thermodynamics is inapplicable as the temperature descreases. We suppose that in
this case instead of QSM-based thermodynamics can be fruitful MST based on h̄kD.

4.2 Fluctuations of the effective internal energy and effective temperature

To calculate dispersions of macroparameters in the quantum domain, we use MST instead of
QSM-based thermodynamics in 4.2 and 4.3, i.e., we use the macrotheory described in Sect.1.
It is based on the Gibbs distribution in the effective macroparameters space {Gi60}

dW(E) = ρ(E)dE =
1

kBTe f
exp{− E

kBTe f
}dE . (88)

Here, Te f is the effective temperature of form (8), simultaneously taking the quantum–thermal
effect of the QHB into account and E is the random object energy to which the conditional
frequency ω can be assigned at least approximately.
Using distribution (88), we find the expression for the effective internal energy of the object
coinciding with the Planck formula

Ee f = 〈εqu〉 =
∫
Eρ(E)dE = kBTe f ≡ EPl =

h̄ω

2
cothκ

ω

T
, (89)

the average squared effective internal energy

〈E2
e f 〉 =

∫
E2ρ(E)dE = 2〈Ee f 〉2, (90)

and the dispersion of the effective internal energy

(∆Ee f )
2 = 〈E2

e f 〉 − 〈Ee f 〉2 = 〈Ee f 〉2. (91)

It is easy to see that its relative dispersion is unity, so that condition (79) holds in this case.
For the convenience of the comparison of the obtained formulae with the non quantum
version of ST {LaLi68}, we generalize the concept of heat capacity, introducing the effective
heat capacity of the object

(CV)e f ≡
∂〈Ee f 〉
∂Te f

= kB. (92)

This allows writing formula (91) for the dispersion of the internal energy in a form that is
similar to formula (83), but the macroparameters are replaced with their effective analogs in
this case:

(∆Ee f )
2 = kB(CV)e f T2

e f = k2
BT2

e f . (93)

It should be emphasized that we assumed in all above-mentioned formulae in Sect.4 that Te f =
(Te f )0 and T = T0, where (Te f )0 and T0 are the effective and Kelvin temperature of the QHB
correspondingly.
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Indeed, in the macrotheory under consideration, we start from the fact that the effective object
temperature Te f also experiences fluctuations. Therefore, the zero law according to (67) and
(76) becomes

Te f = T0
e f ± δTe f , (94)

where δTe f is the fluctuation of the effective object temperature. According to the main MST
postulate, the form of the expression for the dispersion of the effective object temperature is
similar to that of expression (80):

(∆Te f )
2 =

kB

(CV)e f
T2

e f = T2
e f , (95)

so that the relative dispersion of the effective temperature also obeys condition (79).
To compare the obtained formulae with those in QSM-based thermodynamics, we represent
dispersion of the effective internal energy (93) in the form

(∆Ee f )
2 =

(
h̄ω

2

)2

(cothκ
ω

T
)2 =

(
h̄ω

2

)2

· [1 + sinh−2(κ
ω

T
)]. (96)

The comparison of formula (96) with expression (85), where the heat capacity has form (84),
allows writing the second term in (96) in the form resembling initial form (81)

(∆Ee f )
2 = (

h̄ω

2
)2 + kB(CV)quT2. (97)

However, in contrast to formula (85), the sum in it is divided into two terms differently.
Indeed, the first term in formula (97) can be written in the form

(
h̄ω

2
)2 =

h̄

2
ρω(ω,0)ω2, (98)

where

ρω(ω,0) ≡
∂〈Ee f 〉

∂ω

∣∣∣∣∣
T=0

=
h̄

2

is the spectral density of the effective internal energy at T = 0. Then formula (97) for the
dispersion of the effective internal energy acquires the form generalizing formula (85):

(∆Ee f )
2 =

h̄

2
ρω(ω,0)ω2 + kB[CV(ω, T)]quT2. (99)

It is of interest to note that in contrast to formula (85) for the quantum oscillator or a
similar formula for thermal radiation, an additional term appears in formula (99) and is
also manifested in the cold vacuum. The symmetric form of this formula demonstrates
that the concepts of characteristics, such as frequency and temperature, are similar, which
is manifested in the expression for the minimal effective temperature T0

e f = κω. The

corresponding analogies between the world constant h̄/2 and kB and also between the
characteristic energy “densities” ρω and (CV)qu also exist.
In the limit T → 0, only the first term remains in formula (99), and, as a result,

(∆E0
e f )

2 = (E0
e f )

2 = (
h̄ω

2
)2 
= 0. (100)
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In our opinion, we have a very important result. This means that zero-point energy is
”smeared”, i.e. it has a non-zero width. It is natural that the question arises as to what is
the reason for the fluctuations of the effective internal energy in the state with T = 0. This
is because the peculiar stochastic thermal influence exists even at zero Kelvin temperature
due to Te f 
= 0. In this case the influence of ”cold” vacuum in the form (100) is equivalent to

kBT0
e f /ω. In contrast to this, (∆Equ)2 → 0, as T → 0 in QSM-based thermodynamics, because

the presence of the zero point energies is taken into account not at all in this theory.

4.3 Correlation between fluctuations and the uncertainties relations for effective

macroparameters

Not only the fluctuations of macroparameters, but also the correlation between them under
thermal equilibrium play an important role in MST. This correlation is reflected in correlators
contained in the uncertainties relations (UR) of macroparameters {Su05}

∆Ai∆Aj � 〈δAi,δAj〉, (101)

where the uncertainties ∆Ai and ∆Aj on the left and the correlator on the right must be
calculated independently. If the right side of (101) is not equal to zero restriction on the
uncertainties arise.
We now pass to analyzing the correlation between the fluctuations of the effective
macroparameters in thermal equilibrium. We recall that according to main MST postulate,
the formulae for dispersions and correlators remain unchanged, but all macroparameters
contained in them are replaced with the effective ones: Ai → (Ae f )i.

a). Independent effective macroparameters

Let us consider a macrosystem in the thermal equilibrium characterizing in the space of
effective macroparameters by the pair of variables Te f and Ve f .Then the probability density
of fluctuations of the effective macroparameters becomes {LaLi68}, {An73}

W(δTe f ,δVe f ) = C exp

⎧
⎨
⎩−1

2

(
δTe f

∆Te f

)2

− 1

2

(
δVe f

∆Ve f

)2
⎫
⎬
⎭ . (102)

Here, C is the normalization constant, the dispersion of the effective temperature (∆Te f )
2 has

form (95), and the dispersion of the effective volume δVe f is

(∆Ve f )
2 = −kBTe f

∂Ve f

∂Pe f

∣∣∣∣∣
Te f

. (103)

We note that both these dispersions are nonzero for any T.
Accordingly to formula (102) the correlator of these macroparameters 〈δTe f ,δVe f 〉 = 0. This
equality confirms the independence of the fluctuations of the effective temperature and
volume. Hence it follows that the UR for these quantities has the form ∆Te f ∆Ve f � 0, i.e.,
no additional restrictions on the uncertainties ∆Te f and ∆Ve f arise from this relation.

b). Conjugate effective macroparameters

As is well known, the concept of conjugate quantities is one of the key concepts in quantum
mechanics. Nevertheless, it is also used in thermodynamics but usually on the basis of
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heuristic considerations. Without analyzing the physical meaning of this concept in MST
(which will be done in 4.4), we consider the specific features of correlators and URs for similar
pairs of effective macroparameters.
Based on the first law of thermodynamics, Sommerfeld emphasized {So52}] that entropy
is a macroparameter conjugate to temperature. To obtain the corresponding correlator, we
calculate the fluctuation of the effective entropy Se f :

δSe f =
∂Se f

∂Te f

∣∣∣∣∣
Ve f

δTe f +
∂Se f

∂Ve f

∣∣∣∣∣
Te f

δVe f =
(CV)e f

Te f
δTe f +

∂Pe f

∂Te f

∣∣∣∣∣
Ve f

δVe f (104)

In the calculation of the correlator of fluctuations of the macroparameters δSe f and δTe f using
distribution (102), the cross terms vanish because of the independence of the quantities δVe f

and δTe f . As a result, the correlator contains only one term proportional to (∆Te f )
2 so that

〈δSe f ,δTe f 〉 becomes

〈δSe f ,δTe f 〉 =
(CV)e f

Te f
(∆Te f )

2 = kBTe f . (105)

We note that, the obtained expression depends linearly on Te f .

To analyze the desired UR, we find the dispersion (∆Se f )
2, using distribution (102):

(∆Se f )
2 =

(
(CV)e f

Te f

)2

(∆Te f )
2 +

⎛
⎝ ∂Pe f

∂Te f

∣∣∣∣∣
Ve f

⎞


2

(∆Ve f )
2, (106)

where ∆Te f and ∆Ve f are defined by formulas (95) and (103). This expression can be simplified
for Ve f = const. Thus, if (92) and (95) are taken into account, the uncertainty ∆Se f becomes

∆Se f =
(CV)e f

Te f
(∆Te f ) = kB. (107)

As a result, the uncertainties product in the left-hand side of the UR has the form

(∆Se f )(∆Te f ) = kBTe f . (108)

Combining formulas (108) and (105), we finally obtain the “effective entropy–effective
temperature” UR in the form of an equality

(∆Se f )(∆Te f ) = kBTe f = 〈δSe f ,δTe f 〉. (109)

In the general case, for Ve f 
= const, the discussed UR implies the inequality

∆Se f ∆Te f � kBTe f . (110)

In other words, the uncertainties product in this case is restricted to the characteristic of the
QHB, namely, its effective temperature, which does not vanish in principle. This is equivalent
to the statement that the mutual restrictions imposed on the uncertainties ∆Se f and ∆Te f are
governed by the state of thermal equilibrium with the environment. Analogical result is valid
for conjugate effective macroparameters the pressure Pe f and Ve f .
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4.4 Interrelation between the correlators of conjugate effective macroparameters

fluctuations and the stochastic action. The second holistic stochastic-action constant

To clarify the physical meaning of the correlation of macroparameters fluctuations we turn to
results of the sections 2 and 3. In this case, we proceed from the Bogoliubov idea, according
to which only the environmental stochastic influence can be the reason for the appearance of
a nontrivial correlation between fluctuations of both micro and macroparameters.
We recall that the effective action Je f in MST which is connected with the Schrödingerian
in h̄kD is a characteristic of stochastic influence. Its definition in formula (62) was related
to the quantum correlator of the canonically conjugate quantities, namely, the coordinate
and momentum in the thermal equilibrium state. In this state, the corresponding UR is
saturated {Su06}:

∆pe f ∆qe f ≡ Je f , (111)

where uncertainties are

∆pe f =
√

mω
√
Je f and ∆qe f =

1√
mω

√
Je f .

We stress that in this context, the quantities pe f and qe f also have the meaning of the effective
macroparameters, which play an important role in the theory of Brownian motion.
We show that correlator of the effective macroparameters (105) introduced above also depend
on Je f . We begin our consideration with the correlator of “effective entropy–effective
temperature” fluctuations. Using (110), we can write relation (105) in the form

〈δSe f ,δTe f 〉 = ωJe f or 〈δSe f ,δJe f 〉 = kBJe f . (112)

Thus, we obtain two correlators of different quantities. They depend linearly on the effective
action Je f ; so, they are equivalent formally.
However, the pair of correlators in formula (112) is of interest from the physical point of
view because their external identity is deceptive. In our opinion, the second correlator is more
important because it reflects the interrelation between the environmental stochastic influence
in the form δJe f and the response of the object in the form of entropy fluctuation δSe f to it.
To verify this, we consider the limiting value of this correlator as T → 0 that is equal to the
production

kBJ 0
e f = kB

h̄

2
≡ κ̃, (113)

where κ̃ is the second holistic stochastic action constant differing from the first one κ = h̄/2kB.
In the macrotheory, it is a minimal restriction on the uncertainties product of the effective
entropy and the effective action:

∆S0
e f ∆J 0

e f = kB
h̄

2
= κ̃ 
= 0. (114)

The right-hand side of this expression contains the combination of the world constants kB

and h̄
2 , which was not published previously.

We compare expression (114) with the limiting value of the Schrödinger quantum correlator
for the “coordinate–momentum” microparameters {Su06}, which are unconditionally
assumed to be conjugate. In the microtheory, it is a minimum restriction on the product of
the uncertainties ∆p and ∆q and is equal to

∆p0∆q0 = J 0
e f =

h̄

2
,
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i.e., it also depends only on the world constant. Accordingly, convincing arguments used to
admit that Je f and Se f are conjugate macroparameters appear.
Summarizing the above considerations, we formulate the criterion that allows us to
independently estimate, what pair of the macroparameters can be considered conjugate.In
our opinion, it reduces to the following conditions: a). the correlator of their fluctuations
depends on Je f linearly, and b). the minimum restriction on the uncertainties product is fixed

by either one of the world constants 1
2 h̄ and kB or their product.

We note that the correlators of conjugate macroparameters fluctuations vanish in the case of
the classical limit where environmental stochastic influence of quantum and thermal types
are not taken into account. In this case, the corresponding quantities can be considered
independent, the URs for them become trivial, and any restrictions on the values of their
uncertainties vanish.

4.5 Transport coefficients and their interrelation with the effective action

We now turn to the analysis of transport coefficients. It follows from the simplest
considerations of kinetic theory that all these coefficients are proportional to each other. We
show below, what is the role of the effective action Je f in this interrelation.
As we established {Su06}, “coordinate–momentum” UR (111) for the quantum oscillator in a
thermostat can be written in the form

∆pe f ∆qe f = mDe f . (115)

Then, for the effective self-diffusion coefficient with account (111), we have the expression

De f =
Je f

m
. (116)

We now take into account the relation between the effective shear viscosity coefficient ηe f and
the coefficient De f . We then obtain

ηe f = De f ρm =
Je f

V
, (117)

where ρm is the mass density.
In our opinion, the ratio of the heat conductivity to the electroconductivity contained in the
Wiedemann–Franz law is also of interest:

λ

σ
= γ(

kB

e
)2 T = γ

kB

e2
(kBT), (118)

where γ is a numerical coefficient. Obviously, the presence of the factor kBT in it implies that
the classical heat bath model is used.
According to the main MST postulate, the generalization of this law to the QHB model must
have the form

λe f

σe f
= γ(

kB

e
)2Te f = γ

kB

e2
(kBTe f ) = γ

kB

e2
(kBT0

e f )cothκ
ω

T
. (119)

It is probable that this formula, which is also valid at low temperatures, has not been
considered in the literature yet. As T → 0, from (119), we obtain

(
λ0

e f

σ0
e f

)
= γ(

kB

e
)2 T0

e f = γ
ω

e2
(kB

h̄

2
) = γ

ω

e2
κ̃, (120)
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where T0
e f = κω, and the constant κ̃ coincides with the correlator 〈δS0

e f ,δJ 0
e f 〉 according

to (114). We assume that the confirmation of this result by experiments is of interest.

5. Conclusion

So, we think that QSM and non-quantum version of ST as before keep their concernment as
the leading theories in the region of their standard applications.
But as it was shown above, MST allows filling gaps in domains that are beyond of these
frameworks. MST is able to be a ground theory at calculation of effective macroparameters
and, their dispersions and correlators at low temperatures.
In the same time, MST can be also called for explanation of experimental phenomena
connected with behavior of the ratio ”shift viscosity to the volume density of entropy” in
different mediums. This is an urgent question now for describing of nearly perfect fluids
features.
In additional, the problem of zero-point energy smearing is not solved in quantum mechanics.
In this respect MST can demonstrate its appreciable advantage because it from very beginning
takes the stochastic influence of cold vacuum into account. This work was supported by the
Russian Foundation for Basic Research (project No. 10-01-90408).
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