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The Rate of Heat Flow through  
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1Department of Physics and Technology, Faculty of Education, University of Ljubljana 

2Faculty of Civil and Geodetic Engineering, University of Ljubljana 
Slovenia 

1. Introduction  

Any problem of convection consists, basically, in determining the local and/or average heat 

transfer coefficients connecting the local flux and/or the total transfer rate due to the 

relevant temperature differences. A wide variety of practical problems may be described by 

two-dimensional steady flow of a viscous, incompressible fluid for which a compact set of 

differential equations that govern the velocity and temperature fields in the fluid can be 

obtained. These can be solved, to a certain degree of approximation, either analytically or 

numerically.  

Consider a flat vertical wall surrounded by air on both sides (Fig. 1). The temperature of the 

air far from the wall is constant on both sides and denoted by T0L and T0R, respectively. The 

problem, common in practical engineering situations, is to calculate the rate of heat flow in a 

stationary situation. Usually, the heat transfer between the wall and the surrounding air is 

characterized by the heat transfer coefficient h, defined by eqs. (1a) and (1c),  

 0 1/ ( )L LQ A h T T= −$ , (1a) 

 1 2/ ( )Q A U T T= −$ , (1b) 

 2 0/ ( )R RQ A h T T= −$ , (1c) 

where it was assumed that T0L > T0R. 

As a consequence of continuity /Q dQ dt≡$  is, of course, also the heat flow through the wall 

with thermal transmittance U and surface area A. The temperatures of the left and right 

surface, T1 and T2, respectively, are assumed constant in the phenomenological approach 

based on heat transfer coefficients. It is then straightforward to show, using the above 

equations, that the average heat flux density through the wall is 

 0 0

1 1 1
L R

L R

T TQ

A
h U h

−
=

+ +

$
, (2) 
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In what follows we will employ the laminar boundary-layer theory and free convection 
equations (Grimson, 1971; Landau & Lifshitz, 1987) in order to determine the surface 
temperatures T1 and T2 and the heat transfer coefficients in such a way that eqs. (1) and (2) 

describe correctly the total heat flow Q$  across the wall.  

Free convection along a vertical flat plate has been studied extensively in the past, however, 
it has been commonly restricted to one surface of the wall only (Pohlhausen, 1921; Ostrach, 
1953; Miyamoto et al., 1980; Pozzi & Lupo, 1988; Vynnycky & Kimura, 1996; Pop & Ingham, 
2001). The thermal conditions at the other surface have been prescribed by either constant 
temperature or constant heat flux. In the situation discussed in this chapter only the 
temperature of the fluid far away from the wall is prescribed.  

2. Free convection equations for a flat vertical wall 

To analyze free convection on the right surface where the convective flow is upward, we 
choose the origin of the coordinate system at the lower edge of the right surface of the wall 
(Fig. 1).  
 

 

Fig. 1. Free convection at a flat vertical surface. 

The x-axis is vertical and the y-axis perpendicular to the wall of height H and width L. 

Within the framework of the boundary-layer theory the equations of free convection valid 

for y > 0 are (Landau & Lifshitz, 1987): 

 u(∂u/∂x) + v(∂u/∂y) = ǎ(∂2u/∂y2) + ǃg(T – T0R), (3a) 

 u(∂T/∂x) + v(∂T/∂y) = ǂ(∂2T/∂y2), (3b) 

 ∂u/∂x + ∂v/∂y = 0, (3c) 

subject to the boundary conditions 

 u(x, 0) = v(x, 0) = 0, (4a) 

 u(x, ∞) = 0, T(x, ∞) = T0R. (4b) 

u and v are the x- and y-component of the velocity field, g is the acceleration of gravity, ǃ is 

the thermal-expansion coefficient of the air, ǂ = kǒ/cp its thermal diffusivity, and ǎ = ǈ/ǒ the 

kinematic viscosity. 
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To satisfy eq. (3c) we introduce the stream function ψ(x, y) such that u = ∂ψ/∂y and  

v = –∂ψ/∂x. Similarity arguments (Landau & Lifshitz, 1987) for free convection suggest that 

we write the stream function as ψ(x, y) = ǎ ψ*(x/H, y/H, G, P), where G = ǃg(Ts – T0R)H3/ǎ2 

and P = ǎ/ǂ are the Grashof and Prandtl numbers, respectively, and Ts is a temperature 

characteristic of the  surface. In addition, since we anticipate the surface temperatures to be 

close to uniform, except in the vicinity of x = 0 (Miyamoto et al., 1980; Pozzi & Lupo, 1988; 

Vynnycky & Kimura, 1996), we further specify the stream function to have the form (y > 0) 

 ψR(x, y) = ǎRGR1/4 (4x*)3/4 [ФR(Ǐ) + φR(x*, Ǐ)], (5) 

where x* = x/H, y* = y/H, Ǐ = GR1/4y*/(4x*)1/4 and GR = ǃRg(T2 – T0R)H3/ǎR2. ФR(Ǐ) represents 

the Pohlhausen solution (Grimson, 1971; Landau & Lifshitz, 1987; Pohlhausen, 1921) 

describing free convection on the  flat vertical wall with uniform temperature T2 > T0R.  The 

temperature distribution in the air to the right of the wall is written correspondingly as 

 TR(x, y) = T0R + (T2 – T0R) [ΘR(Ǐ) + ǉR(x*, Ǐ)], (6)  

where ΘR(ξ) is the Pohlhausen temperature function associated with ΦR(ξ). These two 

functions are obtained as solutions of (see Landau & Lifshitz, 1987) 

 ΦR′′′ + 3ΦR ΦR′′ – 2ΦR′2 +  ΘR = 0, (7a) 

 ΘR′′ + 3PR ΦR ΘR′ = 0, (7b) 

satisfying the boundary conditions 

 ΦR(0) = ΦR′(0) = ΦR′(∞) = 0,    ΘR(0) = 1, ΘR(∞) = 0, (7c) 

and the primes denote differentiation with respect to ξ. φR(x*, Ǐ) and ǉR(x*, Ǐ) are, 

presumably, small corrections due to the fact that the surface temperatures are not exactly 

uniform.  

As pointed out in Ostrach (1953), the choice of the variable ξ defined above essentially 

implies that the conditions imposed on the velocities and temperature at y = ∞ (or ξ = ∞) 

should also be satisfied, for y ≠ 0, at x = 0. This seems reasonable physically if it is 

understood as a statement that on the right-hand side the convective flow starts at the 

bottom edge of the wall. Considering the boundary conditions (4b) and (7c) referring to 

temperature, it follows from (6) that TR(x ≠ 0, y = 0) = T2 + (T2 – T0R) ǉR(x ≠ 0, Ǐ = 0) and TR(x 

= 0, y ≠ 0) = T0R. In the vicinity of x = y = 0, the boundary layer approximation breaks down 

and the calculation based on this approximation cannot yield reliable results as pointed out 

already by Miyamoto et al. (1980). However, we believe that this conclusion is not so crucial 

since the contribution of the surface area near the leading edge of the convective flow to the 

total heat rate is proportional to x0/H, where x0 is small compared to H (Pozzi & Lupo, 

1988).  

To describe free convection on the left surface of the wall we must reverse the coordinate 

axes since there the local buoyancy force is directed vertically downward. Thus we choose 

the origin of the coordinate system at the upper edge of the left surface, the x-axis is oriented 

vertically downward and the y-axis is perpendicular to the wall and oriented to the left (Fig. 

2, left).  
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Fig. 2. Left: Coordinate system for convection to the left of the wall. Right: Coordinate 
system for temperature distribution within the wall. 

We write as above,  

 ψL(x, y) = ǎLGL1/4(4x*)3/4 [ФL(Ǐ) + φL(x*, Ǐ)], (8) 

 TL(x, y) = T0L + (T1 – T0L) [ΘL(Ǐ) + ǉL(x*, Ǐ)], (9) 

where GL = ǃL(–g)(T1 – T0L)H3/ǎL2, Ǐ = GL1/4y*/(4x*)1/4 and ΦL(ξ) and ΘL(ξ) satisfy identical 

equations as ΦR and ΘR, provided that we replace g → −g in eq. (3a) and use the parameters 

characteristic for the air to the left of the wall. 

3. Temperature distribution inside the wall 

The steady state temperature distribution within the wall satisfies Laplace’s equation, 

 
2 2

2 2
0

T T

x y

∂ ∂
+ =

∂ ∂
. (10) 

At the bottom and upper side the wall is assumed to be insulated and consequently the 

boundary conditions, ∂T/∂x|x = 0 = ∂T/∂x|x = H = 0, are imposed (Vynnycky & Kimura, 1996). 

We choose the origin of the coordinate system, used for the wall only, at the lower edge of 

the left surface of the wall (Fig. 2, right). With the x-axis vertical and the y-axis 

perpendicular to the wall, we can write the temperature distribution within the wall as 

( ) ( )( )
1 2 1 1 0 2 0

1

( , ) ( ) sinh( ) sinh( ) cos( )
n L y n y n x

L n R nH H H
n

y
T x y T T T T T A T T B

L

π π π
∞

−

=

⎡ ⎤= + − + − + −⎢ ⎥⎣ ⎦∑ . (11) 

The average wall surface temperatures 1

0

1
( ,0)

H

T T x dx
H

= ∫ , 2

0

1
( , )

H

T T x L dx
H

= ∫ , (T1 > T2) and 

the coefficients An and Bn are determined by requiring that the temperatures of the two 

media must be equal at the respective boundaries and, moreover, the heat flux out of one 

medium must equal the heat flux into the other medium at each of the two boundaries.  

Taking into account the relative displacement and orientation of the various coordinate 

systems, this yields 
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1 1

( *,0) sinh cos (1 *) ( 1) sinh cos *n
L n n

n n

n L n L
x A n x A n x

H H

π πθ π π
∞ ∞

= =
= − = −∑ ∑ , (12a) 

 
1

( *,0) sinh cos *R n
n

n L
x B n x

H

πθ π
∞

=
=∑ , (12b) 

and 

 

( )
1/4

1 0

2 1 0 1 2 0
1

(0) ( *,0)
4 *

( ) ( 1) ( ) cosh ( ) cos *,

L L
L L L

n
L n R n

n

T T G
k x

H x

n L n L n L
U T T U T T A U T T B n x

H H H

θ

π π π π
∞

=

⎡ ⎤−⎛ ⎞ ⎛ ⎞ ′ ′⎢ ⎥− Θ + =⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦

⎧ ⎫− + − − + −⎨ ⎬
⎩ ⎭

∑
 (13a) 

 

( )
1/4

2 0

2 1 0 1 2 0
1

(0) ( *,0)
(4 *)

( ) ( ) ( ) cosh cos *,

R R
R R R

L n R n
n

T T G
k x

H x

n L n L n L
U T T U T T A U T T B n x

H H H

θ

π π π π
∞

=

⎡ ⎤⎛ ⎞−⎛ ⎞ ⎢ ⎥′ ′Θ + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎧ ⎫− + − + −⎨ ⎬
⎩ ⎭

∑

 (13b) 

where a uniform composition of the wall was assumed, U = kw/L, and kL,R are thermal 
conductivities of the air at the left and right surface of the wall, respectively. 
As already stressed, we are interested in the total rate of heat flow through the wall. 
Integrating eqs. (13) with respect to x* we obtain 

 
31/4 1

1
0 1 4

1 2

0

4
(0) ( *) ( *,0) * ( )

4 3
L L

L L L

T T G
k x x dx U T T

H
θ

−⎡ ⎤⎛ ⎞−⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟′ ′− Θ + = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ , (14a) 

 
31/4 1

1
2 0 4

1 2

0

4
(0) ( *) ( *,0) * ( )

4 3
R R

R R R

T T G
k x x dx U T T

H
θ

−⎡ ⎤⎛ ⎞−⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟′ ′− Θ + = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ . (14b) 

Using the definition of the Grashof number and the relations ǃL,R ≈ 1/T0L,R, we can rewrite 
eqs. (14) in the form 

 
1/5

4 0
0 1 2 0

0

( ) L
L R

R

T
T T T T

T
γ
⎛ ⎞

− = − ⎜ ⎟⎜ ⎟
⎝ ⎠

, (15a) 

( )
1 5 1
4 4 53

42 0 0 2 0 0 04
2 3

0 0 0 0

(0) 1 0
2

R L R L RR
R R

R R R RR

gH T T T T T T T
J

T T T T

κ γ
ν

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −⎜ ⎟′− Θ + + + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

, (15b) 

where 

 

1/2 4
3
4
3

(0)

(0)

R RL R

R L L L

Jk

k J

νγ
ν

′Θ +⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ′Θ +⎝ ⎠ ⎝ ⎠

, (15c) 
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11

4
, ,

0

( *) ( *,0) *L R L RJ x x dxθ
−

′= ∫ , (15d) 

and  

                                                                ,
,

L R
L R

w

k L

k H
κ = .  (15e) 

 The total rate of heat flow per unit area of the wall q ≡ /Q A$  is, referring to eqs. (14), equal 

to U(T1 – T2). To proceed, we use eqs. (1a, c), (2) and (15a) to determine the heat transfer 

coefficients. From (1a, c) and (15a) it follows  

 

1/5

4 0

0

LR

L R

Th

h T
γ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (16) 

and, equating (2) and (1c), we obtain 

 ( )R R
R

k
h Nu

H
= . (17a) 

Here, 

 

1/5

( ) 40 0 0

2 0 0

1
1R L R L

R R R

T T T
Nu

T T T
γ

κ

⎧ ⎫⎡ ⎤⎛ ⎞−⎪ ⎪⎢ ⎥= − + ⎜ ⎟⎨ ⎬⎜ ⎟⎢ ⎥− ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

 (17b) 

is the average Nusselt number, associated with the right-hand surface of the wall. (Of 

course, hR as written in (17a) is also the average heat transfer coefficient, but we shall omit 

the bar above the symbol.) Writing similarly ( )L L
L

k
h Nu

H
=  and using eqs. (16, 17a), we 

obtain the corresponding expression for  ( )LNu ,  

 

1/5 1/5

( ) ( )4 40 0 0 0

0 0 1 0

1
1L RL L R LR

L R L L R

T T T Tk
Nu Nu

k T T T T
γ γ

κ

− −⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞−⎪ ⎪⎢ ⎥= = − +⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥−⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

. (17c) 

Furthermore, the solution of eq. (15b) can be calculated by Newton’s method of successive 

approximations with the initial approximate solution chosen as 

 

( )

0 0

02 0
1/41/5 1/430 0 4/5 0 0 04

2 3
0 0

1
1 (0)

2

L R

RR

R
L L R

R R R
R RR

T T

TT T

T gHT T T
J

T T
γ κ

ν

⎛ ⎞−
⎜ ⎟

⎛ ⎞− ⎝ ⎠=⎜ ⎟⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎛ ⎞ ⎛ ⎞−′+ − Θ +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

, (18) 

obtained from (15b) by writing 
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5/4 1/4

2 0 2 0 0 0

0 0 0

R R L R

R R R

T T T T T T

T T T

⎛ ⎞ ⎛ ⎞⎛ ⎞− − −
≅⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
. 

In the lowest approximation, (17b) and (17c) then become 

 

1/4 1/43
( ) 0 0

2
0

1 4
(0)

32

R L R
R R

RR

gH T T
Nu J

Tν

⎛ ⎞ ⎛ ⎞−⎛ ⎞′= − Θ +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠
, (19a) 

 

1/41/20 1/43
( ) 4 0 0 0

2
0 0

1 4
(0)

32

L L L R
L L

R LL

gHT T T
Nu J

T T
γ

ν

⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞−⎛ ⎞⎪ ⎪′= − Θ +⎜ ⎟⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

. (19b) 

The average heat flux density /Q A$  can be now calculated easily by using eq. (2), for 

example, and the expressions for the heat transfer coefficients as determined above. 

Using the result obtained by Kao et al. (1977) and quoted by Miyamoto et al. (1980) (eq. 

(13)), we can calculate 4
3

(0)R RJ′Θ + . The heat flux density at the right surface of the wall (the 

analysis for the left surface is identical) 

 ( )
1/4

2 0( *) (0) ( *,0)
4 *

R R
R R R

T T G
q x k x

H x
θ−⎛ ⎞⎛ ⎞ ′ ′= − Θ +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 (20a) 

may be, according to Miyamoto et al. (1980), for P = 0.7, approximated closely by 

 
1/4 3/2 3/4

2 0
1 21/4 1/2

( *)
4 *

R R R R R
R

R R

T T G F dF
q x k c c

H dxF

ς
ς

⎛ ⎞−⎛ ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
, (20b) 

where c1 = 0.4995, c2 = 0.2710 and 

 

0

2 0

*

0

( ,0)
( *) 1 ( *,0),

( *) * .

R R
R R

R

x

R R

T x T
F x x

T T

x F dx

θ

ς

−
= = +

−

= ∫
 (20c) 

Equating the right-hand sides of (20a, b) and integrating the resulting equation with respect 

to x* from 0 to 1, we obtain 

 ( )
3/21
,1/2 34

, , 2 , 1 23 2 1/4
,0

(0) 2 (1) * L R
L R L R L R

L R

F
J c F c c dx

ς
′Θ + = − − − ∫ . (21) 

4. Equations determining FL,R (x*) 

In order to calculate (21), we rewrite the boundary conditions (13), using eqs. (12), (14), (15), 

(20) and (21), as follows: 
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1/4 1/4 13/2 3/4 3/2
1/2 3

1 2 2 1 21/4 1/2 2 1/4
0

1/51 1
4 0

00 0

2 (1) ( ) *
4 * 4

2 coth * cos * ( 1) * cos *
sinh

L L L L L L
L L L

L L L

n L
nn L n L L H

L RH H n L
R H

G F dF G F
c c c F c c dx

dxF

T
dx F n x dx F n x

T

π
π π

π

ςκ κ
ς ς

π γ π
−

⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞− + = − + − +⎢ ⎥⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎧ ⎛ ⎞⎪ + − ⎜ ⎟⎨ ⎜ ⎟

⎝ ⎠

∫

∫ ∫
1

cos *,
n

n xπ
∞

=

⎫⎪
⎬

⎪ ⎪⎩ ⎭
∑

 (22a) 

1/4 1/4 13/2 3/4 3/2
1/2 3

1 2 2 1 21/4 1/4 2 1/4
0

1/5 1 1
4 0

0 0 0

2 (1) ( ) *
4 * 4

2 ( 1) * cos * coth * cos *
sinh

R R R R R R
R R R

R R R

n L
n L n L n LH

L RH Hn L
R H

G F dF G F
c c c F c c dx

dxF

T
dx F n x dx F n x

T

π
π π

π

ςκ κ
ς ς

γ π π

⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞− + = − + − +⎢ ⎥⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎧ ⎛ ⎞⎪ − +⎜ ⎟⎨ ⎜ ⎟

⎝ ⎠⎩

∫

∫ ∫
1

cos *.
n

n xπ
∞

=

⎫⎪
⎬
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∑

 (22b) 

If we multiply both sides of eqs. (22) by cos(nǑx*), integrate with respect to x* from 0 to 1 
and rearrange the terms, we obtain 

1/41 1 3/2 3/4

1 21/4 1/2
0 0

1/5 1/4 1 3/2 3/4
4 0

1 21/4 1/2
0 0

coth( / )
cos * * * cos *

4 * ( / )

( 1) * cos *
4 *

L L L L
L L

L L

n L R R R R
R

R R R

G F dF n L H
F n x dx dx c c n x

dx n L HF

T G F dF
dx c c n x

T dxF

ς ππ κ π
πς

ςκ γ π
ς

−

⎡ ⎤⎛ ⎞⎛ ⎞= − +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞⎛ ⎞ ⎛ ⎞+ − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

∫ ∫

1
,

sinh
n L n L

H H

π π
⎡ ⎤
⎢ ⎥
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∫

 (23a) 
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00 0

1/4 1 3/2 3/4

1 21/4 1/2
0

cos * * ( 1) * cos *
4 *

1
* cos *

4 *sinh

n L L L L L
R L

R L L

R R R R
R

R R

T G F dF
F n x dx dx c c n x

T dxF

G F dF
dx c c n x

n L n L dxF
H H

ςπ κ γ π
ς

ςκ ππ π ς

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞= − + ×⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞⎛ ⎞− +⎢ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎢ ⎝ ⎠⎣

∫ ∫

∫
coth( / )

.
/ )

n L H

n L H

π
π

⎥
⎥⎦

(23b) 

5. Numerical results 

We will attempt to solve eqs. (23) by approximating FL, R(x*) – 1 = ǉL, R(x*, 0) ≡ ǉL, R(x*) by a 

polynomial, 

 (0) (1) (2) (3) (4)2 3 4
, , , , , ,( *) * * * *L R L R L R L R L R L Rx a a x a x a x a xθ = − + + + + + ⋅ ⋅ ⋅ ⋅ , (24) 

where, as a consequence of eqs. (12), 

 ( )(0) (1) (2) (3) (4)1 1 1 1
, , , , ,2 3 4 5

0 L R L R L R L R L Ra a a a a= − + + + + + ⋅ ⋅ ⋅ ⋅ . (25) 

The natural approach to solving for coefficients aL,R(i), i = 1, 2, 3, ... in eq. (24) is using the 

Newton method. However, we also employed the iteration method as proposed by 

Miyamoto et al. (1980). It turned out that the applicability of the simpler iteration procedure 

is limited to a restricted range of parameters appearing in Eqs. (23) (GL, R, κL, R, T0R, L, Ǆ and 
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aspect ratio L/H). It works well for plates with small aspect ratio and high conductivity (kw), 

like stainless steel or aluminum. But it breaks down for walls with large aspect ratio and 

with the conductivity coefficient 10–100 times lower (such as the thermal conductivity of 

brick, for example), and a better calculational method has to be applied. This is described in 

the Mathematical note, Section 7. 

The knowledge of FL,R(x*) makes it possible to calculate the temperatures T1 and T2 at the 

wall surfaces as well as the heat flux (or the heat flux density) through the wall, Q$  (or 

/Q A$ ). Using eqs. (17b, c), we can express the temperatures T1 and T2 at the wall surfaces in 

terms of the Nusselt numbers,  

 T1 = T0L – 0 0
( ) 4 1/5

0 01 [ ( / )]
L R

L
L L R

T T

Nu T Tκ γ −
−

+ +
, (26a) 

 T2 = T0R + 0 0
( ) 4 1/5

0 01 [ ( / )]
L R

R
R L R

T T

Nu T Tκ γ
−

+ +
. (26b) 

Subtracting the above two equations, we obtain the temperature difference across the wall,  

T1 – T2 = 

(T0L – T0R)
( ) ( )4 1/5 4 1/5

0 0 0 0

1 1
1

1 [ ( / )] 1 [ ( / )]R L
R L R L L RNu T T Nu T Tκ γ κ γ −

⎡ ⎤⎛ ⎞
− +⎢ ⎥⎜ ⎟⎜ ⎟+ + + +⎢ ⎥⎝ ⎠⎣ ⎦

. (27) 

The Nusselt numbers ( )RNu  and ( )LNu  are given in the lowest approximation by eqs. (19a, 

b). From (27) and (1b), the average flux density through the wall (equal to the average heat 

flux density through the air layers at the wall) can be written: 

Q

A

$
 = U(T0L–T0R)

1 1
5 5( ) ( )4 4

0 0 0 0

1 1
1

1 [ ( / )] 1 [ ( / )]R L
R L R L L RNu T T Nu T Tκ γ κ γ −

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟− +

⎜ ⎟⎢ ⎥+ + + +⎝ ⎠⎣ ⎦
. (28) 

Finally, through the eq. (17a), the heat transfer (convection) coefficients can be expressed in 
terms of the Nusselt numbers as  

 hR,L = , ( , )R L R Lk
Nu

H

⎛ ⎞
⎜ ⎟
⎝ ⎠

. (29) 

We performed numerical calculations for stainless steel and aluminum plates (compare 
Miyamoto et al. (1980)), as well as for walls of various dimensions and thermal 
conductivities comparable to brick or concrete, surrounded by air. We present some of the 
results for the air temperatures T0L = 30 ºC = 303 K and T0R = 20 ºC = 293 K. 

5.1 Stainless steel plate 

Thermal conductivities for air and steel are kL,R = ka = 2.63 × 10-2 W/mK  (air at ~300 K) and 
kw = 16 W/m · K, respectively. For a plate 1 cm thick and 40 cm high (aspect ratio L/H = 

0.025), κL = κR = κ = (ka/kw)(L/H) = 4.1 × 10-5, and for the temperature difference T0L – T1  ≅  
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T2 – T0R ≅ 5.0 K, the Grashof number takes the value GL ≈ GR ≈ G = 4.2 × 107. The coefficient Ǆ 
(Eq. (15c)) is very close to 1. The function ǉL(x*) is shown in Fig. 3.  
With the results for FL, R(x*) and using Θ′L,R(0) = –0.4995 (for the Prandtl number P = 0.70), 

we get JL ≅ JR = –0.0041 and, consequently, using equation (19), 

 

1/4 1/43
( ) 0 0

2
0

0.474R L R

RR

gH T T
Nu

Tν

⎛ ⎞ ⎛ ⎞−
= ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 (30a) 

and 

 

1/41/5 1/20 1/43
( ) ( )0 0 0 0

2
0 0 0

0.474L RR L L R

L R LL

gHT T T T
Nu Nu

T T Tν

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞−
= = ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

. (30b) 

In the present case, the value of the Nusselt number is ( )RNu = ( )LNu = 45. The temperature 

drop across the plate is negligible (T1 – T2  ~ 10-2 K), being only a tiny fraction (~10-3) of the 
air temperature difference on the two sides of the plate. Essentially the whole temperature 
drop takes place within the boundary layers at the plate surfaces.  
 

 

Fig. 3. Stainless steel. Correction ǉL(x*) to the Pohlhausen solution for a steel plate (L/H = 
0.05, GL ≈ GR = 4.2 × 107, κL = κR = 4.1 × 10-5, and T0L = 30 ºC, T0R = 20 ºC). The correction 
ǉR(x*) differs only insignificantly from ǉL(x*). 

The heat flux density is equal to ~15 W/m2, and the heat transfer coefficients are  
~3 W/(m2 · K). 
If the aspect ratio increases at constant height, the Grashof number increases, while ǉL,R(x*) 
decrease. If the height increases at constant aspect ratio, the Grashof number as well as 
ǉL,R(x*) increase. 

5.2 Aluminum plate 

The thermal conductivity of aluminum is kw = 203 W/m · K. If the plate has the same 
dimensions as the steel plate (1 cm thick, 40 cm high, aspect ratio L/H = 0.025), κL = κR = κ = 
(ka/kw)(L/H) = 3.24 × 10-6, and for the temperature difference of 5.0 K, the Grashof number 

takes the value GL ≈ GR ≈ G = 4.2 × 107. Again, Ǆ ≅ 1. The function ǉL(x*) is shown in Fig. 4. In 

this case, we obtain (P = 0.70) JL ≅ JR = –0.0035 and the Nusselt number is 
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1/4 1/43
( ) 0 0

2
0

0.473R L R

RR

gH T T
Nu

Tν

⎛ ⎞ ⎛ ⎞−
= ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

. (31) 

In the case of aluminum, the value of the Nusselt number is again ( )RNu = ( )LNu = 45. The 

temperature drop across the plate is negligible: T1 – T2  ~ 10-3 K, (T1 – T2)/(T0L – T0L) ~10-4; 
again almost all of the temperature drop occurs within the boundary layers at the plate 
surfaces.  
 

 

Fig. 4. Aluminum. Correction ǉL(x*) to the Pohlhausen solution for an aluminum plate (L/H 
= 0.05, GL ≈ GR = 4.2 × 107, κL = κR = 3.24 × 10-6, and T0L = 30 ºC, T0R = 20 ºC). The correction 
ǉR(x*) differs insignificantly from ǉL(x*). 

The heat flux density and the heat transfer coefficients are approximately the same as in the 
previous case, namely 15 W/m2 and ~3 W/m2 · K, respectively. 

5.3 Brick wall 
Next we consider a 10 cm thick and 200 cm high wall (aspect ratio L/H = 0.05) with thermal 
conductivity kw = 0.72 W/m · K (brick) and surrounded by air; for the temperature 
difference of 4.3 K, the Grashof numbers take the values GL = 4.55 × 109 and GR = 4.52 × 109, 
respectively, and κL = κR = κ = (ka/kw)(L/H) = 0.00183. The coefficient Ǆ ≈ 1.  
While in the previous cases, the iteration method (Miyamoto et al., 1980) was sufficient to 
solve Eqs. (23), in this example only the Newton method is applicable. The function ǉL(x*) 
(ǉR(x*) being essentially identical) is shown in Fig. 5. Here the temperature drop across the 
wall is 0.13(T0L – T0R);  JR = –0.0570 and JL = –0.0565 resulting in 

 

1/4 1/43
( ) 0 0

2
0

0.511R L R

RR

gH T T
Nu

Tν

⎛ ⎞ ⎛ ⎞−
= ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

, (32) 

and ( )LNu is given by a similar expression.  

In this case, the value of the Nusselt number is ( )RNu ≅ ( )LNu ≅ 163. The temperature drop 
across the plate is T1 – T2  = 1.3 K. The heat flux density is approximately 9 W/m2, and the 
heat transfer coefficients ~2 W/(m2 · K). 
If the aspect ratio increases at constant height, the Grashof number increases, while ǉL,R(x*) 
decrease. If the height increases at constant aspect ratio, the Grashof number as well as 
ǉL,R(x*) increase. 
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Fig. 5. Brick. The correction ǉL(x*) to the Pohlhausen solution for a wall with  
kw = 0.72 W/m · K (L/H = 0.05, GL ≈ GR ≈ 4.5 × 109, κL = κR =  0.00183, and T0L = 30 ºC, T0R = 
20 ºC). 

5.4 Concrete wall 

Finally, we consider a concrete (stone mix) wall, again 10 cm thick and 2 m high (aspect ratio 
L/H = 0.05) with thermal conductivity kw = 1.4 W/m · K and surrounded by air. For the 
temperature difference of 4.7 K, the Grashof numbers are GL = 4.84 × 109 and GR = 4.97 × 109, 
respectively, and κL = κR = κ = (ka/kw)(L/H) = 0.00094. The coefficient Ǆ = 1.0005 ≈ 1.  
 

 

Fig. 6. Concrete (mix stone). The correction ǉL(x*) to the Pohlhausen solution for a wall with 
kw = 1.4 W/m · K (L/H = 0.05, GL = 4.84 × 109, GR = 4.97 × 109, κL = κR =  0.00094, and T0L =  
30 ºC, T0R = 20 ºC). 

The function ǉL(x*) (or ǉR(x*)) is shown in Fig. 6. Here the temperature drop across the wall 
is 0.07(T0L – T0R);  JR = –0.0558 and JL = –0.0555 resulting in 

 

1/4 1/43
( ) 0 0

2
0

0.507R L R

RR

gH T T
Nu

Tν

⎛ ⎞ ⎛ ⎞−
= ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

. (33) 

In this case, the Nusselt numbers are ( )RNu ≅ ( )LNu ≅ 163. The temperature drop across the 

plate is T1 – T2  = 0.7 K.  
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The heat flux density is approximately 10 W/m2, and the heat transfer coefficients  
~2 W/m2 · K. 

6. Conclusion 

Free convection along both sides of a vertical flat wall was considered within the framework 

of the laminar boundary-layer theory and for the case where only the temperatures of the 

fluid far away from the wall are known. It has been shown how to determine the average 

surface temperatures T1 and T2 together with the corresponding heat transfer coefficients in 

order for the equations (1) and (2) to yield the correct value for the total heat flow across the 

wall. In particular, if the small surface temperature variations ǉL, R(x*) are neglected, the heat 

transfer from the wall to the fluid or vice versa is determined by the Pohlhausen solutions 

ΘL, R(Ǐ) only. The corresponding Nusselt number ( )RNu , for example, is obtained from (19a) 

by neglecting the JR term. This yields  

 

1/4 1/43
( ) 0 0

2
0

0.471R L R

RR

gH T T
Nu

Tν

⎛ ⎞ ⎛ ⎞−
= ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

. (34) 

 

It differs less that one percent as compared to the values given by eqs. (30a) and (31) which 

are valid for good thermal conductors. Consequently, the Pohlhausen solution can be 

therefore safely used in this case. For poor thermal conductors, like brick or concrete walls, 

the corrections may be more substantial. In particular, for a brick wall, the correction, 

obtained by comparing (32) and (34), is roughly 10 percent and it should be taken into 

account.  

In numerical calculations, the Newton method turned out to be sufficient in solving the 

equations for the temperature corrections to the Pohlhausen solution. The simple iteration 

procedure, however, was found to have a rather restricted range of validity (large thermal 

conductivity, large aspect ratio of the plate). 

7. Mathematical note 

The system of equations (23a) and (23b) is defined for n = 1, 2,… only. For n = 0, the 

equations of both parts of the system simplify to a normalization conditions, 

 
1

0

( *) * 1LF x dx =∫ ,   
1

0

( *) * 1RF x dx =∫ . (MN.1) 

 

It is natural to look for the functions FL and FR as elements of some linear subspace  

Sm ⊂ rC ([0, 1]) where Sm should become dense in  rC  ([0, 1]) as m → ∞. Let us denote the 

basis of Sm as 

si,   i = 0,1,…, m. 

Then the unknown functions FL and FR could be written as 
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FL = ,
1

m

L i i
i

c s
=
∑ ,    FR = ,

1

m

R i i
i

c s
=
∑ . 

 

We expect on physical grounds FL and FR to be rather smooth so r ∈ N could be assumed to 

be at least 2. This indicates that the Fourier coefficients of the unknown functions 

1

0

( *)cos( *) *LF x n x dxπ∫ ,   
1

0

( *)cos( *) *RF x n x dxπ∫ , 

 

as well as of the other dependent quantities involved should decay at least as O(1/n2) or 

faster. As a consequence, only a small part of the infinite system is expected to be significant 

for FL and FR. Thus, for a particular choice of m ∈ N only the equations n = 0, 1, ..., m are 

taken into account. This gives a system of 2(m + 1) nonlinear equations for the unknown 

coefficients 

cL := , 0( )m
L i ic =  ,  cR := , 0( )m

R i ic = , 

 

written in short as, 

f(cL) = g1(cL, cR), 
f(cR) = g2(cL, cR). 

(MN.2) 

The structure of the system (MN.2) follows from (23) but with (MN.1) added to each 

equations block. There are two important steps to be considered. The first is the choice of the 

subspace Sm. We decided to try first perhaps the simplest approach, by choosing the 

subspace Sm as the space of polynomials Sm = Pm of degree ≤ m. The numerical results turned 

out satisfactory. Alternatively, we could always switch to a proper spline space. The second 

step regards the efficient numerical solution of the system (MN.2). Inspection of the 

equations (23) reveals that the function f depends linearly on the unknowns. Since the 

functions gi are much more complicated, the direct iteration seems to be a cheap shortcut. 

So, with the starting choice incorporating the conditions (MN.1), 

 (0) (0)
, ,

1

2( 1)
L i R ic c

m
= =

+
, i = 1, 2, …, m, (MN.3a) 

 (0) (0)
,0 ,0

1

1 1
1

2( 1)

m

L R
i

c c
m i=

= = −
+ ∑ , (MN.3b) 

 

the direct iteration reads, 

f(c ( 1)k
L
+ ) = g1(c

( )k
L , c ( )k

R ), 

f(c ( 1)k
R
+ ) = g2(c

( )k
L , c ( )k

R ),  k = 0, 1, … . 
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This approach was quite satisfactory for some parameter values, but failed to converge for 

others. Clearly, the map involved in this case ceases to be a contraction. However, the 

Newton method turned out to be the proper way to solve the system (MN.2). For any 

consistent data choice and particular m, only several Newton steps were needed. The initial 

values of the unknowns were again taken as in (MN.3). The Jacobian matrix J(cL, cR), needed 

at each Newton step involving the solution of a system of linear equations, 

( ) ( ) ( ) ( )
1( ) ( )

( ) ( ) ( ) ( )
2

( ) ( , )
( , )

( ) ( , )

k k k k
L L L Rk k

L R k k k k
R R L R

J
⎛ ⎞ ⎛ ⎞Δ −
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟Δ −⎝ ⎠ ⎝ ⎠

c c c c
c c

c c c c

f g

f g
, 

 

and a correction 
 

( 1) ( ) ( )

( 1) ( ) ( )

k k k
L L L

k k k
R R R

+

+

⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= +
⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

c c c

c c c

,    k = 0, 1, …, 

 

admits no close form and has to be computed numerically. It is a simple task to compute all 
the partial derivatives involved if the three basic terms that depend on the unknown 

coefficients are determined. A brief outline is as follows. For a given Sm, let 0( )m
i is =  be its 

basis, and  

F = 
1

m

i i
i

c s
=
∑ ,   c := 0( )m

i ic = , 

 

stands for FL and FR, and  

0
0 0

( ) ( ) ( )
xmx

i i
i

x F u du c s u duζ
=

= =∑∫ ∫ . 

 

Then 

( ) ( )j
j

F x s x
c

∂
=

∂
,  

0

( ) ( )
x

j
j

x s u du
c
ζ∂

=
∂ ∫ ,    j = 0, 1, …, m. 

 

Further, 

1 1

0 0

( )cos( ) ( )cos( )j
j

F x n x dx s x n x dx
c

π π∂
=

∂ ∫ ∫ ,    j = 0, 1, …, m, 

 

which yields all coefficients in both n = 0 equations as well as the parts of the elements in J 
that contribute by the partial derivatives of the function f. In order to compute ∂gi/∂cj, the 
following two terms have to be determined, 
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1 1 13/2 1/2 3/2

1/4 1/4 5/4
0 0 0 0

( ) 3 ( ) 1 ( )
cos( ) ( )cos( ) cos( ) ( )

2 4( ) ( ) ( )

x

j j
j

F x F x F x
n x dx s x n x dx n x s u dudx

c x x x
π π π

ζ ζ ζ
∂

= −
∂ ∫ ∫ ∫ ∫  

and 

1 3/4

1/2
0

1 1
3/4

3/2 1/2 1/4
0 0 0

( ) '( )
cos( )

( )

2 ( ) '( ) '( ) ( ) 3 '( )
( ) cos( ) cos( ) ( )

42 ( ) ( ) ( )

j

x
j j

j

x F x
n x dx

c F x

F x s x F x s x F x
x n x dx n x s u dudx

F x F x x

ζ π

ζ π π
ζ

∂
=

∂

−
−

∫

∫ ∫ ∫
 

where the prime indicates the ordinary derivative with respect to x. Since n is rather small, it 

turned out that the use of the Filon’s quadrature rules was not necessary. 

8. Nomenclature 

aL,R(i)    defined by eq. (24) 

A    surface area of the wall 

FL, R(x*), ǇL, R(x*)   defined by eq. (20c) 

g    acceleration of gravity 

G = ǃg(Ts – T0R)H3/ǎ2  Grashof number 

hL,R    convection transfer coefficients to the left and right of the wall  

JL, R     defined by eq. (15d)   

k    thermal conductivity 

L, H    thickness and height of the wall  

( , )L RNu               Nusselt numbers associated with the left- and right-hand surface of the wall 

P = ǎ/ǂ    Prandtl number 

Q$ , q = /Q A$   heat flow, heat flow density 

T0L, 0R    air temperature far from the wall to the left and right of the wall  

T1, 2    temperature of the left and right wall surface  

Ts    characteristic wall surface temperature  

U = k/L    thermal transmittance  

u, v     x- and y-component of the velocity field  

x* = x/H, y* = y/H  dimensionless coordinates 

 

Greek symbols 

ǂ    thermal diffusivity  

ǃ    thermal-expansion coefficient of the air 
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Ǆ    defined by eq. (15c)   

ǇL,R(x*)   defined by eq. (20c)   

ǈ    viscosity  

κL, R   defined in eq. (15e) 

ǎ = ǈ/ǒ   kinematic viscosity  

Ǐ     GR1/4 y*/(4x*)1/4  

ǒ   mass density 

ФL, R(Ǐ),   Pohlhausen solution  

ΘL, R(ξ)   temperature function associated with ФL, R(Ǐ) 

( *, )R xφ ξ , ( *, )R xθ ξ  corrections to the Pohlhausen solution introduced in eqs. (5), (6) 

ψ    stream function introduced in eq. (5) 

 

Subscripts, superscripts 

a   air 

L, R    left, right 

s    surface 

w   wall 

*   dimensionless coordinate based on H  
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