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1. Introduction

This is a work that discusses the foundations of statistical mechanics (SM) by revisiting its
postulates in the case of the two main extant versions of the theory. A third one will here
we added, motivated by the desire for an axiomatics that possesses some thermodynamic
“flavor”, which does not happen with neither of the two main SM current formulations,
namely, those of Gibbs’ (1; 2), based on the ensemble notion, and of Jaynes’, centered on
MaxEnt (3; 4; 5).
One has to mention at the outset that we “rationally understand” some physical problem
when we are able to place it within the scope and context of a specific “Theory”. In turn, we
have a theory when we can both derive all the known interesting results and successfully
predict new ones starting from a small set of axioms. Paradigmatic examples are von
Neumann’s axioms for Quantum Mechanics, Maxwell’s equations for electromagnetism,
Euclid’s axioms for classical geometry, etc. (1; 3).
Boltzmann’s main goal in inventing statistical mechanics during the second half of the XIX
century was to explain thermodynamics. However, he did not reach the axiomatic stage
described above. The first successful SM theory was that of Gibbs (1902) (2), formulated on the
basis of four ensemble-related postulates (1). The other great SM theory is that of Jaynes’ (4),
based upon the MaxEnt axiom (derived from Information Theory): ignorance is to be extremized
(with suitable constraints).
Thermodynamics (TMD) itself has also been axiomatized, of course, using four macroscopic
postulates (6). Now, the axioms of SM and of thermodynamics belong to different worlds
altogether. The former speak of either “ensembles” (Gibbs), which are mental constructs,
or of “observers’ ignorance” (Jaynes), concepts germane to thermodynamics’ language, that
refers to laboratory-parlance. In point of fact, TMD enjoys a very particular status in the whole
of science, as the one and only theory whose axioms are empirical statements (1).
Of course, there is nothing to object to the two standard SM-axiomatics referred to
above. However, a natural question emerges: would it be possible to have a statistical
mechanics derived from axioms that speak, as far as possible, the same language as that of
thermodynamics? To what an extent is this feasible? It is our intention here that of attempting
a serious discussion of such an issue and try to provide answers to the query, following ideas
developed in (7; 8; 9; 10; 11; 12; 13).
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2 Thermodynamics

2. Thermodynamics’ axioms

Thermodynamics can be thought of as a formal logical structure whose axioms are empirical
facts, which gives it a unique status among the scientific disciplines (1). The four postulates
we state below are entirely equivalent to the celebrated three laws of thermodynamics (6):

1. For every system there exists a quantity E, called the internal energy, such that a unique
E−value is associated to each of its states. The difference between such values for two
different states in a closed system is equal to the work required to bring the system, while
adiabatically enclosed, from one state to the other.

2. There exist particular states of a system, called the equilibrium ones, that are uniquely
determined by E and a set of extensive (macroscopic) parameters Aν, ν = 1, . . . , M. The
number and characteristics of the Aν depends on the nature of the system (14).

3. For every system there exists a state function S(E,∀Aν) that (i) always grows if internal
constraints are removed and (ii) is a monotonously (growing) function of E. S remains
constant in quasi-static adiabatic changes.

4. S and the temperature T = [ ∂E
∂S ]A1,...,AM

vanish for the state of minimum energy and are ≥ 0
for all other states.

From the second and 3rd. Postulates we will extract and highlight the following two
assertions, that are essential for our purposes

– Statement 3a) for every system there exists a state function S, a function of E and the Aν

S = S(E, A1, . . . , AM). (1)

– Statement 3b) S is a monotonous (growing) function of E, so that one can interchange the
roles of E and S in (1) and write

E = E(S, A1, . . . , AM), (2)

Eq. (2) clearly indicates that

dE =
∂E

∂S
dS + ∑

ν

∂E

∂Aν
dAν ⇒ dE = TdS + ∑

ν
PνdAν, (3)

with Pν generalized pressures and the temperature T defined as (6)

T =

(

∂E

∂S

)

[∀Aν ]
. (4)

Eq. (3) will play a central role in our considerations, as discussed below.
If we know S(E, A1, . . . , An) (or, equivalently because of monotonicity,
E(S, A1, . . . , An)) we have a complete thermodynamic description of a system. It is often
experimentally more convenient to work with intensive variables.
Let define S ≡ A0. The intensive variable associated to the extensive Ai, to be called Pi is:

P0 ≡ T = [
∂E

∂S
]A1,...,An

, 1/T = β

Pj ≡ λj/T = [
∂E

∂Aj
]S,A1,...,Aj−1,Aj+1,...,An

4 Thermodynamics
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New Microscopic Connections of Thermodynamics 3

Any one of the Legendre transforms that replaces any s extensive variables by their associated
intensive ones (β, λ’s will be Lagrange multipliers in SM)

Lr1,...,rs = E − ∑
j

Pj Aj, (j = r1, . . . ,rs)

contains the same information as either S or E. The transform Lr1,...,rs is a function of
n − s extensive and s intensive variables. This is called the Legendre invariant structure of
thermodynamics.

3. Gibbs’ approach to statistical mechanics

In 1903 Gibbs formulated the first axiomatic theory for statistical mechanics (1), that revolves
around the basic physical concept of phase space. Gibbs calls the “phase of the system” to
its phase space (PS) precise location, given by generalized coordinates and momenta. His
postulates refer to the notion of ensemble (a mental picture), an extremely great collection
of N independent systems, all identical in nature with the one under scrutiny, but differing
in phase. One imagines the original system to be repeated many times, each of them with
a different arrangement of generalized coordinates and momenta. Liouville’s celebrated
theorem of volume conservation in phase space for Hamiltonian motion applies. The
ensemble amounts to a distribution of N PS-points, representative of the “true” system. N
is so large that one can speak of a density D at the PS-point φ = q1, . . . ,qN ; p1, . . . , pN , with
D = D(q1, . . . ,qN ; p1, . . . , pN , t)≡ D(φ), with t the time, and, if we agree to call dφ the pertinent
volume element,

N =
∫

dφ D; ∀t. (5)

If a system were to be extracted randomly from the ensemble, the probability of selecting one
whose phase lies in a neighborhood of φ would be simply

P(φ) = D(φ)/N. (6)

Consequently,
∫

P dφ = 1. (7)

Liouville’s theorem follows from the fact that, since phase-space points can not be
“destroyed”, if

N12 =
∫ φ2

φ1

D dφ, (8)

then
dN12

dt
= 0. (9)

An appropriate analytical manipulation involving Hamilton’s canonical equations of motion
then yields the theorem in the form (1)

Ḋ +
N

∑
i

∂D

∂pi
ṗi +

N

∑
i

∂D

∂qi
q̇i = 0, (10)

entailing what Gibbs calls the conservation of density-in-phase.

5New Microscopic Connections of Thermodynamics
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4 Thermodynamics

Equilibrium is simply the statement Ḋ = 0, i. e.,

N

∑
i

∂D

∂pi
ṗi +

N

∑
i

∂D

∂qi
q̇i = 0. (11)

3.1 Gibbs’ postulates for statistical mechanics

The following statements wholly and thoroughly explain in microscopic fashion the corpus of
equilibrium thermodynamics (1).

– The probability that at time t the system will be found in the dynamical state characterized
by φ equals the probability P(φ) that a system randomly selected from the ensemble shall
possess the phase φ will be given by (6).

– All phase-space neighborhoods (cells) have the same a priori probability.

– D depends only upon the system’s Hamiltonian.

– The time-average of a dynamical quantity F equals its average over the ensemble, evaluated
using D.

4. Information theory (IT)

The IT-father, Claude Shannon, in his celebrated foundational paper (15), associates a degree
of knowledge (or ignorance) to any normalized probability distribution p(i), (i = 1, . . . , N),
determined by a functional of the {pi} called the information measure I[{pi}], giving thus
birth to a new branch of mathematics, that was later axiomatized by Kinchin (16), on the basis
of four axioms, namely,

– I is a function ONLY of the p(i),

– I is an absolute maximum for the uniform probability distribution,

– I is not modified if an N + 1 event of probability zero is added,

– Composition law.

4.1 Composition

Consider two sub-systems [Σ1, {p1(i)}] and [Σ2, {p2(j)}] of a composite system [Σ, {p(i, j)}]
with p(i, j) = p1(i) p2(j). Assume further that the conditional probability distribution (PD)
Q(j|i) of realizing the event j in system 2 for a fixed i−event in system 1. To this PD one
associates the information measure I[Q]. Clearly,

p(i, j) = p1(i)Q(j|i). (12)

Then Kinchin’s fourth axiom states that

I(p) = I(p1) + ∑
i

p1(i) I
(

Q(j|i)
)

. (13)

An important consequence is that, out of the four Kinchin axioms one finds that Shannons’s
measure

S = −
N

∑
i=1

p(i) ln [p(i)], (14)

is the one and only measure complying with them.

6 Thermodynamics
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New Microscopic Connections of Thermodynamics 5

5. Information theory and statistical mechanics

Information theory (IT) entered physics via Jaynes’ Maximum Entropy Principle (MaxEnt) in
1957 with two papers in which statistical mechanics was re-derived à la IT (5; 17; 18), without
appeal to Gibbs’ ensemble ideas. Since IT’s central concept is that of information measure
(IM) (5; 15; 17; 19), a proper understanding of its role must at the outset be put into its proper
perspective.
In the study of Nature, scientific truth is established through the agreement between two
independent instances that can neither bribe nor suborn each other: analysis (pure thought) and
experiment (20). The analytic part employs mathematical tools and concepts. The following
scheme thus ensues:

WORLD OF MATHEMATICAL ENTITIES ⇔ LABORATORY

The mathematical realm was called by Plato Topos Uranus (TP). Science in general, and
physics in particular, is thus primarily (although not exclusively, of course) to be regarded
as a TP⇔“Experiment” two-way bridge, in which TP concepts are related to each other in the
form of “laws” that are able to adequately describe the relationships obtaining among suitable
chosen variables that describe the phenomenon one is interested in. In many instances,
although not in all of them, these laws are integrated into a comprehensive theory (e.g.,
classical electromagnetism, based upon Maxwell’s equations) (1; 21; 22; 23; 24).
If recourse is made to MaxEnt ideas in order to describe thermodynamics, the above scheme
becomes now:

IT as a part of TP⇔ Thermal Experiment,

or in a more general scenario:

IT ⇔ Phenomenon to be described.

It should then be clear that the relation between an information measure and entropy is:

IM ⇔ Entropy S.

One can then state that an IM is not necessarily an entropy! How could it be? The first belongs
to the Topos Uranus, because it is a mathematical concept. The second to the laboratory,
because it is a measurable physical quantity. All one can say is that, at most, in some special
cases, an association IM ⇔ entropy S can be made. As shown by Jaynes (5), this association is
both useful and proper in very many situations.

6. MaxEnt rationale

The central IM idea is that of giving quantitative form to the everyday concept of ignorance (17).
If, in a given scenario, N distinct outcomes (i = 1, . . . , N) are possible, then three situations may
ensue (17):

1. Zero ignorance: predict with certainty the actual outcome.

2. Maximum ignorance: Nothing can be said in advance. The N outcomes are equally likely.

3. Partial ignorance: we are given the probability distribution {Pi}; i = 1, . . . , N.

The underlying philosophy of the application of IT ideas to physics via the celebrated
Maximum Entropy Principle (MaxEnt) of Jaynes’ (4) is that originated by Bernoulli and

7New Microscopic Connections of Thermodynamics
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6 Thermodynamics

Laplace (the fathers of Probability Theory) (5), namely: the concept of probability refers to an
state of knowledge. An information measure quantifies the information (or ignorance) content
of a probability distribution (5). If our state of knowledge is appropriately represented by a
set of, say, M expectation values, then the “best”, least unbiased probability distribution is the
one that

– reflects just what we know, without “inventing” unavailable pieces of knowledge (5; 17)
and, additionally,

– maximizes ignorance: the truth, all the truth, nothing but the truth.

Such is the MaxEnt rationale (17). It should be then patently clear that, in using MaxEnt, one
is NOT maximizing a physical entropy. One is maximizing ignorance in order to obtain the
least biased distribution compatible with the a priori knowledge.

6.1 Jaynes mathematical formulation

As stated above, Statistical Mechanics and thereby Thermodynamics can be formulated on
the basis of Information Theory if the statistical operator ρ̂ is obtained by recourse to the
MAXIMUM ENTROPY PRINCIPLE (MaxEnt). Consequently, we have the MaxEnt principle:
MaxEnt: Assume your prior knowledge about the system is given by the values of M expectation values
< A1 >, . . . ,< AM >. Then ρ̂ is uniquely fixed by extremizing I(ρ̂) subject to the constraints given
by the M conditions

< Aj >= Tr[ρ̂ Âj]

(entailing the introduction of M associated Lagrange multipliers λi) plus normalization of ρ̂ (entailing
a normalization Lagrange multiplier ξ.) In the process one discovers that I ≡ S, the equilibrium
Boltzmann’s entropy, if our prior knowledge < A1 >, . . . ,< AM > refers to extensive
quantities. Such I−value, once determined, yields complete thermodynamical information with
respect to the system of interest.

7. Possible new axioms for SM

Both Gibbs’ and MaxEnt are beautiful, elegant theories that satisfactorily account for
equilibrium thermodynamics. Whys should we be looking for still another axiomatics?
Precisely because, following Jaynes IT-spirit, one should be endeavoring to use all information
actually available to us in building up our theoretic foundations, and this is not done in
MaxEnt, as we are about to explicitate.
Our main argument revolves around the possibility of giving Eq. (3), an empirical statement,
the status of an axiom, actually employing thus a piece of information available to us without
any doubt. This constitutes the first step in our present discourse. More explicitly, in order to
concoct a new SM-axiomatics, we start by establishing as a theoretic postulate the following
macroscopic assertion:

Axiom (1)
dE = TdS + ∑

ν
PνdAν. (15)

Since this is a macroscopic postulate in a microscopic axiomatics’ corpus, it is pertinent now
to ask ourselves which is the minimum amount of microscopic information that we would
have to add to such an axiomatics in order to get all the microscopic results of equilibrium
statistical mechanics. Since we know about Kinchin’s postulates, we borrow from him his

8 Thermodynamics
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New Microscopic Connections of Thermodynamics 7

first one. Consequently, we conjecture at this point, and will prove below, that the following
statements meets the bill:

Axiom (2) If there are N microscopic accessible states labelled by i, of microscopic
probability pi, then

S = S(p1, p2, . . . , pN ). (16)

In what follows, the number of microstates will also be denoted by W.
Now, we will take as a postulate something that we actually know form both quantum and
classical mechanics.

Axiom (3) The internal energy E and the external parameters Aν are to be regarded
as expectation values of suitable operators, respectively the hamiltonian H and Rν (i.e.,
Aν ≡<Rν >).

Thus the Aν (and also E) will depend on the eigenvalues of these operators and on the
probability set. (The energy eigenvalues depend of course upon the Rν.) The reader will
immediately realize that Axiom (2) is just a form of Boltzmann’s “atomic” conjecture, pure
and simple. In other words, macroscopic quantities are statistical averages evaluated using a
microscopic probability distribution (25). It is important to realize that our three new axioms
are statements of fact in the sense that they are borrowed either from experiment or from
pre-existent theories. In fact, the 3 axioms do not incorporate any knew knowledge at all!
In order to prove that our above three postulates do allow one to build up the mighty
SM-edifice we will show below that they are equivalent to Jaynes’ SM-axiomatics (4).
Of course, the main SM-goal is that of ascertaining which is the PD (or the density operator)
that best describes the system of interest. Jaynes appeals in this respect to his MaxEnt
postulate, the only one needed in this SM-formulation. We restate it below for the sake of
fixing notation.
MaxEnt axiom: assume your prior knowledge about the system is given by the values of M
expectation values

A1 ≡<R1 >, . . . , AR ≡<RM > . (17)

Then, ρ is uniquely fixed by extremizing the information measure I(ρ) subject to
ρ−normalization plus the constraints given by the M conditions constituting our assumed
foreknowledge

Aν =<Rν >= Tr[ρRν]. (18)

This leads, after a Lagrange-constrained extremizing process, to the introduction of M
Lagrange multipliers λν, that one assimilates to the generalized pressures Pν. The truth, the
whole truth, nothing but the truth (17). If the entropic measure that reflects our ignorance
were not maximized, we would be inventing information that we do not actually possess.
In performing the variational process Jaynes discovers that, provided one multiplies the
right-hand-side of the information measure expression by Boltzmann’s constant kB, the IM
equals the entropic one. Thus, I ≡ S, the equilibrium thermodynamic entropy, with the
caveat that our prior knowledge A1 =<R1 >, . . . , AM =<RM > must refer just to extensive
quantities. Once ρ is at hand, I(ρ) yields complete microscopic information with respect to the system
of interest. Our goal should be clear now. We need to prove that our new axiomatics, encapsulated

by (15) and (16), is equivalent to MaxEnt.

9New Microscopic Connections of Thermodynamics
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8 Thermodynamics

8. Equivalence between MaxEnt and our new axiomatics

We will here deal with the classical instance only. The quantal extension is of a straightforward
nature. Consider a generic change pi → pi + dpi constrained by Eq. ( 15), that is, the change
dpi must be of such nature that (15) is verified. Obviously, S, Aj, and E will change with dpi

and, let us insist, these changes are constrained by (15). We will not specify the information
measure, as several possibilities exist (26). For a detailed discussion of this issue see (27). In
this endeavor our ingredients are

– an arbitrary, smooth function f (p) that allows us to express the information measure in the
fashion

I ≡ S({pi}) = ∑
i

pi f (pi), (19)

such that S({pi}) is a concave function,

– M quantities Aν that represent mean values of extensive physical quantities 〈Rν〉, that take,
for the micro-state i, the value aν

i with probability pi,

– another arbitrary smooth, monotonic function g(pi) (g(0) = 0; g(1) = 1). It is in order to
use generalized, non-Shannonian entropies that we have slightly generalized mean-value
definitions using the function g.

We deal then with (we take A1 ≡ E), using the function g to evaluate (generalized) expectation
values,

Aν ≡ 〈Rν〉 =
W

∑
i

aν
i g(pi); ν = 2, . . . , M, (20)

E =
W

∑
i

ǫi g(pi), (21)

where ǫi is the energy associated to the microstate i. The probability variations dpi will now
generate corresponding changes dS, dAν, and dE in, respectively, S, the Aν, and E.

8.1 Proof, part I

The essential point of our present methodology is to enforce obedience to

dE − TdS +
W

∑
ν=1

dAνλν = 0, (22)

with T the temperature and λν generalized pressures. We use now the expressions (19),
(20), and (21) so as to cast (22) in terms of the probabilities, according to an infinitesimal
probabilities’ change

pi → pi + dpi. (23)

If we expand the resulting equation up to first order in the dpi, it is immediately found, after a
little algebra, that the following set of equations ensues (7; 8; 9; 10; 11; 12; 13) (remember that
the Lagrange multipliers λν are identical to the generalized pressures Pν of Eq. (3))

C
(1)
i = [∑M

ν=1 λν aν
i + ǫi]

C
(2)
i = −T ∂S

∂pi

10 Thermodynamics
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New Microscopic Connections of Thermodynamics 9

∑i[C
(1)
i + C

(2)
i ]dpi ≡ ∑i Kidpi = 0. (24)

We can rearrange matters in the fashion

T
(1)
i = f (pi) + pi f ′(pi)

T
(2)
i = −β[(∑M

ν=1 λν aν
i + ǫi) g′(pi)− K],

(β ≡ 1/kT), (25)

so that we can recast (24) as

T
(1)
i + T

(2)
i = 0; ( f or any i), (26)

a relation whose importance will become manifest in Appendix I.
We wish that Eqs. (24) or (26) should yield one and just one pi−expression, which it indeed
does (7; 8; 9; 10; 11; 12; 13). We do not need here, however, for our demonstration, an explicit
expression for this probability distribution, as will be immediately realized below.

8.2 Proof, part II: follow Jaynes’ procedure

Alternatively, proceed à la MaxEnt. This requires extremizing the entropy S subject to
the usual constraints in E, Aν, and normalization. The ensuing, easy to carry out Jaynes’
variational treatment, can be consulted in (7; 8; 9; 10; 11; 12; 13), that is (we set λ1 ≡ β = 1/T)

δpi
[S − β〈H〉 −

M

∑
ν=2

λν〈Rν〉 − ξ ∑
i

pi] = 0, (27)

(we need also a normalization Lagrange multiplier ξ) is easily seen to yield as a solution the
very set of Eqs. (24) as well! (see Appendix I for the proof). These equations arise then out
of two clearly separate treatments: (I) our methodology, based on Eqs. (15) and (16), and (II),
following the MaxEnt prescriptions. This entails that MaxEnt and our axiomatics co-imply
each other, becoming thus equivalent ways of building up statistical mechanics. An important
point is to be here emphasized with respect to the functional S−form.

The specific form of S[pi] is not needed neither in Eqs. (24) nor in (27)!

9. What does all of this mean?

We have already formally proved that our axiomatics is equivalent to MaxEnt, and serves
thus as a foundation for equilibrium statistical mechanics. We wish now to dwell in deeper
fashion into the meaning of our new SM-formulation. First of al it is to be emphasized that, in
contrast to both Gibbs’ and Jaynes’ postlates, ours have zero new informational content, since
they are borrowed either from experiment or from pre-existing theories, namely, information
theory and quantum mechanics. In particular, we wish to dwell to a larger extent on both the
informational and physical contents of our all-important Eqs. (24) or (26).
The first and second laws of thermodynamics are two of physics’ most important statements.
They constitute strong pillars of our present understanding of Nature. Of course, statistical
mechanics (SM) adds an underlying microscopic substratum that is able to explain not only
these two laws but the whole of thermodynamics itself (6; 17; 28; 29; 30; 31). One of SM’s
basic ingredients is a microscopic probability distribution (PD) that controls the population

11New Microscopic Connections of Thermodynamics
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10 Thermodynamics

of microstates of the system under consideration (28). Since we were here restricting our
considerations to equilibrium situations, what we have been really doing here was to mainly
concern ourselves with obtaining a detailed picture, from a new perspective (7; 8; 9; 10; 11; 12;
13), of how changes in the independent external parameters - thermodynamic parameters -
affect this micro-state population and, consequently, the entropy and the internal energy, i.e.,

reversible changes in external parameters ∆param → changes in the microscopic probability
distribution → entropic (dS) and internal energy (dU) changes.

We regarded as independent external parameters both extensive and intensive quantities
defining the macroscopic thermodynamic state of the system. It is well-known that the
extensive parameters, always known with some (experimental) uncertainty, help to define
the Hilbert space (HS) in which the system can be represented. The intensive parameters are
associated with some physical quantities of which only the average value is known. They are
related to the mean values of operators acting on the HS previously defined. The eigenvalues
of these operators are, therefore, functions of the extensive parameters defining the HS. The
microscopic equilibrium probability distribution (PD) is an explicit function of the intensive

parameters and an implicit function - via the eigenvalues of the above referred to operators
(known in average) - of the extensive parameters defining the HS.
What is the hard core of the new view-point of (7; 8; 9; 10; 11; 12; 13)? It consists, as will be
detailed below, in

– enforcing the relation dU = TdS + ∑ν Pν dAν in an infinitesimal microscopic change pi →
pi + dpi of the probability distribution (PD) that describes the equilibrium properties of an
arbitrary system and ascertaining that

– this univocally determines the PD, and furthermore,

– that the ensuing {pi} coincides with that obtained following the maximum entropy
principle (MaxEnt) tenet of extremizing the entropy S subject to an assumedly known mean
value U of the system’s energy.

Consider now only infinitesimal macroscopic parameter-changes (as opposite to the
microscopic PD-ones dealt with in (7)), according to the scheme below.

Reversible changes in parameters ∆param → PD-changes → entropic (dS) and internal
energy (dU) changes + some work effected (δW).
Forcing now that ∆param be of such nature that dU = TdS + δW one gets an univocal
expression for the PD.

That is, we study variations in both the (i) intensive and (ii) extensive parameters of the system
and wish to ascertain just how these variations materialize themselves into concrete thermal
relations.

9.1 Homogeneous, isotropic, one-component systems

For simplicity, consider just simple, one-component systems (6) composed by a single chemical
species, macroscopically homogeneous, and isotropic (6). The macroscopic equilibrium
thermal state of such a simple, one-component system is described, in self-explanatory
notation, by T, V, N (6). Focus attention upon a quite general information measure S
that, according to Kinchin’s axioms for information theory depends exclusively on of the
probability distribution {pi}. We use again the specific but rather general form given above

12 Thermodynamics
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New Microscopic Connections of Thermodynamics 11

for S, viz.,

S = k
W

∑
i=1

pi f (pi), (28)

with W the number of microscopic states, k = Boltzmann’s constant, and the sum running
over a set of quantum numbers, collectively denoted by i (characterizing levels of energy ǫi),
that specify an appropriate basis in Hilbert’s space ( f is an arbitrary smooth function of the pi

such that p f (p) is concave).
Remember that the quantity U represents the mean value of the Hamiltonian, and, as befits an
homogeneous, isotropic, one-component system in the Helmholtz free energy representation
(6) we have

1. as external parameter the volume (V) and the number of particles (N) (“exactly” known and
used to define the Hilbert space),

2. as intensive variable the temperature T, associated with the mean value U of the internal
energy E, i.e., U = 〈E〉.

The energy eigenvalues of the Hamiltonian ǫi are, obviously, functions of the volume and of
the number of particles, namely, {ǫi}= {ǫi(V, N)}. From now on, for simplicity, we take N as
fixed, and drop thereby the dependence of the energy eigenvalues on N, i.e., {ǫi} = {ǫi(V)}.
The probability distribution (PD) depends, then, on the external parameters in the fashion

pi = pi(T,ǫi(V)). (29)

Remind that the mean energy U = 〈E〉 is given by

U = 〈E〉 =
W

∑
i=1

g(pi)ǫi . (30)

The critical difference between what we attempt to do now and what was related above [Cf.
Eq. (23)] is to be found in the following assumption, on which we entirely base our considerations
in this Section:

the temperature T and the volume V reversibly change in the fashion

T → T + dT and V → V + dV. (31)

As a consequence of (31), corresponding changes dpi, dS, dǫi, and dU are generated in,
respectively, pi, S, ǫi, and U. Variations in, respectively, pi, S, and U write

dpi =
∂pi

∂T
dT +

W

∑
j=1

∂pi

∂ǫj

∂ǫj

∂V
dV, (32)

dS =
W

∑
i=1

∂S

∂pi

∂pi

∂T
dT +

W

∑
i,j=1

∂S

∂pi

∂pi

∂ǫj

∂ǫj

∂V
dV, (33)

and, last but not least,

dU =
W

∑
i=1

∂g

∂pi

∂pi

∂T
ǫi dT +

W

∑
i,j=1

∂g

∂pi

∂pi

∂ǫj

∂ǫj

∂V
ǫi dV +

W

∑
i=1

g(pi)
∂ǫi

∂V
dV, (34)
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12 Thermodynamics

where, for simplicity, we have considered non-degenerate levels. Clearly, on account of
normalization, the changes in pi must satisfy the relation

∑
i

dpi = 0. (35)

Note that if we deal with three thermodynamic parameters and one equation of state we can
completely describe our system with any two of them (32). Here, we are choosing, as the two
independent thermodynamic parameters, T and V. It is important to remark that independent
thermodynamic parameters do not mean natural parameters. For example, if T and V are now
the independent thermodynamic parameters, the internal energy can be written as function of
these parameters, i.e., U(T,V). Clearly, T and V are not the natural parameters of the internal
energy. These are S and V. However, our developments require only independent parameters,
that are not necessarily the natural ones (32).

9.2 Macroscopic considerations

Thermodynamics states that, in the present scenario, for a reversible process one has

dU = δQ + δW = TdS + δW, (36)

where we have used the Clausius relation δQ = TdS. Multiplying Eq. (33) by T we can recast
Eq. (36) in the microscopic fashion (involving the microstates’ PD)

dU = T

⎛

⎝

W

∑
i=1

∂S

∂pi

∂pi

∂T
dT +

W

∑
i,j=1

∂S

∂pi

∂pi

∂ǫj

∂ǫj

∂V
dV

⎞

⎠+ δW, (37)

which is to be compared with (34).

9.3 Changes in the temperature

Eqs. (34) and (37) must be equal for arbitrary changes in T and V. We take this equality as the
basis of our future considerations. As T and V can be changed in an independent way, let us
first consider just changes in T. Enforcing equality in the coefficients of dT appearing in Eqs.
(34) and (37) we obtain (we are assuming, as it is obvious, that the mechanical δW does not
depend on the temperature)

W

∑
i=1

∂g

∂pi

∂pi

∂T
ǫi dT = T

W

∑
i=1

∂S

∂pi

∂pi

∂T
dT, (38)

that must be satisfied together with [Cf. (32)]

∑
i

dpi = ∑
i

∂pi

∂T
dT = 0. (39)

We recast now (38) in the fashion
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W

∑
i=1

(

∂g

∂pi
ǫi − T

∂S

∂pi

)

∂pi

∂T
dT ≡ ∑

i

Ki
∂pi

∂T
dT = 0. (40)

Since the W pi’s are not independent (∑W
i=1 pi = 1), we can separate the sum in (40) into two

parts, i.e.,

W−1

∑
i=1

(

∂g

∂pi
ǫi − T

∂S

∂pi

)

∂pi

∂T
dT +

(

∂g

∂pW
ǫW − T

∂S

∂pW

)

∂pW

∂T
dT = 0. (41)

Picking out level W for special attention is arbitrary. Any other i−level could have been
chosen as well, as the example given below will illustrate. Taking into account now that,
from Eq. (39),

∂pW

∂T
= −

W−1

∑
i=1

∂pi

∂T
, (42)

we see that Eq. (41) can be rewritten as

W−1

∑
i=1

[(

∂g

∂pi
ǫi − T

∂S

∂pi

)

−

(

∂g

∂pW
ǫW − T

∂S

∂pW

)]

∂pi

∂T
dT = 0. (43)

As the W − 1 pi’s are now independent, the term into brackets should vanish, which entails

∂g

∂pi
ǫi − T

∂S

∂pi
−

(

∂g

∂pW
ǫW − T

∂S

∂pW

)

= 0, (44)

for all i = 1, · · · ,W − 1. Let us call the term into parentheses as

KW =
∂g

∂pW
ǫW − T

∂S

∂pW
≡ K = constant. (45)

Finally, we cast Eqs. (44) and (45) as

∂g

∂pi
ǫi − T

∂S

∂pi
− K = 0; (i = 1, · · · ,W), (46)

an equation that we have encountered before [Cf. Eq. (24) with g(x)≡ x] and that should yield
a definite expression for any of the W pi’s. We did not care above about such an expression,
but we do now.
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Example 1 Consider the Shannon orthodox instance

S = −k∑
i

pi ln pi

g(pi) = pi

∂S/∂pi = −k[ln pi + 1] = k[βǫi + ln Z − 1]]. (47)

Here equation (46) yields the well known MaxEnt (and also Gibbs?) result

ln pi = −[βǫi + ln Z]; i.e.,

pi = Z−1e−ǫi/kT

ln Z = 1 − K/kT, and, finally, (48)

∂S/∂pi = kβ(ǫi − K),

∂ ln Z
∂ǫi

= −βpi;
∂pi

∂ǫj
= −βpi (δij − pj); T ∂S

∂pi

∂pi

∂ǫi
= −β(ǫi − K)pi, (49)

showing, as anticipated, that we could have selected any i−level among the W−ones
without affecting the final result.

Thus, changes δβ in the inverse temperature β completely specify the microscopic probability
density {pMaxEnt} if they are constrained to obey the relation dU = TdS + δW, for any
reasonable choice of the information measure S. This equivalence, however, can not be
established in similar fashion if the extensive variable V also changes. This is our next topic.

9.4 Changes in the extensive parameter

Let us now deal with the effect of changes in the extensive parameters that define the Hilbert
space in which our system “lives” and notice that Eq. (37) can be written in the fashion dU =
δQ + δW = TdS + δW ⇒

dU = T
(

dT ∑
W
i=1

∂S
∂pi

∂pi

∂T + dV ∑
W
i,j=1

∂S
∂pi

∂pi

∂ǫj

∂ǫj

∂V

)

+ δW. (50)

That is, there are two ingredients entering TdS, namely,

TdS = QT dT + QV dV; with QT = T
W

∑
i=1

∂S

∂pi

∂pi

∂T
. (51)

Our interest now lies in the second term. What is QV? Clearly we have
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QV = T
W

∑
i,j=1

∂S

∂pi

∂pi

∂ǫj

∂ǫj

∂V
. (52)

Next, substitute the expression for (∂g/∂pi)ǫi given by Eqs. (45) and (46),

∂g

∂pi
ǫi = T

∂S

∂pi
+ K; (i = 1, . . . ,W), (53)

into the second term of the R.H.S. of Eq. (34),

W

∑
i,j=1

∂g

∂pi

∂pi

∂ǫj

∂ǫj

∂V
ǫi dV =

W

∑
i,j=1

[T
∂S

∂pi
+ K]

∂pi

∂ǫj

∂ǫj

∂V
dV

= T
W

∑
i,j=1

∂S

∂pi

∂pi

∂ǫj

∂ǫj

∂V
dV + K

W

∑
i,j=1

∂pi

∂ǫj

∂ǫj

∂V
dV

=

⎛

⎝T
W

∑
i,j=1

∂S

∂pi

∂pi

∂ǫj

∂ǫj

∂V

⎞

⎠dV = QV dV, (54)

on account of the fact that

K
W

∑
i,j=1

∂pi

∂ǫj

∂ǫj

∂V
dV = 0; since (∂/∂V)∑

i

pi = 0. (55)

We recognize in the term QV dV of the last line of (54) the microscopic interpretation of a
rather unfamiliar “volume contribution” to Clausius’ relation δQ = TdS (dQ-equations (32)).
Notice that we are not explicitly speaking here of phase-changes. We deal with reversible
processes. If the change in volume were produced by a phase-change one would reasonably
be tempted to call the term QV dV a “latent” heat.

Thus, associated with a change of state in which the volume is modified, we find in the term
QV dV the microscopic expression of a “heat” contribution for that transformation, i.e., the
heat given up or absorbed during it. It we wish to call it “latent”, the reason would be that
it is not associated with a change in temperature. Thus, we saw just how changes in the
equilibrium PD caused by modifications in the extensive parameter defining the Hilbert space
of the system give also a contribution to the “heat part” of the dU = TdS + δW relation.
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Example 2: In the Shannon instance discussed in Example 1 one has [Cf. (48) and (49)]

∂pi

∂ǫi
= −βpi (1 − Z−1), (56)

T
∂S

∂pi

∂pi

∂ǫi
= −β(ǫi − K)pi, (57)

QV = −∑
i

β(ǫi − K)pi
∂ǫi

∂V
(1 − Z−1). (58)

Since the origin of the energy scale is arbitrary, in summing over i we can omit the K−term
by changing the energy-origin and one may write

QV = −∑
i

βǫi pi
∂ǫi

∂V
(1 − Z−1). (59)

Foe a particle of mass m in an ideal gas (N particles) the energy ǫi is given by (29)

ǫi = τV−2/3�ni
2; τ = (πh̄)2

2m ; �ni
2 ≡ (n2

x,n2
y,n2

z)
nx,ny,nza set of three integers

∂ǫi
∂V = −(2/3)ǫi/V. (60)

Thus,the microscopic expression for QV turns out to be

QV = (2β/3V)〈E2〉 (1 − Z−1), (61)

which indeed has dimension of (energy/volume).

Finally, for Eq. (34) to become equal to Eq. (50) we have to demand, in view of the above
developments,

δW = dV

[

∑
i

g(pi)
∂ǫi

∂V

]

, (62)

the quantity within the brackets being the mean value,
〈

∂E

∂V

〉

= ∑
i

g(pi)
∂ǫi

∂V
, (63)

usually associated in the textbooks with the work done by the system.
Summing up, our analysis of simple systems in the present Section has shown that

– by considering changes dT and dV and how they influence the microscopic probability
distribution if these variations are forced to comply with the relation (36) dU = TdS + δW
we ascertain that

– changes in the intensive parameter give contributions only related to heat and lead to the
attaining the equilibrium PD (an alternative way to the MaxEnt principle) and

– changes in the extensive-Hilbert-space-determining parameter lead to two contributions

1. one related to heat and

2. the other related to work.
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10. Other entropic forms

We illustrate now our procedure with reference to information measures not of the Shannon
logarithmic form. We use mostly the relationship (46), namely,

K = ǫi g′(pi)− kT [ f (pi) + pi f ′(pi)]⇒
[ f (pi) + pi f ′(pi)]− β[ǫi g′(pi)− K] = 0,

β ≡ 1/kT. (64)

10.1 Tsallis measure with linear constraints

We have, for any real number q the information measure (28) built up with (26; 33; 34)

f (pi) =
(1 − p

q−1
i )

q − 1
, (65)

and, in the energy-constraint of Eq. (30)

g(pi) = pi, (66)

so that f ′(pi) = − p
q−2
i and Eq. (64) becomes, with β = (1/kT),

q p
q−1
i = 1 + (q − 1)βK − (q − 1)β ǫi, (67)

which after normalization yields a distribution often referred to as the Tsallis’ one (33)

pi = Z−1
q

[

1 − (q − 1)β′ ǫi

]1/(q−1)

Zq = ∑
i

[

1 − (q − 1)β′ ǫi

]1/(q−1)
, (68)

where β′ ≡ β/(1 + (q − 1)βK).

10.2 Tsallis measure with non-linear constraints

The information measure is still the one built up with the function f (pi) of (65), but we use
now the so-called Curado-Tsallis constraints (35) that arise if one uses

U = 〈E〉 =
W

∑
i=1

g(pi)ǫi, (69)

with
g(pi) = p

q
i ⇒ g′(pi) = q p

q−1
i . (70)

Eq. (64) leads to

pi = (
1

q
)1/(q−1) [1 − (1 − q)βǫi]

1/(1−q) , (71)

and, after normalization, one is led to the Curado-Tsallis distribution (35)

pi = (Zq)
−1 [1 − (1 − q)β ǫi]

1/(1−q)

Zq = ∑
i

[1 − (1 − q)β ǫi]
1/(1−q) . (72)
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10.3 Exponential entropic form

This measure is given in (36; 37) and also used in (38). One has

f (pi) =
1 − exp (−bpi)

pi
− S0, (73)

where b is a positive constant and S0 = 1 − exp(−b), together with

g(pi) =
1 − e−bpi

S0
⇒ g′(pi) =

be−bpi

S0
, (74)

which, inserted into (64), after a little algebra, leads to

pi =
1

b

[

ln
b

S0 − βK
+ ln (1 −

βǫi

S0
)

]

. (75)

which, after normalization, gives the correct answer (37).

11. Conclusions

We have seen that the set of equations

∑
i

[C
(1)
i + C

(2)
i ]dpi = 0,

C
(1)
i = [

M

∑
ν=1

Pν aν
i + ǫi] g′(pi)

C
(2)
i = −T

∂S

∂pi

yields a probability distribution that coincides with the PD provided by either

– the MaxEnt’s, SM axiomatics of Jaynes’

– our two postulates (15) and (16).

We remind the reader that in our instance the postulates start with

1. the macroscopic thermodynamic relation dE = TdS + ∑ν PνdAν,, adding to it

2. Boltzmann’s conjecture of an underlying microscopic scenario ruled by microstate
probability distributions.

The two postulates combine then (i) a well-tested macroscopic result with (ii) a by now un
uncontestable microscopic state of affairs (which was not the case in Boltzmann’s times). Thus
we may dare to assert that the two axioms we are here advancing are intuitively intelligible
from a physical laboratory standpoint. This cannot be said neither for Gibbs’ ensemble nor for
Jaynes’ extremizing of the Observer’s ignorance, their extraordinary success notwithstanding,
since they introduce concepts like ensemble or ignorance that are not easily assimilated to
laboratory equipment. We must insist: there is nothing wrong with making use of these
concepts, of course. We just tried to see whether they could be eliminated from the axioms of
the theory.
Summing up, we have revisited the foundations of statistical mechanics and shown that
it is possible to reformulate it on the basis of just a basic thermodynamics’ relation plus
Boltzmann’s “atomic” hypothesis. The latter entails (1) the (obvious today, but not in 1866)
existence of a microscopic realm ruled by probability distributions.
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12. Appendix I

Here we prove that Eqs. (24) are obtained via the MaxEnt variational problem (27). Assume
now that you wish to extremize S subject to the constraints of fixed valued for i) U and ii) the
M values Aν. This is achieved via Lagrange multipliers (1) β and (2) M γν. We need also a
normalization Lagrange multiplier ξ. Recall that

Aν = 〈Rν〉 = ∑
i

pi aν
i , (76)

with aν
i = 〈i|Rν|i〉 the matrix elements in the chosen basis 〈i〉 of Rν. The MaxEnt variational

problem becomes now (U = ∑i piǫi)

δ{pi}

[

S − βU −
M

∑
ν=1

γν Aν − ξ ∑
i

pi

]

= 0, (77)

leading, with γν = βλν, to the vanishing of

δpm ∑
i

(

pi f (pi)− [βpi(
M

∑
ν=1

λν aν
i + ǫi) + ξ pi]

)

, (78)

so that the 2 quantities below vanish

f (pi) + pi f ′(pi)− [β(∑M
ν=1 λν aν

i + ǫi) + ξ]
⇒ if ξ ≡ βK,

f (pi) + pi f ′(pi)− βpi(∑
M
ν=1 λνaν

i + ǫi) + K]

⇒ 0 = T
(1)
i + T

(2)
i . (79)

Clearly, (26) and the last equality of (79) are one and the same equation! Our equivalence is
thus proven.
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