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1. Introduction 

Prior to a general discussion on specifics of thermophysical properties at critical and 
supercritical pressures it is important to define special terms and expressions used at these 
conditions.  For better understanding of these terms and expressions Fig. 1 is shown below. 
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Fig. 1. Pressure-Temperature diagram for water. 

Definitions of selected terms and expressions related to critical and supercritical regions 

Compressed fluid is a fluid at a pressure above the critical pressure, but at a temperature 
below the critical temperature. 
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Critical point (also called a critical state) is a point in which the distinction between the 
liquid and gas (or vapour) phases disappears, i.e., both phases have the same temperature, 
pressure and volume or density. The critical point is characterized by the phase-state 
parameters Tcr, Pcr and Vcr (or ρcr), which have unique values for each pure substance. 
Near-critical point is actually a narrow region around the critical point, where all 
thermophysical properties of a pure fluid exhibit rapid variations. 
Pseudocritical line is a line, which consists of pseudocritical points. 
Pseudocritical point (characterized with Ppc and Tpc) is a point at a pressure above the 
critical pressure and at a temperature (Tpc > Tcr) corresponding to the maximum value of the 
specific heat at this particular pressure. 
Supercritical fluid is a fluid at pressures and temperatures that are higher than the critical 
pressure and critical temperature.  However, in the present chapter, a term supercritical fluid 
includes both terms – a supercritical fluid and compressed fluid. 
Supercritical “steam” is actually supercritical water, because at supercritical pressures fluid 
is considered as a single-phase substance.  However, this term is widely (and incorrectly) 
used in the literature in relation to supercritical “steam” generators and turbines. 
Superheated steam is a steam at pressures below the critical pressure, but at temperatures 
above the critical temperature. 

2. Historical note on using supercritical-pressure fluids 

The use of supercritical fluids in different processes is not new and has not been invented by 
humans.  Mother Nature has been processing minerals in aqueous solutions at near or above 
the critical point of water for billions of years (Levelt Sengers, 2000).  Only in the late 1800s, 
scientists started to use this natural process, called hydrothermal processing in their labs for 
creating various crystals.  During the last 50 – 60 years, this process (operating parameters - 
water pressures from 20 to 200 MPa and temperatures from 300 to 500ºC) has been widely 
used in the industrial production of high-quality single crystals (mainly gem stones) such as 
quartz, sapphire, titanium oxide, tourmaline, zircon and others. 
First works devoted to the problem of heat transfer at supercritical pressures started as early 
as the 1930s.  Schmidt and his associates investigated free-convection heat transfer of fluids 
at the near-critical point with the application to a new effective cooling system for turbine 
blades in jet engines.  They found that the free convection heat transfer coefficient at the 
near-critical state was quite high, and decided to use this advantage in single-phase 
thermosyphons with an intermediate working fluid at the near-critical point (Pioro and 
Pioro, 1997). 
In the 1950s, the idea of using supercritical water appeared to be rather attractive for 
thermal power industry.  The objective was increasing the total thermal efficiency of coal-
fired power plants.  At supercritical pressures there is no liquid-vapour phase transition; 
therefore, there is no such phenomenon as Critical Heat Flux (CHF) or dryout.  Only within 
a certain range of parameters a deteriorated heat transfer may occur.  Work in this area was 
mainly performed in the former USSR and in the USA in the 1950s – 1980s (International 
Encyclopedia of Heat & Mass Transfer, 1998). 
In general, the total thermal efficiency of modern thermal power plants with subcritical-
parameters steam generators is about 36 – 38%, but reaches 45 – 50% with supercritical 
parameters, i.e., with a “steam” pressure of 23.5 – 26 MPa and inlet turbine temperature of 
535 – 585°C thermal efficiency is about 45% and even higher at ultra-supercritical 
parameters (25 – 35 MPa and 600 – 700°C) (see Fig. 2). 
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Cyl – Cylinder; H – Heat exchanger (feedwater heater); CP – Circulation Pump; TDr – Turbine Drive; Cond 
P – Condensate Pump; GCHP – Gas Cooler of High Pressure; and GCLP – Gas Cooler of Low Pressure. 

Fig. 2. Single-reheat-regenerative cycle 600-MWel Tom’-Usinsk thermal power plant (Russia) 
layout (Kruglikov et al., 2009). 
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At the end of the 1950s and the beginning of the 1960s, early studies were conducted to 
investigate a possibility of using supercritical water in nuclear reactors (Pioro and Duffey, 
2007).  Several designs of nuclear reactors using supercritical water were developed in Great 
Britain, France, USA, and the former USSR.  However, this idea was abandoned for almost 
30 years with the emergence of Light Water Reactors (LWRs) and regained interest in the 
1990s following LWRs’ maturation. 
Currently, SuperCritical Water-Cooled nuclear Reactor (SCWR) concepts are one of six 
options included into the next generation or Generation IV nuclear systems.  The SCWR 
concepts therefore follow two main types, the use of either: (a) a large reactor pressure 
vessel (Fig. 3) with a wall thickness of about 0.5 m to contain the reactor core (fuelled) heat 
source, analogous to conventional PWRs and BWRs, or (b) distributed pressure tubes or 
channels analogous to conventional CANDU®1 nuclear reactors (Fig. 4).  In general, mainly 
thermal-spectrum SCWRs are currently under development worldwide.  However, several 
concepts of fast SCWRs are also considered (Oka et al., 2010; Pioro and Duffey, 2007). 
 

 

Fig. 3. Pressure-vessel SCWR schematic (courtesy of DOE USA). 

                                                 
1 CANDU® (CANada Deuterium Uranium) is a registered trademark of Atomic Energy of Canada 
Limited (AECL). 
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Fig. 4. General scheme of pressure-channel SCW CANDU reactor: IP – intermediate-
pressure turbine and LP – low-pressure turbine (courtesy of Dr. Duffey, AECL). 

Use of supercritical water in power-plant steam generators is the largest application of a 
fluid at supercritical pressures in industry. However, other areas exist in which supercritical 
fluids are used or will be implemented in the near future (Pioro and Duffey, 2007): 
• using supercritical carbon-dioxide Brayton cycle for Generation IV Sodium Fast 

Reactors (SFRs), Lead-cooled Fast Reactors (LFRs) (Fig. 5) and High Temperature 
helium-cooled thermal Reactors (HTRs); 

• using supercritical carbon dioxide for cooling printed circuits; 
• using near-critical helium to cool coils of superconducting electromagnets, 

superconducting electronics and power-transmission equipment; 
• using supercritical hydrogen as a fuel for chemical and nuclear rockets; 
• using supercritical methane as a coolant and fuel for supersonic transport; 
• using liquid hydrocarbon coolants and fuels at supercritical pressures in cooling jackets 

of liquid rocket engines and in fuel channels of air-breathing engines; 
• using supercritical carbon dioxide as a refrigerant in air-conditioning and refrigerating 

systems; 
• using a supercritical cycle in the secondary loop for transformation of geothermal 

energy into electricity; 
• using SuperCritical Water Oxidation (SCWO) technology for treatment of industrial 

and military wastes; 
• using carbon dioxide in the Supercritical Fluid Leaching (SFL) method for removal 

uranium from radioactive solid wastes and in decontamination of surfaces; and 
• using supercritical fluids in chemical and pharmaceutical industries in such processes 

as supercritical fluid extraction, supercritical fluid chromatography, polymer processing 
and others. 
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The most widely used supercritical fluids are water and after that carbon dioxide, helium 
and refrigerants (Pioro and Duffey, 2007).  Usually, carbon dioxide and refrigerants are 
considered as modeling fluids instead of water due to significantly lower critical pressures 
and temperatures, which decrease complexity and costs of thermalhydraulic experiments. 
Therefore, knowledge of thermophysical-properties specifics at critical and supercritical 
pressures is very important for safe and efficient use of fluids in various industries. 
 

 

Fig. 5. Lead-cooled Fast Reactor with supercritical carbon dioxide Brayton cycle (courtesy of 
DOE USA). 

3. Thermophysical properties at critical and supercritical pressures 

General trends of various properties near the critical and pseudocritical points (Pioro, 2008; 
Pioro and Duffey, 2007) can be illustrated on a basis of those of water (Figs. 6-9).  Figure 6 
shows variations in basic thermophysical properties of water at the critical (Pcr = 22.064 
MPa) and three supercritical pressures (P = 25.0, 30.0, and 35.0 MPa) (also, in addition see 
Fig. 7). Thermophysical properties of water and other 83 fluids and gases at different 
pressures and temperatures, including critical and supercritical regions, can be calculated 
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using the NIST REFPROP software (2007).  Critical parameters of selected fluids are listed in 
Table 1. 
At the critical and supercritical pressures a fluid is considered as a single-phase substance in 
spite of the fact that all thermophysical properties undergo significant changes within the 
critical and pseudocritical regions. Near the critical point, these changes are dramatic (see 
Fig. 6). In the vicinity of pseudocritical points, with an increase in pressure, these changes 
become less pronounced (see Figs. 6 and 9). 
   

Fluid 
Pcr, 

MPa 
Tcr, 
ºC 

ρcr, 
kg/m3 

Carbon dioxide (CO2) 7.3773 30.978 467.6 

Freon-12 (Di-chloro-di-fluoro-methane, CCl2F2) 4.1361 111.97 565.0 

Freon-134a (1,1,1,2-tetrafluoroethane, CH2FCF3) 4.0593 101.06 511.9 

Water (H2O) 22.064 373.95 322.39 

Table 1. Critical parameters of selected fluids (Pioro and Duffey, 2007). 

Also, it can be seen that properties such as density and dynamic viscosity undergo a 
significant drop (near the critical point this drop is almost vertical) within a very narrow 
temperature range (see Figs. 6a,b and 7), while the kinematic viscosity and specific enthalpy 
undergo a sharp increase (see Figs. 6d,g and 7). The volume expansivity, specific heat, 
thermal conductivity and Prandtl number have peaks near the critical and pseudocritical 
points (see Figs. 6c,e,f,h, 7 and 8).  Magnitudes of these peaks decrease very quickly with an 
increase in pressure (see Fig. 9). Also, “peaks” transform into “humps” profiles at pressures 
beyond the critical pressure. It should be noted that the dynamic viscosity, kinematic 
viscosity and thermal conductivity undergo through the minimum right after the critical 
and pseudocritical points (see Fig. 6b,d,f). 
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Fig. 6a. Density vs. Temperature: Water. 
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Fig. 6b. Dynamic viscosity vs. Temperature: Water. 
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Fig. 6c. Volume expansivity vs. Temperature: Water. 
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Fig. 6d. Kinematic viscosity vs. Temperature: Water. 
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Fig. 6e. Specific heat vs. Temperature: Water. 
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Fig. 6f. Thermal conductivity vs. Temperature: Water. 
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Fig. 6g. Specific enthalpy vs. Temperature: Water. 
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Fig. 6h. Prandtl number vs. Temperature: Water. 
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Fig. 7. Variations of selected thermophysical properties of water near pseudocritical point: 
Pseudocritical region at 25 MPa is about ±25°C around pseudocritical point. 
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Fig. 8. Specific heat, volume expansivity and thermal conductivity vs. temperature: Water,  
P = 24.5 MPa. 
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Fig. 9. Specific heat variations at various pressures: Water. 
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Pressure, MPa Pseudocritical temperature, ºC Peak value of specific heat, kJ/kg·K 

23 377.5 284.3 

24 381.2 121.9 

25 384.9 76.4 

26 388.5 55.7 

27 392.0 43.9 

28 395.4 36.3 

29 398.7 30.9 

30 401.9 27.0 

31 405.0 24.1 

32 408.1 21.7 

33 411.0 19.9 

34 413.9 18.4 

35 416.7 17.2 

Table 2. Values of pseudocritical temperature and corresponding peak values of specific 
heat within wide range of pressures. 

 

Pressure, 

MPa 

Pseudocritical 

temperature, 

ºC 

Temperature, 

ºC 

Specific 

heat, 

kJ/kg·K 

Volume 

expansivity,

1/K 

Thermal 

conductivity, 

W/m·K 

pcr=22.064 tcr=374.1 – ∞ ∞ ∞ 

22.5 375.6 – 690.6 1.252 0.711 

– 377.4 – – 0.538 
23.0 

377.5 – 284.3 0.508 – 

– 379.2 – – 0.468 

– 379.3 – 0.304 – 23.5 

379.4 – 171.9 – – 

– 381.0 – – 0.429 
24.0 

381.2 – 121.9 0.212 – 

– 382.6 – – 0.405 

– 383.0 – 0.161 – 24.5 

383.1 – 93.98 – – 

– 384.0 – – 0.389 

384.9 – 76.44 – – 25.0 

– 385.0 – 0.128 – 

25.5 386.7 – 64.44 0.107 no peak 

26.0 388.5 - 55.73 0.090 0.355 

27.0 392.0 - 43.93 0.069 0.340 

28.0 395.4 - 36.29 0.056 0.329 

29.0 398.7 - 30.95 0.046 0.321 

30.0 401.9 - 27.03 0.039 0.316 

Table 3. Peak values of specific heat, volume expansivity and thermal conductivity in critical 
and near pseudocritical points. 
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The specific heat of water (as well as of other fluids) has the maximum value at the critical 
point (see Fig. 6e). The exact temperature that corresponds to the specific-heat peak above 
the critical pressure is known as the pseudocritical temperature (see Fig. 1 and Table 2). At 
pressures approximately above 300 MPa (see Fig. 9) a peak (here it is better to say “a 
hump”) in specific heat almost disappears, therefore, such term as a pseudocritical point does 
not exist anymore. The same applies to the pseudocritical line.  It should be noted that peaks 
in the thermal conductivity and volume expansivity may not correspond to the 
pseudocritical temperature (see Table 3 and Figure 8). 
In early studies, i.e., approximately before 1990, a peak in thermal conductivity was not 
taken into account.  Later, this peak was well established (see Fig. 6f) and included into 
thermophysical data and software.  The peak in thermal conductivity diminishes at about 
25.5 MPa for water (see Fig. 6f and Table 3). 
In general, crossing the pseudocritical line from left to right (see Fig. 1) is quite similar as 
crossing the saturation line from liquid into vapour. The major difference in crossing these 
two lines is that all changes (even drastic variations) in thermophysical properties at 
supercritical pressures are gradual and continuous, which take place within a certain 
temperature range (see Fig. 6). On contrary, at subcritical pressures we have properties 
discontinuation on the saturation line: one value for liquid and another for vapour (see Fig. 
10). Therefore, supercritical fluids behave as single-phase substances. Also, dealing with 
supercritical fluids we apply usually a term “pseudo” in front of a critical point, boiling, film 
boiling, etc. 
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Fig. 10. Density variations at various subcritical pressures for water: Liquid and vapour. 

In addition to supercritical-water properties, supercritical properties of R-12 (Richards et al., 
2010) are shown in Fig. 11 for reference purposes.  Properties of supercritical carbon dioxide, 
helium and R-134a are shown in Pioro and Duffey (2007). 
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Fig. 11a. Density vs. Temperature: R-12 

 

 

Fig. 11b. Dynamic viscosity vs. Temperature: R-12. 
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Fig. 11c. Volume expansivity vs. Temperature: R-12. 
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Fig. 11d. Kinematic viscosity vs. Temperature: R-12. 
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Fig. 11e. Specific heat vs. Temperature: R-12. 

 

 

Fig. 11f. Thermal conductivity vs. Temperature: R-12. 
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Fig. 11g. Specific enthalpy vs. Temperature. 

 

 

Fig. 11h. Prandlt number vs. Temperature: R-12. 
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5. Nomenclature 

P , p pressure, Pa 

T , t temperature, ºC 
V specific volume, m3/kg 
Greek letters 

ρ  density, kg/m3 

Subscripts 

cr critical 
pc pseudocritical 
Abbreviations: 
BWR Boiling Water Reactor 
CHF Critical Heat Flux 
HTR High Temperature Reactor 
LFR Lead-cooled Fast Reactor 
LWR Light-Water Reactor 
NIST National Institute of Standards and Technology (USA) 
PWR Pressurized Water Reactor 
SCWO SuperCritical Water Oxidation 
SFL Supercritical Fluid Leaching 
SFR Sodium Fast Reactor 
USA United States of America 
USSR Union of Soviet Socialist Republics 
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