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B. Verkin Institute for Low Temperature Physics and Engineering 

of the National Academy of Sciences of Ukraine, Kharkov 
Ukraine 

1. Introduction 

This short review does not pretend to comprehend all available information concerning the 
thermal conductivity of molecular crystals, in particular, at low temperatures (below 20K). 
For such kind of information see, for example, Batchelder, 1977; Gorodilov et al., 2000;  
Jezowski et al., 1997;  Ross et al., 1974; Stachowiak et al., 1994. The goal of this paper consists 
in presentation and generalization of the new experimental results and theoretical models, 
accumulated over the past 2-3 decades, to a certain extent changing existing view about the 
heat transfer in crystals. Quite recently, it was not doubted that high-temperature thermal 

conductivity of molecular crystals is proportional to the inverse temperature, Λ∝1/T.  It was 
based on both the experimental data and assumptions being evident at first sight from 
which this dependence followed. In simple kinetic model, the phonon thermal conductivity 
can be represented as Λ=1/3Cvl, where C (the heat capacity) and v (the sound velocity)  can 

be considered to be constant at T≥ΘD, and averaged phonon mean-free path l is inversely 
proportional to the temperature. More precise expression (see, for example, Berman, 1976; 
Slack, 1979) can be written in the form: 

 
3

2
Dma

K
Tγ
Θ

Λ = , (1) 

where m is the average atomic (molecular) mass; a3 is the volume per atom (molecule);  

γ=−(∂ lnΘD/∂ lnV)T  is the Grüneisen parameter, and K is a structure factor.  In time, data on 
the deviation from 1/T dependence has accumulated, and in a number of cases some ideas 
qualitatively explaining the observed behaviour of thermal conductivity have been 
proposed. The problem has been, however, that the theory predicts the 1/T law at the 
constant volume of the sample, whereas the measurements were carried out at constant 
pressure.  In this case, thermal expansion, been usually rather essential at high temperatures 
(the molar volume of molecular crystals may change up to 10-20% in the temperature 
interval from zero and up to the melting temperature) leads, as a rule, to additional decrease 
of Λ with rise of temperature. Moreover, in many cases, the phonons are not the only 
excitations determining the heat transfer and scattering process. The dependence of the 
thermal conductivity on the molar volume can be described using Bridgman’s coefficient: 

 ( )ln ln
T

g V= − ∂ Λ ∂ , (2) 
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It follows from Eqs. (1) and (2) that for crystals:  

 3 2 1 3g qγ= + − , (3) 

were q=(∂ lnγ/∂ lnV)T. Ordinarily, it is assumed that γ∝V and the second Grüneisen 

coefficient q≅1 (Slack, 1979; Ross et al., 1984). Taking into account that γ ≅2÷3 for a number of 

simple molecular crystals (Manzhelii et al., 1997) it is expected that g≅8÷11 and Λ∝V8÷11. It 

means that 1% change in volume may result in 8-11% change in thermal conductivity. Data 

measured at saturated vapour and atmosphere pressures can be considered as equivalent 

because the difference between them is much smaller than accuracy of experiment and they 

will be further denoted as isobaric (P≅0, MPa) data. 

Constant-volume investigations are possible for molecular solids having a comparatively 

large compressibility coefficient. Using a high-pressure cell, it is possible to grow a solid 

sample of sufficient density. In subsequent experiments it can be cooled with practically 

unchanged volume, while the pressure in the cell decreases. In samples of moderate 

densities the pressure drops to zero at a certain characteristic temperature Т0 and the 

isochoric condition is then broken; on further cooling, the sample can separate from the 

walls of the cell. In the case of a fixed volume, melting of the sample occurs in a certain 

temperature interval and its onset shifts towards higher temperatures as density of samples 

increases (For more experimental details see Konstantinov et al., 1999).  

As the temperature increases, phonon scattering processes intensify, the mean-free path 
length l decreases and it may approach to the lattice parameter. The question of what occurs 
when the phonon mean-free path becomes comparable to the lattice parameter or its own 
wavelength is one of the most intriguing problems in the thermal conductivity of solids (see, 
for example, Auerbach & Allen, 1984; Feldman et al., 1993; Sheng et al., 1994). According to 
preferably accepted standpoint, in this case the vibrational modes assume a “diffusive” 
character, but the basic features of the kinetic approach retain their validity. Some progress 
in the description of the heat transport in strongly disordered materials has come about 

through the concept of the minimum thermal conductivity Λmin (Slack, 1979; Cahill et al., 
1992), which is based on the picture where the lower limit of the thermal conductivity is 
reached when the heat is being transported through a random walk of the thermal energy 

between the neighboring atoms or molecules vibrating with random phases. In this case Λmin 
can be written as the following sum of three Debye integrals:  

 

( )

21/3 3
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, (4) 

The summation is taken over three (two transverse and one longitudinal) sound modes with 

the sound speeds ǖi; Θi is the Debye cutoff frequency for each polarization expressed in 

degrees K; ( ) ( )2
1 3

6 i i B nv k πΘ = ¥ ; n is the number density of atoms or molecules. Although 

no theoretical justification exists as yet for this picture of the heat transport, the evidence for 

its validity has been obtained on a number of amorphous solids in which the high 

temperature thermal conductivity has been found to agree with the value predicted by this 

model. Indirect evidence has also been obtained in measurements of the thermal 

conductivity of highly disordered crystalline solids, in which no thermal conductivity 
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smaller than that predicted by this model seems to have ever been observed (Cahill et al., 

1992). It is evident, that thermal conductivity approaches its lower limit Λmin in amorphous 

solids and strongly disordered crystals (Auerbach & Allen, 1984; Cahill et al., 1992; Sheng et 

al., 1994). This raises the question whether or not the three-phonon scattering processes in 

themselves may result in Λmin in perfect crystals with rise of temperature. 
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Fig. 1. The ratio Λmeas/Λmin immediately below the corresponding melting temperatures (Tm) 
versus Tm for crystals with different types of chemical bonds. 

To find an answer let us compare the measured thermal conductivity Λmeas of a number of 

crystals with different types of chemical bonds and the lower limit to thermal conductivity 

Λmin at the corresponding melting temperatures Tm (see Fig. 1). It is evident that the ratio 

Λmeas/Λmin increases as the crystal bond becomes stronger. In van-der-Waals-type crystals 

Λmeas/Λmin≅1.5÷2, while in the crystals with diamond-type structure it is of the order of 10÷20, 

i.e. van-der-Waals-type crystals are the most suitable objects for observing the thermal 

conductivity “minimum” due to umklapp processes only and this will be demonstrated 

further. 

Crystals containing molecules or molecular ions are more complicated than crystals 
containing only atoms and ions, since the former possess translational, orientational and 
intramolecular degrees of freedom. An important common feature of simple molecular 
crystals is that in the condensed phases the intermolecular forces are much weaker than 
the intramolecular ones, so that the molecular parameters remain close to those in the gas. 
As a rule, the intramolecular forces and associated intramolecular vibration frequencies 

(∼1000cm-1) exceed by an order of magnitude the intermolecular ones (the corresponding 

lattice-mode frequencies are below ∼1000cm-1). Such a large difference between the two 
types of frequencies makes it possible to safely regard the respective types of motion as 
independent. So as far as the lattice vibrations are concerned, the molecules can be treated 
as rigid bodies. In such an approximation each molecule participates in two types of 
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motion: translational, when the molecular center of mass shifts, and rotational, when the 
center of mass rests. Many features in the dynamics of the simple molecular solids are 
related to the rotational motion of the molecules (Parsonage & Stavaley, 1972). At very 
low temperature, the structure of a crystal is perfectly ordered and the molecules can 
perform only small amplitude translational vibrations at the lattice sites and oscillations 
around selected axes (libration) in a manner so that the motion of neighboring molecules 
is correlated and collective translational and orientational excitations (phonons and 
librons) propagate throw the crystal. Calculation of anharmonic effects show that 
translational vibrations are characterized by relatively small amplitudes while the 

amplitude of librational vibrations in molecular crystals is sufficiently large even at T≅0, 
so that the harmonic theory can hardly claim to give more than  qualitative picture of the 
librational motion (Briels et al., 1985; Manzhelii et al., 1997). As the temperature increases, 
the rotational motion may, in principle, pass through the following stages depending on 
the relationship between the central and anisotropic forces: enlargement of the libration 
amplitudes, the appearance of jump-like reorientations of the molecules, increase of the 
frequency of reorientations, hindered rotation of the molecules, and, finally, nearly free 
rotation of the molecules. In the last two cases a phase transition takes place, as a rule, 
before the crystal melts, giving rise to a structure in which translational long-range order 
is preserved while the orientational order is lost. It is a characteristic property of crystals 
consisting of high-symmetry “globular” molecules like CH4, N2, adamantane (C10H16) or, 
in some degree, of “cylindrical” molecules like benzene, C2F6 or long-chain n-alkanes. 
They form high-temperature “plastic” or orientationally-disordered (commonly called 
ODIC: Orientational Disorder In Crystals) phases in which the rotational motion of 
molecules resembles their motion in the liquid state (Parsonage & Stavaley, 1972). In 
crystals consisting of molecules of a lower symmetry the long-range orientational order is 
preserved, as a rule, up to the melting points. 
In harmonic approximation, phonons and librons (rotational excitations) are treated as 

independent entities. Real phonons are, however, coupled together and with rotational 

excitations by anharmonic terms of the crystal Hamiltonian (Manzhelii et al., 1997; 

Lynden-Bell & Michel, 1994). Therefore, translational and orientational types of motions 

in molecular crystals are not independent of one another, but rather they occur as coupled 

translational-orientational vibrations. That involves considerable difficulties to describe 

this case with analytical expressions. As a consequence, a simplified model where the 

translational and orientational subsystems are described independently is usually used 

(Manzhelii et al., 1997; Kokshenev et al., 1997). The coupling produces a shift of phonons 

frequency with respect to the harmonic value as well as a broadening of bands, associated 

to the finite phonon lifetime. In such approximation the TO coupling results in an 

additional contribution to the thermal resistance of the crystal W=1/Λ. This additional 

thermal resistance may decrease if the frequency of reorientations becomes sufficiently 

large, so that the TO coupling reduces. The relative simplicity of the investigated 

molecular crystals made possible an appropriate theoretical interpretation and provided 

establishing of the general relationships in heat transfer that result from the presence of 

rotational degrees of freedom of the molecules. In the experimental part of the paper the 

results of study of isochoric thermal conductivity of solidified inert gases, simple molecular 

crystals and their solutions at T≥ΘD will be considered then the models intended to explain 

temperature and volume dependences of thermal conductivity will be discussed. 
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2. Experimental results. 

2.1 The solidified inert gases 
The solidified inert gases Ar, Kr and Xe are convenient object for comparison of 
experimental data with theoretical calculations of thermal conductivity of a lattice since they 
are simplest solids closely conformable to theoretical models. This fact stimulated a 
considerable number of experimental and theoretical works (see, for example, the review of 

Batchelder, 1977). At T≥ΘD the phonon-phonon interaction is the only mechanism, which 

determines the magnitude and temperature dependence of the thermal conductivity Λ in 
perfect crystals. If the scattering is not too strong and the picture of elastic waves can be 

used, theory predicts the thermal conductivity Λ∝1/T at fixed volume of the sample 

(Berman, 1976). The more rapid decrease of the thermal conductivity as Λ∝1/T2 observed in 
these inert gases under saturated vapour pressure was originally ascribed to scattering 
process with participation of four or more phonons (Krupski et al., 1968). Later, Slack, 1972 
suggested that the change of crystal volume with temperature by itself may lead to 

considerable deviations from the dependence Λ∝1/T because of a “quasi-harmonic” change 
of the spectrum of vibrational modes, and Ecsedy & Klemens, 1977 showed theoretically 
that four-phonon processes are expected to be weak even at premelting temperatures. 
Subsequent thermal conductivity studies of solid Ar, Kr and Xe at fixed density (Clayton & 
Batchelder, 1973; Bondarenko et al., 1982; Konstantinov  et al., 1988) confirmed that roughly 

the dependence Λ∝1/T is valid when T≥ΘD. Fig. 2 shows both isochoric for samples of 
different densities (Clayton & Batchelder, 1973) and measured under saturated vapour 

pressure P≅0,MPa, (Krupski et al., 1968) experimental data for solid argon in the W versus T 
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Fig. 2. Isobaric WP (Krupski et al., 1968) and isochoric WV (Clayton et al., 1973) thermal 

resistance W=1/Λ of crystalline argon for samples of different densities. 

coordinates, where W=1/Λ is the thermal resistance of crystal.  It is seen that appreciable 
deviations are observed at the highest temperatures, with the isochoric thermal conductivity 
varying markedly more slowly than Λ∝1/T or W∝T dependence. A similar behaviour was 
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also observed for krypton (Bondarenko et al., 1982) and xenon (Konstantinov et al., 1988). It 
was found that Λ can be described by the expression 

 ( )( )0
g

A T B V VΛ = + , (5) 

where A and B are constants independent on the temperature; V0 is molar volume at T=0K, 
and V is actual molar volume V=V(T). The Bridgman’s coefficients g for Ar, Kr and Xe were 
found in good agreement with calculated by Eq. 3 and they are equal to 9.7, 9.4 and 9.2 
correspondingly. 
The deviations observed were primary attributed to anharmonic renormalisation of the law 
of phonon dispersion at a fixed volume (Konstantinov et al., 1988). The quantitative 
calculation has not yet been carried out because of the complexity of model proposed. Later 
on the thermal conductivity of solid Ar, Kr and Xe was calculated within framework of the 
Debye model which allows for the fact that the mean-free path of phonons cannot become 
smaller than half the phonon wavelength (Konstantinov, 2001a). 

2.2 Nitrogen-type crystals and oxygen 
The N2–type crystals (N2, CO, N2O and CO2) consisting of linear molecules have rather 
simple and largely similar physical properties. In these crystals the anisotropic part of the 
molecular interaction is determined mostly by the electric-quadrupole forces. At low 
temperatures and pressures, these crystals have a cubic lattice with four molecules per unit 
cell. The axes of the molecules are along the body diagonals of the cube. In N2 and CO2 
having equivalent diagonal directions the crystal symmetry is Pa3, for the 
noncentrosymmetrical molecules CO and N2O the crystal symmetry is P213. In CO2 and N2O 
the anisotropic interaction is so strong that the crystals melt before the complete 
orientational disorder occurs. In N2 and CO the barriers impeding the rotation of the 
molecules are an order of magnitude lower; as a result, the orientational disordering phase 
transitions occur at 35.7 and 68.13K, respectively. In the high-temperature phases, N2 and 
CO molecules occupy the sites of the HCP lattice of the spatial group P63 /mmc. 
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Fig. 3. Isochoric (dashed lines) and isobaric (solid lines) thermal conductivities Λ of CO2 and 
N2O. 
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The thermal conductivity of solid CO2, N2O, N2 and CO was studied at saturated vapor 
pressure by Manzhelii et al., 1975. Isochoric thermal conductivity of CO2 and N2O was 
studied by Konstantinov et al., 1988b, and N2 and CO by Konstantinov et al., 2005b; 2006a.  
The data for CO2 and N2O is shown in Fig. 3, solid and dashed lines depict isobaric and 
isochoric thermal conductivity respectively. The isochoric thermal conductivity is 
recalculated to the molar volumes which CO2 and N2O have at zero temperature and 
pressure. The lower limits to thermal conductivity, calculated accordingly to Eq. 4 are 
shown at the bottom. The Bridgman’s coefficients g for nitrogen-type crystals were found in 
poor agreement with calculated by Eq. 3. The reason for it will be discussed later. 
Whereas isobaric thermal conductivity of CO2 roughly follows 1/T dependence, isochoric 
one deviates rather more strongly from the above dependence than in solidified inert gases. 
In N2O both isochoric and isobaric thermal conductivities deviates strongly from 1/T 
dependence. To reveal the features to be associated with the anisotropic component of the 
molecular interaction it is necessary to compare molecular crystals with rare-gas solids in 
the reduced coordinates (de Bour, 1948).  Such a comparison is of interest for the following 
reasons: the thermal resistance Wph-ph of an ideal crystal of an inert gas is due solely to 
phonon-phonon scattering. In CO2 an additional phonon thermal resistance Wph-lib (or Wph-rot) 
appears due to interaction phonons with librons (rotational excitations).  In the case of N2O 
the scattering resulting from dipole disordering is added to these phonon scattering 
mechanisms (Wdip). To a first approximation the total thermal resistance W is: 

 ph ph ph rot dipW W W W− −= + +  (6)  

It is convenient to make a comparison between the crystals mentioned because all of them 
have a FCC lattice.  A modified version of the method of reduced coordinates was used. It is 
important to note that in this case there is no need to resort to some approximate model or 

other. As a rule, the reducing parameters used are the values of Tmol=ε√ k , Wmol=σ 2 /k√ (m/ε), 
and Vmol=Nσ 3, were  ε  and σ  are the parameters of the Lennard-Jones potential, m is 
molecular weight and k is the Boltzmann constant. It is reasonable to use as an alternative to 
this the values of the temperature and molar volume of abovementioned substances at the 
critical points Tcr and Vcr. The choice of the given parameters is explained as follows. For 

simple molecular substances Tcr and Vcr are proportional to ε and σ 3, respectively. However, 
the accuracy of determination is much higher for the critical parameters than for the 

parameters of the binomial potential. It should be mentioned that the quantities ε and σ  
depend substantially on the choice of binomial potential and the method used to determine 
it. Temperature dependence of isochoric thermal resistances of Xe, CO2 and N2O in the 
reduced coordinates is shown in Fig. 4. It is seen that all the contributions to the total 

thermal resistance are of the same order of magnitude and the deviations from the W∝T 
dependence increase from Xe to N2O. The reason has to do with increasing of the phonon 

scattering and approaching of Λ to its lower limit Λmin as it is seen in Fig. 3. 
The behavior of thermal conductivity in the orientationally-ordered phases of N2 and CO is 
very similar to CO2 and N2O. In the orientationally-disordered β-phases isochoric thermal 
conductivity of all samples of different density increases with rise of temperature, whereas 
isobaric one is nearly temperature independent (see in Fig. 5 experimental data for N2; data 
for CO is very similar). In the framework of simple kinetic model, an increase of thermal 
conductivity with rise of temperature may be explained by an increase of the phonon mean-
free path because of the weakening of the effect of some scattering mechanism. It is logically 
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to assume that the interaction of phonons with rotational excitations provides such a 
mechanism. At the α→β transition and over the orientationally-disordered β-phase a 
gradual transition from librations to hindered rotation takes place. In contrast to libration, 
free molecule rotation does not lead to phonon scattering.  From the above it follows that 
there is a temperature interval where phonon scattering by the rotational excitations 
weakens with rise of temperature or, in other words, TO coupling decreases. The isobaric 
thermal conductivity is determined by partial compensation of this effect as a result of 
decreasing of thermal conductivity with rise of temperature due to thermal expansion. 
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Fig. 4. Temperature dependences of isochoric thermal resistance of Xe, CO2 and N2O in the 
reduced coordinates.  
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Fig. 5. Thermal conductivity of solid nitrogen. Solid lines are isochoric data for samples of 
different densities numbered from 1 to 4. Dashed lines are isobaric data.  
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Solid oxygen belongs to a small group of molecular crystals consisting of linear molecules. 
In contrast to the N2-class crystals having the orientationally ordered Pa3-type structure, 
solid oxygen, much like halogens, has a collinear orientational packing because the valence 
rather than quadrupole forces predominate in the anisotropic interaction. Besides, in the 
ground state the O2 molecule has the electron spin S=1 which determines the magnetic 
properties of oxygen. Another specific feature of solid O2 is the fact that the energy of the 
magnetic interaction makes up a considerable portion of the total binding energy. This 
unique combination of molecular parameters has stimulated much interest in the physical 
properties of O2, in particular its thermal conductivity. The thermal conductivity of solid O2 

was investigated under saturated vapor pressure in α, β and γ-phases over a temperature 

interval 1-52K (Ježowski, et al., 1993). The low-temperature α-O2 phase is orientationally and 
magnetically ordered. On heating to 23.9К, the structure changes into the rhombohedral 

magnetically-ordered β-phase of the symmetry R3m. This is the simplest orientational 

structure, similar to α-O2. On a further heating, orientational disordering (cubic cell, Pm3m 
symmetry with Z=8) occurs at T= 43.8K. Under atmospheric pressure oxygen melts at 54.4К. 

The thermal conductivity has a maximum in the α-phase at Т≈6K, drops sharply on a change 

to the β-phase, where it is practically constant, jumps again at the β→γ  transition and 

increases in γ-O2. The experimental results were interpreted as follows. In the magnetically 

ordered α-phase the heat is transferred by both phonons and magnons, and their contributions 

are close in magnitude: Λph≈Λm. On the α→β transition the thermal conductivity decreases 
sharply (~60%) because the magnon component disappears during magnetic disordering. 

The weak temperature dependence of the thermal conductivity in the β-phase was 

attributed to the anomalous temperature dependence of the sound velocity in β-O2 which is 
practically constant for the longitudinal modes and increases for the transverse ones. The 

growth of the thermal conductivity in γ-O2 was attributed to the decay of the phonon 
scattering at the rotational excitations of the molecules and at the short-range magnetic 

order fluctuations at rising temperature. The isochoric thermal conductivity of γ-O2 has been 
studied on samples of different density in the temperature interval from 44K to the onset of 
melting (Konstantinov et al., 1998b). More sharp increase of isochoric thermal conductivity 

was observed in γ-O2 than in the isobaric case.  

2.3 Methane and halogenated methanes 
The solid halogenated methanes consisting of tetrahedral molecules are convenient objects 
to investigate the correlation between the rotational motion of molecules and the behavior of 
thermal conductivity. Methane (CH4), and carbon tetrahalogenides (CF4, CCl4, CBr4 and CJ4) 
form high-temperature "plastic" or orientationally-disordered phases in which the rotational 
motion of molecules is similar to their motion in the liquid state. In crystals consisting of 
low-symmetry molecules such as chloroform (CHCl3), methylene chloride (CH2Cl2) or 
dichlorodifluoromethane (CCl2F2) the anisotropic forces are much stronger and the long-
range order persists in them up to the melting points. A special case is trifluoromethane 
CHF3, where the second NMR momentum decreases sharply above T=80К from 11.5G2 to 
3.0G2 immediately prior to melting at Tm=118K, which suggests enhancement of the molecule 
rotation about the three-fold axes. 
The molecule of methane can be presented as a regular tetrahedron with hydrogen atoms at 
the vertex positions and carbon atom in the center. The symmetry causes the molecule to 
exhibit permanent octupole electrostatic moment. At the equilibrium vapor pressure CH4 
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solidifies at 90.7K and displays unchanged crystallographic structure called phase I down to 
20.4K which is the temperature of phase transition to phase II. In both phases, the carbon 
atoms at the center of the tetrahedral molecule occupy sites of the face-centered cubic lattice. 
In the low-temperature phase II the orientation dependent octupole-octupole interaction 
leads to a partial orientational ordering. The crystal structure with six orientationally-
ordered and two disordered sublattices belongs to the space group Fm3c. The 
orientationally-ordered molecules at D2d site symmetry positions perform collective 
librations, while those at Oh positions rotate almost freely down to the lowest temperatures. 
In phase I all the tetrahedral molecules are orientationally-disordered, performing rotations 
which do not show any long-range correlation. CH4(I) is unique between ODIC molecular 
crystals since its molecular rotation is virtually free at premelting temperatures. The isobaric 
thermal conductivity of solid methane was measured within the temperature range of 21-
90K in phase I (Manzhelii & Krupski, 1968) and within the temperature interval of 1.2–25K 
in phase II (Jeżowski et al., 1997). The results obtained revealed an existence of the strong 
phonon scattering mechanisms connected with rotational excitation of the methane 
molecules. The isochoric thermal conductivity was studied by (Konstantinov et al., 1999) on 
samples with molar volumes 30.5 and 31.1 cm3/mole. The experimental data for the 
orientationally-disordered phase of CH4(I) is shown in Fig. 6. 
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Fig. 6. The isochoric thermal conductivity of solid methane for samples having molar 
volumes 30.5 (■) and 31.1 (●) cm3/mole together with the isobaric data (dashed line).  

It is seen that both isobaric and isochoric thermal conductivities first increase with rise of 
temperature, pass through a maximum and then decrease up to melting. Note, than regular 
„kinetic“ maximum of thermal conductivity is observed at considerably lower temperature 
in phase II (Jeżowski et al., 1997). Maximum shifts towards higher temperatures as the 
density of the sample increases. The Bridgman coefficient is equal to 8.8±0.4.  
The origin of such behavior of thermal conductivity is the same that for orientationally-
disordered phases of other molecular crystals, it is decrease of phonon scattering on 
rotational excitations of molecules. However, in contrast to “plastic” phases of other 
molecular crystals where rotation is hindered, methane molecules rotate almost freely at 
premelting temperatures. Above the maximum, phonon-rotation contribution Wph-rot to the 
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total thermal resistance W of methane tend to zero, and behavior of thermal conductivity is 
determined solely by increase of phonon-phonon scattering. It is clearly seen in Fig. 7, where 
the appropriate contributions were calculated using the method of reduced coordinates. The 
theoretical models proposed to describe thermal conductivity of solid methane will be 
discussed later. 
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Fig. 7. Contributions of phonon-phonon scattering Wph-ph and phonon scattering by 
rotational molecule excitations Wph-rot to the total thermal resistance W of solid methane 
samples having molar volumes 30.5 (1) and 31.1 (2) cm3/mole.  
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Fig. 8. The isochoric thermal conductivity of three solid CHF3 samples of different densities. 
Solid lines show smoothed values of isochoric thermal conductivity. Dashed line and 
rhombus are for the thermal conductivity of a free sample. 

Slow increase of isochoric thermal conductivity was also observed in the orientationally-
disordered phases of CCl4 (Konstantinov et al., 1991a) and CBr4 (Ross et al., 1984) at 
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recalculation the last experimental data to constant volume. The isochoric thermal 
conductivity in orientationally-ordered phases of halogenated methanes (CHCl3, CH2Cl2 and 
CCl2F2) decreases with rise of temperature deviating markedly from 1/T dependence like 
case of CO2 and N2O (Konstantinov et al., 1991b; 1994; 1995). An interesting behavior of the 
isochoric thermal conductivity was found in trifluoromethane CHF3 (Konstantinov et al., 
2009a).  CHF3 melts at Tm=118K, the melting entropy being ΔSf /R = 4.14. Neutron scattering 
investigations of the crystallographic structure of CHF3 revealed only one crystalline phase 
of the spatial symmetry P21/c with four differently oriented molecules in the monoclinic cell. 

The Debye temperature of CHF3 is ΘD=88±5K. Fig. 8 shows isochoric thermal conductivity of 
CHF3 for three samples of different densities in the interval from 75K to the onset of melting. 
The isochoric thermal conductivity first decreases with increasing temperature, passes 

through a minimum at T∼100K, and then starts to increase slowly. The weak growth of 
isochoric thermal conductivity with temperature in solid CHF3 suggests that the 
translational-orientational coupling becomes weaker in this crystal at premelting 
temperatures owing to the intensive molecule reorientations about the three-fold axes.  
Some parameters of the halogenated methanes discussed are presented in Table 1. 
 

Substance Tm, TI-II Structure z ΔSf/R ΘD, K g μ, D 

(I) 90.6 Fm3m 4 96 8.8 
CH4 

(II) 20.5 P43m 32 
1.24 

141  
0 

(I) 250.3 Fm3m 4  6.0 
CCl4 

(II) 225.5 C2/c 32 
1.21 

92 6.5 
0 

(I) 363 Fm3m 4 3.8 
CBr4 

(II) 320 C2/c 32 
1.3 62 

3.4 
0 

(I) 115.7 P42/n 8  4.5 
CHF2Cl 

(II) 59 P112/n 8 
4.25 

70  
1.41 

CHCl3 210 Pnma 4 5.4 86∗ 3.9 1.01 

CH2Cl2 176 Pbcn 4 3.13 115∗ 4.6 1.6 

CF2Cl2 115 Fdd2 8 4.2 80∗ 5.0 0.51 

CHF3 118 P21/c 4 4.14 88∗ 4.6 1.6 

* - Estimates obtained from IR and Raman spectra. 

Таble 1. Melting temperature Tm; phase transition temperature TI-II; structure and the 
number of molecules per unit cell z; melting entropy ΔSf /R; Debye temperature ΘD; 
Bridgman coefficient ln ln Tg ( / V)= − ∂ Λ ∂ ; dipole momentum of molecule μ.  

2.4 Some special cases: SF6 and C6H6 
Sulphur haxafluoride SF6 is often assigned to substances that have a plastic crystalline 
phase. Indeed, the relative entropy of melting ΔSf /R of SF6 is 2.61, which is close to the 
Timmermanns criterion. However, the nature of orientational disorder in the high-
temperature phase of SF6 is somewhat different from that of plastic phases in other 
molecular crystals, where the symmetries of the molecule and its surroundings do not 
coincide. The interaction between the nearest neighbors in the bcc phase is favorable for 
molecule ordering caused by the S-F bonds along the {100} direction, and the interaction 
with the next nearest neighbors is dominated by repulsion between the F atoms.  According 
to X-ray and neutron diffraction data a strict order is observed in SF6 (I) just above the phase 
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transition point. The structural dynamical factor ℜ characterizing the degree of the 
orientational order is close to unity in the interval 95-130K. This feature sets off SF6 from 
other plastic crystals, such as methane, carbon tetrachloride, adamantane and so on, where 
the long-range orientational order becomes disturbed immediately after the phase 
transition. Orientational disordering in SF6 starts to intensify only above 140K.  As follows 
from the analysis of the terms of the Debye-Waller factor derived from neutron-
diffractometric data for the high-temperature phase of SF6, the F atoms have large effective 

libration amplitudes. As the temperature rises, the amplitudes increase to 20° and higher, 
but the F localization is still appreciable near {100} direction. This implies that the 
orientational structure of SF6 (I) does not become completely disordered even at rather high 
temperatures. The disordering itself is dynamic by nature.  The increasing amplitudes of 
librations are not the only factor responsible for the increasing orientational disordering at 
rising temperature. It is rather connected with dynamic reorientations, which become more 
intensive due to frustrations of the molecular interactions. Owing to these features, SF6 
offers a considerable possibility for investigating the influence of wide-range rotational 
states of the molecules on the thermal conductivity in a monophase one-component system, 
where such states can vary from nearly complete orientational ordering to frozen rotation. 
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Fig. 9. Isochoric (Vm=58.25 cm3/mole) and isobaric thermal conductivity of solid SF6.  

Isochoric thermal conductivity of SF6 was studied by Konstantinov et al., 1992b, while 
isobaric one by Purski et al., 2003. The data are shown in Fig. 9. The isobaric thermal 
conductivity first decreases with increasing temperature and flattens out at premelting 
temperatures. The isochoric thermal conductivity first decreases with increasing temperature, 

passes through a minimum at T∼180K, and then starts to increase. Such behavior was 
attributed to decreasing of phonon scattering on rotational excitations of molecules with rise 
of temperature. 
Solid benzene has only one crystallographic modification under the saturated vapor 
pressure: it has the orthorhombic spatial symmetry Pbca (D2h15) with four molecules per unit 
cell. Benzene melts at 278.5К with entropy of melting ΔSf /R = 4.22, which is much higher 
that the Timmermanns criterion for ODIC phases. The Debye temperature of C6H6 is 120К. 
In the interval 90-120К the second NMR moment of C6H6 drops considerably as a result of 
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the molecule reorientations in the plane of the ring around the six-fold axis. The activation 
energy of the reorientational motion estimated from the spin-lattice relaxation time is 0.88 
kJ/mole. The frequency of molecule reorientations at 85K is 104 sec-1. On a further heating it 
increases considerably reaching 1011 sec-1 near Tm. The basic frequency of the benzene 

molecule oscillations about the six-fold axis at 273K is 1.05×1012 sec-1. Isochoric thermal 
conductivity of C6H6 was studied by Konstantinov et al., 1992a, while isobaric one by Purski 
et al., 2003. The data are shown in Fig. 10. 
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Fig. 10. Isochoric (Vm=70.5 cm3/mole) and isobaric thermal conductivity of solid C6H6.  

Like solid SF6 the isobaric thermal conductivity of benzene first decreases with increasing 
temperature and flattens out at premelting temperatures. The isochoric thermal conductivity 

first decreases with increasing temperature, passes through a minimum at T∼210K, and then 
starts to increase slowly. In contrast to SF6 where the rotation is multi-axial, molecule of 
benzene rotates about released six-fold axis. The increase of thermal conductivity with rise 
of temperature was attributed like to previous cases to weakening of phonon scattering on 
rotational excitations of molecules. 

2.5 Solid n-alkanes 
Normal alkanes (n-paraffins) of the CnH2n+2-type form a class of substances that are 

intermediate in changing–over to long–chain polymers. N–alkanes have a comparatively 

simple structure and a molecular packing: in the solid state the axes of all molecules are 

always parallel to one another irrespective of a particular crystalline modification. Owing 

to their relative simplicity, normal alkanes are naturally considered as the starting point 

for understanding the structural and thermophysical properties of more complex long–

chain compounds. N–alkanes exhibit an extremely diverse dynamic behavior both in the 

solid and liquid states. The melting temperature increases in this series of compounds 

with the length of the chain and its behavior is nonmonotonic: the n–alkanes with an odd 

number of carbon atoms (odd n–alkanes) melt at relatively lower temperatures than those 

with an even number of C atoms (even n–alkanes). An interesting effect is observed when 

the orthorhombic, monoclinic and triclinic structures alternate with the even and odd 
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members of the series. The even n–alkanes with n=6–24 (n=the number of C atoms) 

crystallize at low temperatures forming a triclinic cell. Heptane (n=7) and nonane (n=9) 

have an orthorhombic structure at low temperatures. Glass–like cylindrical “rotational” 

phases with a hexagonal symmetry were found in rather narrow temperature interval 

below the melting points of odd n–alkanes starting with n=9. The region of existence of 

the “rotational” phase increases with the length of the chain. Hexagonal modifications 

also occur in even n–alkanes starting with n=22. Some parameters of n-alkanes discussed 

above are submitted in Table 2. 

 

Substance structure Tα-β ,K ΔSα-β /R Tm,K ΔSm /R ΔSα-L /R Λα / ΛL 

C2 H6 P21/n, z=2 89.8 2.74 90.3 0.77 3.6 1.3 

C3 H8 P21/n, z=4 - - 85.5 4.95 4.95 2.2 

C6 H14 P ī, z=1 - - 177.8 8.85 8.85 1.9 

C9 H20 P ī, z=1 217.2 3.48 219.7 8.47 12.0 2.4 

C11 H24 Pbcn, z=4 236.6 2.9 247.6 10.8 13.7 2.4 

C13 H28 Pbcn, z=4 255.0 3.6 267.8 12.8 16.4 2.3 

C15 H32 Pbcn, z=4 270.9 4.1 283.1 14.7 18.8 2.1 

C17 H36 Pbcn, z=4 284.3 4.8 295.1 16.4 21.2 2.0 

C19 H40 Pbcn, z=4 296.0 5.6 304.0 18.8 24.3 2.0 

Table 2. The structure of n-alkanes; the temperature Tα-β  and the entropy ΔSα-β/R of the 

transition to the “rotational” phase; the temperature Tm and the melting entropy  ΔSm/R; a 

complete change of the entropy and variations of thermal conductivity Λα / ΛL during the 
ordered-phase – liquid transition. 

The isochoric thermal conductivity of methane, ethane, propane and hexane was studied 

by Konstantinov et. al., 1999a; 2006c; 2009b and 2010 correspondingly. Isobaric thermal 

conductivity of “odd” numbered n-alkanes with n=9-19 was investigated by Forshman & 

Andersson, 1984. The isobaric thermal conductivity of n-alkanes discussed above is 

shown in Fig. 11 along with the thermal conductivities of the liquid phases of these 

compounds measured immediately after melting. It was noted (Forshman & Andersson, 

1984) that the thermal conductivity of long–chain odd n-alkanes has some features in 

common. As the “rotational” phase melts, the thermal conductivity changes by about 35% 

and is independent of the chain length. The jump of the thermal conductivity on changing 

to the low temperature ordered phase decreases with the increasing length of the chain 

and makes ∼85% for n-undecane and ∼40% for n-nonadecane. The absolute value of 

thermal conductivity increases in the “rotational” phase with increasing of the chain 

length.  

According to our studies the isobaric thermal conductivity exhibits closely similar behavior 

in short and long–chain n-alkanes. On the transition from the ordered phase to a liquid the 

thermal conductivity of the n-alkanes starting with propane changes nearly twice and is 

independent of the total transitions entropy and the chain length. This change is much 

smaller in the case of spherical and elliptic molecules: for example, ΔΛ/ΛL is only 20–30% in 

methane and ethane. This can be related to the higher degree of orientational order in solid 

long–chain n-alkanes as compared to spherical molecules. The isochoric thermal 

conductivity of solid n-alkanes decreases with rise of temperature following a dependences 

www.intechopen.com



 Heat Transfer - Theoretical Analysis, Experimental Investigations and Industrial Systems 

 

172 

weaker than Λ∞1/T. The deviation of the isochoric thermal conductivity from the 

dependence Λ∝1/T in solid n-alkanes was explained proceeding from the concept of the 

lower limit to thermal conductivity (Konstantinov et. al., 2009b). 
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Fig. 11. Isobaric thermal conductivity of some n-alkanes. 

2.6 Mixed molecular crystals 
Mixed molecular crystals are convenient object for testing of the concept of the lower limit to 

thermal conductivity. In heavy solidified inert gases Ar, Kr and Xe the thermal conductivity 

approaches its lower limit at premelting temperatures. In the case when the thermal 

conductivity approaches Λmin with rise of temperature, the effect of impurities should 

manifest itself in a specific manner. Impurities cannot considerably decrease the thermal 

conductivity at premelting temperatures at which Λ has already been close to the minimum 

value. As temperature decreases the contribution of impurities to the thermal resistance of 

crystal W=1/Λ should increase.   The isochoric thermal conductivity of solid (CH4)1-ξKrξ, Kr1-

ξXeξ and (CO2)1-ξKrξ , (CO2)1-ξXeξ solutions (ξ=0÷1) has been studied by Konstantinov et al., 

2000, 2001a; 2002b and 2006b, respectively. Fig. 12 shows the temperature dependence of 

isochoric thermal conductivity for pure Kr and Kr1-ξXeξ solid solution reduced to samples for 

which condition of constant volume starts from 80K.  

It can be seen that the thermal conductivity of Kr1-ξXeξ solid solution decreases and its 

temperature dependence becomes weaker with an increase in Xe concentration. At ξ=0.14, 

the thermal conductivity virtually coincides with the lower limit to thermal conductivity 

calculated by Eq. 4. 

Kr and CH4 form a homogeneous solid solution with fcc structure above 30K at all ξ. They 

have similar molecule/atom radii and parameters of the pair potential. The Debye 

temperatures ΘD of Kr and CH4 are 72 and 143K respectively. At the same time the masses of 

the Kr atom and the CH4 molecule are very different, 83.8 and 16 atomic units, respectively. 

The isochoric thermal conductivity of (CH4)1-ξKrξ  solid  solutions has been studied  between 

40K and ~ 150K over the wide range of concentrations, (ξ=0.013, 0.032, 0.07, 0.115, 0.34, 0.71, 
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0.855, 0.937, and 0.97). A gradual transition from the thermal conductivity of a highly perfect 

crystal to the minimum thermal conductivity was observed as the crystal becomes 

increasingly more disordered (see Fig. 13). 
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Fig. 12. Smoothed values of isochoric thermal conductivity of pure Kr and Kr1-ξXeξ solid 

solution for samples, whose volume is constant starting from 80K. The dashed line is Λmin of 
pure Kr, calculated according to Eq. 4. 
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Fig. 13. The   concentration   dependence of the thermal conductivity of solid solution  

(CH4)1-ξKrξ  at T=75K and P=0. The horizontal lines are Λmin of pure Kr and CH4 under the 
same conditions calculated by Eq. 4. 

A strong decrease of the Bridgman coefficient was observed, from a value g≅9 characteristic 

for pure Kr and CH4 to g≅4 at only a tiny impurity concentration. 
An unusual effect of point defects on the thermal conductivity has been detected in (CO2)1-

ξXeξ and (CO2)1-ξKrξ solid solutions (Konstantinov et al., 2006b). In pure CO2 at T >150K the 
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isochoric thermal conductivity decreases smoothly with increasing temperature. In contrast, 
the thermal conductivity of CO2 /Kr and CO2 /Xe solid solutions first decreases, passing 
through a minimum at 200–210K, and then starts to increase with temperature up to the 
onset of melting. Such behavior of the isochoric thermal conductivity was attributed to the 
rotation of the CO2 molecules, which gain more freedom as the spherically symmetrical inert 
gas atoms are dissolved in the CO2. 

2.7 Short conclusion to the experimental part 

It has been demonstrated that the Λ∝1/T law is not obeyed in molecular crystals at all. 
Because of the strong translational-orientational (TO) coupling in the orientationally-
ordered phases molecular librations contribute considerably to the thermal resistance 

W=1/Λ of the crystal. As a result, the isochoric thermal conductivity approaches its lower 

limit Λmin at premelting temperatures and shows significantly more slow dependence than 
1/T. In the case of hindered or almost free rotation of molecules in crystal the isochoric 
thermal conductivity increases with rise of temperature. It is originated due to weakening of 
TO coupling as the rotational motion of molecules attains more freedom. The isobaric 
thermal conductivity is determined by the partial compensation of these effects as a result of 
decreasing of thermal conductivity with rise of temperature due to thermal expansion. 

3. Theoretical models. 

3.1 The Debye model of thermal conductivity 

In simple Debye model (see, for example, Berman, 1976) thermal conductivity Λ can be 
expressed as  

 
2
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⎝ ⎠

∫
¥

¥

¥
, (7) 

where v is the sound velocity; ωD is the Debye frequency ωD =v(6π2n)1/3; lΣ(ω) is the 
combined phonon mean-free path determined by the package of all scattering mechanisms 

 ( ) ( )
1

1
i

i

l lω ω
−

−
Σ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∑ , (8)    

If the scattering governed by U-processes only the mean-free path of phonons is 

 2( ) vul A Tω ω= , 
3 2

2 3

18

2
B

D

k
A

ma

π γ
ω

= ; (9) 

were m is the average atomic (molecular) mass; a3 is the volume per atom (molecule);  

γ=−(∂ lnΘD/∂ lnV)T  is the Grüneisen parameter. It is easy to check that in high-temperature 

limit T≥ΘD Eqs. 7 and 9 reduce to Eq. 1. In the case of point defect scattering the mean-free 
path of phonons is 
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 4( ) vil Bω ω= ; 
3

3

2 D

B
π
ω
Γ

= ; 
2

(1 ) 6
M a

M a
ξ ξ γΔ Δ⎛ ⎞Γ = − +⎜ ⎟

⎝ ⎠
 (10) 

where ΔM is the mass difference of atoms (molecules) of the impurity and host; Δa is the 
change of the lattice parameter upon introduction of impurity.  

3.2 Phonon-libron scattering  
The contribution of phonon-libron scattering was considered by (Manzhelii et al., 1975), and 
(Kokshenev et al., 1997).  In harmonic approximation decomposition of the interaction energy 
with respect to translational and angular displacements of molecules near equilibrium 
positions can be written as 

 , , , , ,
, ,

1 1

2 2
harm q q q j k j k j

q k j

H b b a aλ λ λ
λ
ω ε+ +⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ f ff f f

ff
¥ , (11) 

where ,qb λf ,  
,k j

af are the operators of deletion of phonons and librons; λ and j are the 
numbers of phonon and libron branches. So long as the anharmonicity of molecular 
librations is substantial even at low temperatures a self-consistent theory was used for 
description of the libron subsystem (see, for example, Manzhelii et al., 1997).  Only the 
interaction processes leading to the linear dependence of thermal resistance in high 
temperature T≥ΘD limit were taken into consideration 

 , ,

, ,

, , ,1
2

, , , ,

( ) / ( )k q k aq k
q q k q k k

aG
V qq a b b k q q G a N qa a b k k q

N

γ γ+ += Δ − − + Δ − +∑ ∑ , (12) 

where k≡ ( , )k j
f

, q≡ ( , )q λf
; N is number of lattice points; G=Uη (U is a constant of molecular 

field, η is a parameter of the long-range orientational order). In Eq. 12 only the members 
were taken into consideration which allow for conservation law of energy and quasi-
momentum. Three types of interactions were considered: 

 ,A APh Ph Lib+ ↔  (13a) 

 ( ) ( )  or ,A O OPh Ph or Lib Lib Ph+ ↔  (13b) 

 ´ ,APh Lib Lib+ ↔  (13c) 

where  PhA and PhO designate acoustic and optical phonons. The constants of interactions γ1 
and γ2 can be expressed via characteristic temperatures Θ and Θl of translational and 
librational spectrum of crystal: 

 γ1 = С1 ħ3 / Ma2Θ(JΘl)1/2 3/2
Bk , (14a) 

 γ2 = С2 ħ3 / JΘl (Ma2Θ)1/2 3/2
Bk , (14b)   

where J is a momentum of inertia of molecule. In quasi-harmonic approach the characteristic 
temperature is associated with a value of barrier G hindering of molecular rotation by the 
relation 
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 Θl = (3ħ2G/J 2
Bk )1/2, (15) 

An additional thermal resistance of crystal determined by scattering processes of the type 

(13a) and (13b) can be presented as 
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where γlib is Grüneisen parameter; gν and ,gν are degrees of degeneration of libron and 

optical branches; m and J are the mass and momentum of inertia of molecule; а is inter-

atomic distance; ϕν and ,,
fν ν are the surfaces of energy conservations in scattering processes 

like (13a) and (13b). In the simple Ziman model they can be written as: 

 2 3( 1)(6 4 )ν ν ν νϕ α α α= − − − ;     αν =θν/θ, (17a) 

 , , ,
3 2

, , ,
(12 )fν ν ν ν ν νσ σ= − ;      , ,,

/νν ν νσ = Θ −Θ Θ , (17b) 

where θν and ,νΘ are the frequencies of optical and phonon modes. 
The total thermal resistance of crystal at presence of phonon-phonon and two phonon-libron 

mechanisms of scattering in the reduced coordinates is: 

 W*=B*T* = * * 2
0 1 21 ( / )( )B T ma J S Sα β⎡ ⎤+ +⎣ ⎦ , (18) 

where coefficients *
0B , α and β are equal for the group of one-type crystals. By this means 

that an additional phonon-libron scattering leads in the first approximation only to 

renormalization of coefficient A in Eq. 9. 

3.3 Phonon scattering on rotational excitations of molecules  
In the orientationally-disordered phases of molecular crystals there is no long-range order, 
what suggests that the distinct pure libration modes cannot propagate in the crystal. 
Nevertheless, the correlation effects are still strong immediately after the phase transition 
and the short-range orientational order persists. In this region there is an additional phonon 
scattering at the short-range orientational order fluctuations and it becomes weaker on a 
further temperature rise. To explain the behaviour of the thermal conductivity in the 
orientationally-disordered phases of solid methane and deuteromethane Manzhelii & 
Krupski, 1968 used the analogy between molecular and spin systems. In a number of 
magnetic crystals the thermal conductivity was observed to increase above the magnetic 
phase transition. Reason for these anomalies is the scattering of phonons by critical 
fluctuations of the short-range magnetic order above the Neel point (Kawasaki, 1963). In the 
orientationally-disordered phases of the molecular crystals an increase of the isochoric 
thermal conductivity with increasing temperature is due to weakening of phonon scattering 
by fluctuations of the short-range orientational order. By existing analogy, using the 
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equations for one and two-phonon relaxation times of Kawasaki, 1963, the phonon mean-
free path of each of the examined scattering mechanisms can be expressed as 

 ( ) 5 2 2 ,I rotl B Tω ρυ ω= Λ  (19a) 

 ( ) 2 8 2 2 4 ,II B rotl C k C Tω πρ υ ω=  (19b) 

where B and C are anisotropic molecular interaction constants; Λrot and Crot are the thermal 
conductivity and the heat capacity of the rotational subsystem, respectively; ǒ is the density. 
It is assumed that B=C2 in the first approximation. The coefficient B can be roughly 
estimated from the dependence of the phase transition temperature Tf upon pressure 

( )1 ln /T fB T Pχ −= − ∂ ∂ , where χT is isothermal compressibility. The thermal conductivity of 

the rotational subsystem can be calculated from the known gas-kinetic expression 

2 11

3
rot rotC a τ −Λ = , where Ǖ is the characteristic time of the site-to-site transfer of the rotational 

energy and can be estimated as a mean period of the librations. Taking into account Eqs. (8, 
9, 19a, 19b), the phonon mean-free path in the orientationally-disordered phase can be 
written as 

 ( )
12 2 2 2 42

5 2 8
rot B rotB T C k C TAT

l
ω ωωω

υ ρυ πρ υ

−

Σ
⎛ ⎞Λ

= + +⎜ ⎟⎜ ⎟
⎝ ⎠

, (20) 

The validity of such description was corroborated subsequently by the first principles 
calculations of the thermal conductivity of methane by Yasuda, 1978. 

3.4 Phonons and “diffusive” modes 

Eq. 8 is inapplicable if l(ω) becomes of the order of or less than half the phonon wavelength 

/ 2 v /αλ απ ω= , where α is a numerical factor of the order of unity (Roufosse & Klemens, 

1974). 

 ( ) ( ) 0

0

, 0 ,

2, ,D

l
l

ω ω ω
ω

απυ ω α λ ω ω ω
Σ⎧ ≤ ≤⎪= ⎨ = < ≤⎪⎩

 (21) 

Taking into account Eqs. 9, 18, and 21 the phonon mobility edge ω0 is equal for 
orientationally-ordered molecular crystals to 

 0 1 ATω απ= . (22) 

Eq. 21 is the well-known Ioffe-Regel’ criterion, which presumes localization, so that we shall 
assume excitations whose frequencies lie above the phonon mobility edge ω0 to be 
“localized”. Since completely localized states do not contribute to the thermal conductivity, 
localization is assumed to be weak and excitations can hop from site to site in a diffusion 
manner, as Cahill et al., 1992 supposed. This point of view is, on the hole, consistent with the 
results of Feldman et al., 1993, where the theory for intermediate case (where disorder is 
sufficient for oscillations not to propagate but insufficient for localization) was formulated 
for amorphous silicon. The idea was that the dominant scattering was correctly described by 
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a harmonic Hamiltonian and reduced to a single-particle problem of decoupled oscillators. 
On this basis the thermal conductivity could be calculated exactly using a formula similar to 
the Kubo-Greenwood formula for the electric conductivity of disordered metals (Auerbach 
et al., 1984). The calculation performed by authors showed that in this case it is incorrect to 
indentify the Ioffe-Regel’ edge with localization. Although the oscillations dominating in 
high-temperature heat transfer lie near the Anderson localization edge, with the exception 
of narrow band of states they are not completely localized. The Boltzmann theory assigns to 
each vibrational mode with wave vector k

f
 and propagation velocity /v kω= ∂ ∂

ff
 a 

diffuseness Dk=vl/3, where l is the mean-free path length. The authors found that even 
though vibrations are not localized, a definite wave vector or velocity cannot be assigned to 
them. Nonetheless, they transfer heat and contribute to the thermal conductivity an amount 
of the order of Ci(T)Di /V for the ith mode, where the specific heat Ci(T) = kB for T ≥ ΘD,  Di is 
the temperature-independent “diffuseness” of the mode. The numerical calculation is in 
many respects similar to the calculation performed according to Boltzmann’s theory and it 
confirms the concept of a “minimum” thermal conductivity in the form it is discussed by 
Roufosse & Klemens, 1974; Slack, 1979 and Cahill et al., 1992.  
If ω0 ≥ωD, then the mean-free path length of all modes is greater than λ/2 and Eqs. 7 and 22 
come to Eq. 1 at T≥ΘD. If ω0<ωD, then the integral of thermal conductivity (7) splits into two 
parts which describe the contributions of low-frequency phonons and high-frequency 
“diffusive” modes to heat transfer: 

 
ph difΛ = Λ + Λ  (23) 

In the high-temperature limit T≥ΘD these contributions are 

 0
22 v
B

ph

k

AT

ω
π

Λ = ; 2 2
0( )

4 v
B

dif D

kα ω ω
π

Λ = − , (24)    

The experimental results for a number of crystals were computer-fitted by the least-square 
method (see for details Konstantinov et al., 2003b). Figs. 14 and 15 show the contributions of 
phonons and “diffusive” modes to the isochoric thermal conductivity of Kr and CO2. 
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Fig. 14. Contributions Λph and Λdif for Kr sample with molar volume 28.5 cm3/mole. 
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Fig. 15. Contributions Λph and Λdif for CO2 sample with molar volume 25.8 cm3/mole. 

It is seen that in Kr thermal conductivity possesses pure phonon character up to 80K. 
“Diffusive” modes arise above 80K and Λph≅Λdif at 160K. In CO2 where the strong additional 
phonon scattering arises due to TO coupling, “diffusive” modes arise at 50K and in the high 
temperature region most part of the heat is transferred by “diffusive” modes. 
The applicability of such description is supported by the straightforward calculations of the 
thermal conductivity by the method of molecular dynamics using the Kubo-Greenwood 
formula. Recently, the thermal conductivity of solid argon with the Lennard-Jones potential 
has been described using two contributions made by low-frequency phonons with mean-
free paths exceeding half the wavelength and high-frequency phonons with mean-free path 
of about half the wavelength (McGaughey & Kaviany, 2004). 
In the orientationally-disordered phases ω0 follows from Eqs. (20) and (21): 

 

( )
( )
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33 2

0 1
33 2
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u
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ω η η
η η

= − + − + +

− + +

 (25) 

where the parameters u and η are 
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The appropriate contributions to the thermal conductivity from the low-frequency phonons 
Λph and the high-frequency “diffusive” modes Λdif are 
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Figs. 16 and 17 show the ratio ω0/ωD upon temperature and contributions Λph and Λdif to the 
thermal conductivity of solid CO. The results were computer-fitted by the least-square 
method to the smoothed values of the thermal conductivity of the sample with Vm=27.93 
cm3/mole individually in the ǂ– and ǃ–phases. The polarization–averaged sound velocity 
corresponding to this density was 1280 m/s.  It was assumed that Crot varies linearly from the 
value 2R to R during ǃ–phase (Manzhelii et al. 1997). The varied parameters were ǂ and A in 
the ǂ–phase and ǂ, A and B in the ǃ–phase. The best agreement with the experimental results 
was achieved with ǂ=1.55 and A= 4.3 ×10 -16 s/K in the ǂ–phase and with ǂ=1.25, A= 1.0×10 -17 
s/K, B=5.0 and C=2.24 in the ǃ–phase. As the temperature rises, the ratio ω0/ωD decreases in 
the α-phase and increases in the β-phase. This increase can be attributed to decreasing of 
rotational correlations between the neighboring molecules become weaker. 
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Fig. 16. The ω0/ωD ratio upon temperature. 

It is seen that near T=45K most of the heat is transported by the phonons (the contribution of 
the “diffusive” modes is no more than 10%). However, immediately before the ǂ→ǃ 
transition over half of the heat is transported by the “diffusive” modes. In the 
orientationally-disordered phase the contribution of the “diffusive” modes immediately 
after phase transition is about two times larger than that of the phonons. As the temperature 
rises, the contribution of the “diffusive” modes decreases and that of the phonons increases 
because the scattering of the phonons by the short-range orientational order fluctuations 
becomes weaker due to their attenuation damping. The estimates show that both three-
phonon scattering and one-phonon scattering became the dominant mechanisms. The lower 
limit of the thermal conductivity is reached when the mean-free paths of all the modes are 
αλ/2. It absolutely agrees with Eq. (4) if the polarization-averaged sound velocity 
v=(vl+2vt)/3 and α=1 are used. 
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Fig. 17. Results of fitting ΛV and the contributions to the thermal conductivity of CO sample 

with Vm=27.93 cm3/mole from low-frequency phonons Λph and “diffusive” modes Λdif. 

3.5 Mixed crystals 
In the case if thermal conductivity is governed by combined U-processes and point defect 

scattering it follows from Eqs. 8,10 and 21 that 

 

( )
3 3

0 1

3

1
1 1 1 1

2

u u

B

ω
απ

⎡ ⎤= + + + − +⎢ ⎥⎣ ⎦
 (28) 

where 
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The appropriate contributions to the thermal conductivity from the low-frequency phonons 

Λph and the high-frequency “diffusive” modes Λdif are 
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Fig. 18 presents the relative low-frequency phonon contribution Λph/Λ to the thermal 

conductivity of pure Kr and the (CH4)1-ξKrξ solid solution. A gradual transition from the 

thermal conductivity of a highly perfect crystal to the “lower limit” to thermal conductivity 

Λmin was observed at T≥ΘD in the (CH4)1-ξKrξ  solid solution as the crystal becomes 

increasingly more disordered. It is seen that in Kr the thermal conductivity is of pure 

phonon character up to about 90K. As the CH4 concentration increases, progressively more 

heat is transferred by the “diffusive” modes, but even at the highest concentration (29% of 
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CH4 in Kr) and the highest temperatures (150K) an appreciable part of the heat (about 10%) 

is transferred by the low-frequency phonons. The values of α vary from 1 to 1.4. This 

supports the view about the vibrations localized in the λ/2 regions as the limiting case of the 

phonon picture (Cahill, 1992) and validity of Eq. (4) for prediction of the lower limit to the 

thermal conductivity of crystalline lattice. The ω0/ωD ratio decreases with rise of temperature 

and concentration of impurity CH4 in Kr. 
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Fig. 18. The relative low-frequency phonon contribution to the thermal conductivity of pure 

Kr and (CH4)1-ξKrξ  solid solution.    

3.6 The Bridgman coefficient g and molar volume dependence of thermal 
conductivity. 
Subsequent studies of the thermal conductivity as a function of pressure (Ross et al., 1984) 
and as a function of density (Konstantinov et.al., 1988-2010)  for a wide range of substances 
have shown that the values of the Bridgman coefficient vary, as a rule, in a range from 3–4 to 
10–15. The general tendency is for g to decrease with increasing structural disorder; the 
weakest volume dependence of the thermal conductivity is found in glasses and polymers. 
In three cases—the Ih phase of ice, the phase NH4F (I), and CuCl—the Bridgman coefficient 
is negative. This is explained by anomalous behavior of the transverse modes, the velocity of 
which decreases with increasing pressure. 
Values of the Bridgman coefficient g, measured at temperature T for some molecular 
substances are shown in Tab. 3. The problem of determining the Bridgman coefficient g in 

the present model reduces to finding the volume derivative of the expressions for Λph and 

Λdif.  Since (∂ lnA/∂ lnV)T= 3γ+2q-2/3 we obtain 

 
ph dif

ph difg g g
Λ Λ

= +
Λ Λ

, (31) 

where 

 gph = 5 γ + 4q – 1, (32a) 
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 γ0 = 3γ + 2g –1/3, (33) 

 

Substance T, K g Substance T, K g 

Ar 90 9.7 HMT 300 8.9
Kr 120 9.4 Adamantane 320 6.4
Xe 160 9.2 Adamantane 300 9.8

CO2 220 6.2 Cyclohexane 273 5.5
N2O 180 5.7 Naphthalene 300 8.5

α-N2 35 6.0 Anthracene 300 8.9

β-N2 60 4.3 Sulphure 300 6.0

α-CO 60 5.2 NH4Cl (II) 298 -6.2 

β-CO 70 4.0 NH4Cl (III) 160 8.6

γ-O2 55 3.8 NH4F (I) 298 -6.2 
CH4 (I) 90 8.8 NH4F (II) 380 7.5

CCl4 (Ib) 250 5.8 NH4F (III) 386 18
CCl4 (II) 225 6.5 H2O (Ih) 120 -3.9 
CBr4 (I) 360 3.4 H2O (VII) 286 4.8
CBr4 (II) 300 3.8 H2O (VIII) 246 4.8

CHF3 118 4.6 C2H6 88 5.5
CHCl3 210 3.9 C2F6 170 4.5
CH2Cl2 175 4.6 C3H8 85 7.5
CF2Cl2 115 5.0 C6H14 178 7.6

CHF2Cl(I) 115 4.5
C6H6 273 7.5

SF6 (I) 220 5.2

Table 3. Values of the Bridgman coefficient g, measured at temperature T. 

In our opinion, Eq. 31 has a general character. The main idea pursued in this paper is that 

the contributions to the molar volume dependence of the thermal conductivity from acoustic 

phonons and ‘‘diffusive’’ modes are sharply different. If the heat is transferred mainly by 

acoustic phonons (perfect crystals), then the Bridgman coefficient is described by Eq. 3. In 

the opposite case, when the thermal conductivity has reached its lower limit Λmin and all the 

heat is transferred by ‘‘diffusive’’ modes (amorphous solids and strongly disordered 

crystals), then for T>ΘD the lower limit to the thermal conductivity is described by Λmin∝ 

v/a2/3, and 

 g=γ+1/3 (34) 

This also follows from Eq. 32b in the limit ω0→0. In the general case the Bridgman coefficient 

g is a weighted average over the acoustic and ‘‘diffusive’’ modes. Fig. 18 shows the 

Bridgman coefficients calculated for CO2 and N2O according to Eqs. 31-33. The temperature 

dependence of g was not investigated experimentally. For CO2 and N2O the Bridgman 
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coefficients were determined only at the triple-point temperature. It is seen in Fig. 19 that 

the agreement between the experimental and computed values of g is completely 

satisfactory. It was also found for a number of molecular crystals and their solutions 

(Konstantinov et al., 2002b, 2003b). 
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Fig. 19. Temperature dependence of the Bridgman coefficient g for solid CO2 and N2O 
calculated according to Eqs. 31-33. Dark squares are experimental values (Konstantinov et 
al., 1988b). 

3.7 Lower limit to thermal conductivity and rotational energy transfer 

It was found that the values of coefficient α for molecular crystals, which express the ratio of 

the lower limit to thermal conductivity obtained by fitting procedure to Λmin calculated from 
Eq. 4 vary from 2 to 4 (Konstantinov et al., 2003). These values are much larger than for 

solidified inert gases, where α lies in the range 1.2-1.4. The most obvious reason for this 
difference is that the site-to-site rotational energy transfer must be taken into account. Eq. 4 
for the lower limit of the thermal conductivity is valid for substances consisting of atoms 
other than molecules with rotational degrees of freedom. Slack, 1979 has taken into account 
the possibility of thermal energy transfer by optical phonons in crystals consisting of atoms 
of different kinds. In molecular crystals heat is transferred by mixed translational–

orientational modes, whose specific heat for T≥ΘD saturates in proportion to the number of 
degrees of freedom. On this basis the following expression can be suggested for the lower 

limit of the thermal conductivity of molecular crystal Λ*min whose molecules have z 
rotational degrees of freedom.  

 
1/3

* 2/3
min

1
1 ( 2 )

2 6 3
B l t

z
k n v v

π⎛ ⎞ ⎛ ⎞Λ = + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, (35) 

It should be noted that although the Eq. 4 for Λmin describes well, over all, the thermal 
conductivity of amorphous substances and strongly disordered crystals, it is nonetheless 
semi-empirical. The assumption that the minimum phonon mean-free path length is equal 
to half the wavelength is only one of many possibilities. Thus, Slack, 1979 assumed that it is 
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equal to the phonon wavelength. In addition, the expression was obtained on the basis of a 
very simple Debye model which neglects phonon dispersion and the real density of states. 

The coefficient α is in such an event an integral factor that effectively takes account of the 
imperfection of the model. 

3.8 Further problems 
Up to now there is no consistent theory, describing thermal conductivity of molecular 
crystals from first principles proceeding from parameters of crystalline potential. Such 
description is only available for solid methane and deuteromethane (Yasuda, 1978). There is 
no absolute confidence that semi-empirical approach of Manzhelii et al., 1968 is completely 
adequate for describing of the thermal conductivity increase with rise of temperature in the 
case of hindered rotation of molecules, particularly in the case of one-axis rotation. Is there a 
clearly defined relationship between the frequency of molecular reorientations and the 
behavior of thermal conductivity? 
What is the value of the lower limit to thermal conductivity in molecular crystals? Is there a 
need to allow for the site-to-site rotational energy transfer? There are not enough arguments 
for benefit of adequacy of Eq. 35 for describing the lower limit to thermal conductivity in 
molecular crystals.    
There is a lack of data about the temperature dependence of Bridgman coefficient g in the 
wide temperature range to compare it with calculated values in the framework of the 
proposed model.  
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