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Data Retrieval and Visualization for Setting 
Research Priorities in Biomedical Research 

Hailin Chen and Vincent VanBuren 
Texas A&M Health Science Center, 

United States of America 

1. Introduction 

Over the past two decades, particularly after the completion of the human genome project, 
biomedical research has produced a huge amount of data. With the expansion of 
information technology, investigators have gained basic competency with integrating 
different resource data sets into unions. The basic principle of this integration is to use the 
co-occurrence of the same or similar (orthologous) elements in different data sets as links 
between those data sets. Increasingly more experiment-based databases have been 
established, which facilitates this integration of data sets. During this blooming period of 
biomedical research, high-throughput experimental data is fuelling systems biology 
research. In the pre-genomic era, researchers were only capable of conducting experiments 
with a single gene or a single protein at a time, which could not provide a global perspective 
on the molecular interactions that bridge the gap between external signal and internal 
response. Within the past two decades, several high-throughput technologies have been 
developed to address this difficulty. Expression microarrays detect the relative abundance 
of gene transcripts by comparing two or more biological conditions, and have become a 
common tool for screening thousands of genes for expression changes in response to a 
perturbation, or to track transcriptional changes in developmental processes. As a way of 
visualizing and interpreting the flood of data in recent years, the creation of biological 
networks from data became a prevalent target in biomedical research recently, including the 
construction of protein-protein interaction networks (PPN), gene regulatory networks 
(GRN), and metabolic and signaling networks and pathways, as well as disease-related or 
cell function-related networks. The integrative strategy of combining different data sets is a 
natural way of setting up networks. Also, based on the data obtained from high-throughput 
experiments, networks may be created by modeling the internal relationships of these data. 
Several popular analytical approaches are being utilized to model networks (Gebert, et. al., 
2007; de Jong, 2002).   
Boolean networks describe each element as a variable with the value 0 or 1 to represent the 
state of the element as ‘off’ or ‘on’, respectively. Modeling networks by means of Boolean 
network became popular in the wake of a groundbreaking study by Kauffman. Kauffman 
employed Boolean networks to model the global properties of large-scale regulatory 
systems, which is called Kauffman’s NK Boolean networks. An NK automaton is an 
autonomous random network of N Boolean logic elements with each element having K 
inputs and one output, all taking binary (0 or 1) values. If K is large, like K=N, the network 
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behavior is essentially stochastic. However, when K~2, the network behaves with a high 
degree of observed order. NK automata were thus condidered as a model of gene regulaory 
network. Kauffman noted that the case of K~2 was appropriate for modelling gene 
regulatory networks, especially in an evolutionary context (Kauffman, 1969). A Boolean 
network G(V,F) is defined by a set of nodes corresponding to genes V = {x1,…,xn} and a list 
of Boolean functions F = (f1,…,fn). The future state of an element is completely determined 
by the values of the states of other elements (regulators) by means of underlying logical 
Boolean functions that are defined as part of the model.  

Bayesian networks model the biological network with a directed acyclic graph.  For each 

element, a conditional distribution p( vx  | parents( vx )) is defined, where parents( vx ) 

denotes the variables corresponding to the direct regulators of the element. Together 

defining the Bayesian network, this conditional distribution for each element uniquely 

specifies a joint probability distribution p( x ). 

      ( )( ) ( | )v pa v
v V

p x p x x
∈

=∏  (1) 

Bayesian network modeling equation 

Differential equations extract the network from high-throughput experimental data by 
considering the instantaneous concentration of each element. The instantaneous 

concentration of each element is completely determined by the concentration ( nx ) of other 

elements providing a regulation function.   

                                       1( ,..., , )i
i n

dx
f x x t

dt
=  (2)

 
Differential equation modeling 

Co-expression models networks from statistical analysis, and may be based on a large 
number of data sets collected from public repositories.  Co-expression is often based on co-
variance analysis. However, comparison between the co-variances among data sets having 
different scales would be difficult. The Pearson correlation coefficient addresses this 
difficulty. It measures the co-expression between every two elements with the value in the 
range from -1 to 1, which allows networks to be established based on some threshold value 
for the magnitude of the correlation.  

    
cov( , ) [( )( )]

( , ) X Y

X Y X Y

X Y E X Y
corr X Y
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σ σ σ σ

− −
= =  (3)   

Pearson correlation coefficient equation 

Combining prior knowledge into the process of network inference is often accomplished 
with supervised learning algorithms. The basic principle is to use natural inductive 
reasoning for prediction of new regulations based on the similarity of their experimental 
profiles to that of known regulatory elements. Knowledge-based simulation is also called 
rule-based simulation in the field of artificial intelligenece. Rule-based simulations contain 
two parts, the set of facts and the set of rules.  Facts offer knowledge of each object in the 
network, while rules including a condition component and an action component make 
judgment on objects according to the conditions and operate upon the objects’ behavior via  
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actions once the conditions are satisfied. This simulation algorithm repeats the process of 
matching the facts in the knowledgebase against the conditions in the rule part and executes 
actions when the approriate conditions are satisfied (de Jong, 2002).  
A variety of analytical approaches are being used to construct networks from either 
established databases or from high-throughput experimental data. This has led to a need for 
tools to visualize and analyze these networks. This need stimulated the ongoing creation of 
numerous algorithms and software applications for constructing, manipulating and 
analyzing networks. Many of those are general-purpose programs with applications to most 
of the commonly employed types of complex networks, including social, transportation, 
communication, and financial networks. Typically, transcriptional regulatory models are 
constructed for a particular cellular process or physiological/disease pathway of interest. 
The construction of networks from established databases or from high-throughput 
experimental data offers a visual tool for developing new hypotheses regarding underlying 
molecular interactions. These new well-informed hypotheses will serve as the basis for 
conceiving new biomedical experiments to confirm or reject these predicted interactions, 
and thus serve an important role in setting research priorities. 
In this chapter, we are going to focus our attention on selected examples of data retrieval 
and visualization tools, including the STRING database and Cytoscape, and compare these 
popular tools with with our new web based software, StarNet and Cognoscente, for use in 
setting research priorities for biomedical studies.  

2. Data retrieval 

The STRING database was primarily constructed from the integration of phylogenetic 
profiles, a database of transcription units and a database of gene-fusion events by the Bork 
and Snel groups (Snel et al., 2000; von Mering et al., 2003; von Mering et al., 2005; von 
Mering et al., 2007, Jensen, et al., 2009). Users may infer putative protein-protein interactions 
with a confidence score based on the constituent relationships in this integrative database.  
Phylogenetic profiles are derived from an evolutionary tree. During evolution, functionally 
linked proteins tend to be either preserved or eliminated in new species simultaneously. 
This property of correlated evolution is characterized for each protein by its phylogenetic 
profile, and STRING encodes the presence or absence of an orthologous protein in every 
known genome.  Those proteins having matching or similar profiles have a strong tendency 
to be functionally linked. Transcriptional units (operons) are extracted from a number of 
genomes by identifying the conserved gene clusters. Genes in a transcriptional unit are 
hypothesized to be functionally linked. Gene-fusion events can be understood by the 
following example. The interacting proteins GyrA and GyrB subunits of E.coli DNA gyrase 
are orthologs of a single fused chain (topoisomerase II) in yeast. Thus, the similarities of 
GyrA and GyrB to some segment of topoisomerase II might be used to predict their 
functional interaction in E. coli. STRING is being developed as a multi-dimensional 
database by combining its three original database components (phylogentics profiles, 
transcription units, and and gene fusions) together with known protein-protein interactions, 
an expression database and a database of putative protein-protein interactions found via a 
text-mining search in Pubmed.  
Below we show an example of a STRING query (http://STRING-db.org/) of the protein-
protein interactions seeded by Gata4, a well-known transcription factor in cardiac 
development (Figure 1). 
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A                                                                                        B                    

 

                                                                               C 

 
                                                                               D 

 
E 

  
F 

Fig. 1. STRING search results for Gata4 from different databases: text-mining searching 
database (A), phylogenetic profiles (B),  transcription units database (C), gene-fusion events 
database (D) and known protein-protein interaction database (E). F gives a summary result 
of all searches, and includes a combined confidence score.  Higher scores indicate greater 
confidence in the putative interaction. Here the highest confidence is given to NKX2-5 as an 
interactive partner of Gata4, as this is supported with experimental evidence.  
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Fig. 2. Workflow of establishing the MySQL database for StarNet. 

StarNet is a web-based interface for creating coexpression networks from correlated 
microarray expression profiles, where the networks radiate from a selected seed gene 
(Jupiter & VanBuren, 2008; Jupiter et al., 2009). To build this tool, we collected microarray 
data for several species from NCBI’s Gene Expression Omnibus (GEO), which contains 
thousands of array experiments. Data was normalized and scaled using the justRMALite 
(Robust Multichip Analysis) package within the BioConductor suite of tools on the R 
statistical computing platform. Based on this normalized data, Pearson correlation 
coefficients were computed for all pairwise comparisons of genes to populate a MySQL 
database (Figure 2). The current version of StarNet, StarNet 2, expands the coverage from 
mouse to ten different species (human, rat, mouse, chicken, zebrafish, Drosophila, C. elegans, 
S. cerevisiae, Arabidopsis and rice) and offers two alternate data sets (Full data cohort & 
Development data cohort) for some of these species (human, rat, mouse and Drosophila). 
For each organism represented, data was collected from between 148 (rice) and 3,763 
(human) Affymetrix microarray samples (Table 1). In total, 12,762 arrays were used to build 
our database, which is approximately 2.7% of the samples in GEO (as of August 2010). 
StarNet allows cross-species comparisons by automatically doing gene lookups across 
known orthologs. StarNet identifies gene pairs with high magnitude correlations across a 
large number of experiments to offer strong statistical results that include confidence 
intervals. To support an interpretation of the generated coexpression networks, StarNet 
offers a database search of known interactions involving genes and gene products from the 
prescribed networks. Thus, while tools such as STRING provide a data integration strategy 
to retrieve likely functional protein-protein interactions, StarNet better facilitates 
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exploratory analysis of selected data. In comparison, StarNet retrieves high-ranking 
correlations between gene expression profiles constructed from a large collection of 
microarray data to iteratively build star networks around a gene of interest, while STRING 
retrieves putative relationships between elements via co-occurrence of the elements across a 
number of already established databases. STRING makes explicit predictions from multiple 
data sources, whereas StarNet provides multiple types of data that support the user’s ability 
to make their own inferences. StarNet additionally supports the user’s judgment by 
allowing greater flexibility in prescribing the relative size and topology of the networks 
created. 
 

 

Table 1. Expression microarray data represented in StarNet. The second column is the 
number of arrays used in the full condition, and the third is the number of arrays used in the 
development condition. This open-access table was reproduced from Jupiter et al., 2009. 

The sets of correlation coefficients calculated as described above for the MySQL database 
have a relatively large memory footprint and contain a large amount of data that is of little 
interest from our perspective (i.e. low magnitude correlations). Thus, this collection was 
trimmed by selecting the 100,000 highest magnitude positive and negative correlations for 
each cohort. As highly correlated groups of genes in a correlation network exhibit a high 
amount of interconnectedness, this distribution doesn’t include all genes on an array. To 
guarantee complete coverage for all genes on each respective platform, we constructed 
another sub-distribution through gene-by-gene extraction of the ten highest magnitude 
positive and negative correlations for the gene.  
Below we used the gene Gata4, the same example used above in a STRING query, as our 
seed gene in a StarNet query (http://vanburenlab.medicine.tamhsc.edu/StarNet2.html). 
On the StarNet query page (Figure 3), the user selects a data set cohort, which is correlation 
data for a collection of microarrays for a particular array platform (i.e. a particular 
organism), with options for ten species. There are two alternate data sets, a Full data set 
cohort and a Development data set cohort, available for rat, mouse, human and Drosophila. 
The Development data set is a subset of the Full data set, where the array data used in the 
Development cohort was derived from selected samples representing early embryos, 
embryonic heart, and adult heart. The Full data cohort was dervied from a heterogeneous 
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collection of samples from a variety of tissues types. The user may also select a  second 
cohort for pairwise comparison. The genecentric distribution, which was built by selecting 
high magnitude correlations on a gene-by-gene basis, is the default distribution because this 
distribution has complete coverage of the array platform. To create the genecentric 
distribution, the ten largest positive correlations to each gene were selected, where the p-
value of the null hypothesis correlation was less than 0.05 (a two-tailed t-test was used to 
compute p-values for each correlation coefficient). This was repeated for high magnitude 
negative correlations, and the union of positive and negative correlations was constructed.  
 

 

Fig. 3. Gata4 was used as the seed gene to start a search in StarNet of the mouse 
development data cohort, a set of precomputed pairwise correlations derived from selected 
microarray data in mouse. 

There are two additional classes of correlation distribution to choose from: 1. the genecentric 
construction was repeated, but constrained to those genes whose GO (Ashburner, 2000) 
annotation contains the term “transcription”; and 2. the same strategy was repeated for 
those genes whose GO annotation contains either of the terms “transcription” or “signal”. 
The number of connections each gene should make is specified by the user, with a default of five 
connections. This parameter specifies the number of highest-ranking correlations to draw as 
edges in the correlation network. The number of levels (default = two) specifies how many 
steps from the central node to expand the search.  With Gata4 as the seed gene, the default 
settings will retrieve the five highest magnitude correlated genes with Gata4 (level 1, Table 
2) and retrieves the five highest-magnitude correlated genes for each of those genes in the 
MySQL expression correletion database. The web interface of StarNet retrieves a table of the 
high magitude correlations, beginning with the high magnitude correlations with the query 
gene, and reports the 95%- and 99%-confidence intervals for each coefficient (Figure 4). 
Although the quick pace of biomedical research is continually providing an enormous 
quanity of experimental data, the synthetic analysis of that data to generate informed 
hypotheses is progressing at a much slower rate, and building models via systematic review 
of the literature can be a time-consuming and inefficient process for individual investigators. 
Cognoscente is a new tool under development in our group for querying and visualizing 
documented biomolecular interactions (Figure 5). It is a web-based database and freely 
available, with no required user registration to make queries. Cognoscente’s knowledgebase 
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can be utilized as a convenient tool for collecting prior knowledge to generate new 
hypotheses and refine established networks using supervised learning algorithms. 
Moreover, it offers users the ability to directly submit new interactions so that community 
support can drive the completeness of the knowledgebase. For quality assurance and 
attribution, registration is required to make new submissions to the database. 
 

Gene ID 1 Gene ID 2 Pearson Correlation P-Value Number Of Arrays 

14463 14465 0.7902 ~0 239 

12406 14463 0.7759 ~0 239 

14463 241556 0.7757 ~0 239 

11975 14463 0.7565 ~0 239 

14463 23871 0.7544 ~0 239 

14463 21412 0.7493 ~0 239 

14362 14463 0.7484 ~0 239 

11749 14463 0.7481 ~0 239 

14463 54195 0.7447 ~0 239 

Table 2. High ranking set of correlation coefficients for GeneID 11463 (Gata4). In the 
coefficient database, all the genes are indexed by the Entrez GeneID. The five highest-
magnitude correlated genes with 11463 (Gata4) are: 14465 (Gata6), 12406 (Serpinh1), 241556 
(Tspan18), 11975 (Atp6vDa1), and  23871 (Ets1). The five top-ranking correlations are 
outlined by the dashed box. 

3. Data visualization and analysis 

Appropriate visualization of biological data can be a very powerful tool for drawing new 
inferences from data. When used for the standard comparison of data from two samples, 
visualizations showing clear differences can often obviate the need for statistical analysis. 
Drawing graphs or networks is a powerful way to visualize a list of documented 
biomolecular interactions, or for associations that are imputed from similarity metrics. These 
types of visualizations can offer insights and understanding of complex relationships that 
cannot be obtained as easily by reflecting on a pairwise list of interactions or associations. 
In the previous section, we discussed how StarNet retrieves correlations based on a query 
gene of interest, and compared this functionality with how STRING retrieves predicted 
functional interactions.  In this section, we focus on how StarNet, Cognoscente and   
Cytoscape may be used to powerfully visualize biological data and knowledge. We discuss 
how StarNet creates visualizations of the correlative network topologically, as well as other 
visualizations provided by StarNet that support user interpretation of the biological 
relevance of the correlation networks. StarNet allows user control over the general size and 
topology of the networks produced, and performs a test of GO term enrichment for those 
networks. The new HeatSeeker module in StarNet 2 draws false color maps comparing two 
selected networks from different species or conditions. HeatSeeker makes an unbiased 
comparison by combining the lists from both networks and then comparing only those 
genes that share orthologs on both platforms. HeatSeeker thus offers insight into the 
differential wiring of gene regulatory networks among different species or conditions 
(Jupiter & VanBuren, 2008; Jupiter et al., 2009).   
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Fig. 4. Query results for the  star network of correlations seeded by Gata4.  

 

 

Fig. 5. Screen capture of an excerpt of the documented interactions involving Gata4 reported 
by Cognoscente.  
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Fig. 6. Screen capture of StarNet result for a query with Gata4 showing the highest 
correlated genes with Gata4 (Level 1) and the highest correlated genes with those first order 
correlates (Level 2).   

3.1 Visualization of correlation networks with StarNet and HeatSeeker 
In StarNet, networks are constructed using a radial layout based on the highest correlations 
for a gene (in this case, for Gata4), and is iteratively expanded according to the specified 
number of levels. Graphs are drawn using AT&T’s Graphviz drawing package 
(http://www.graphviz.org) using the twopi layout program (Figure 6). Edges standing for 
the correlations are colored such that darker edges represent stronger correlations. Lines 
connecting genes with positive correlations are drawn as shades of blue, and negative as 
shades of red. Gene nodes are color-coded according to their level with respect to the central 
node. 
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Fig. 7. Screen capture of StarNet Gene Ontology analysis. The first table shows genes 
retrieved by StarNet as part of the correlation network, where the gene is annotated with a 
Gene Ontology (GO) term that contains the word “transcription.“ This default behavior 
alerts the user to potential directionality of regulatory influences, where such genes are 
typically transcription factors, and thus may have some regultory influence over genes that 
they are highly correlated with. The second table shows part of the GO enrichment list, 
which provides tentative annotation for network function as a whole. For example, the GO 
term protein binding is one of the significantly enriched terms for the Gata4 correlation 
network.  

During the process of defining the topology of the network, two types of supporting 
analyses of this network are also performed. Enrichment of GO terms, which allows 
tentative annotation of the biological function of this network, is evaluated using the 
hypergeometric test (Figure 7). Orthologous genes that are on both array platforms (data 
cohorts) are identified for cross-cohorts analysis, then when the user clicks the ‘HeatSeeker’ 
button on the StarNet result page, HeatSeeker will draw false color maps arranged with 
complete-linkage hierarchical clustering of correlation distance between genes in the super-
network for each cohort (Figure 8). 
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Fig. 8. Screen capture of HeatSeeker results for the cross-species analysis between mouse 
and human for the Development data cohort of each species. The network was seeded with 
Gata4 as the query gene for StarNet analysis and visualization. Heatseeker makes an 
unbiased comparison between correlation networks by combining the gene lists of both 
networks and only displaying data for genes where orthologs exist for each organism, and 
the gene is surveyed on both array platforms. The third column of false color maps shows 
the differences in correlations between the two data sets. Each of the two rows of false color 
maps gives an alternative clustering of the data. 

3.2 Visualization of biomolecular interactions with cognoscente 

Cognoscente is a querying and visualization tool for drawing biomolecular interaction 
networks from documented interaction knowledge, and currently holds over 300,000 unique 
interactions. Cognoscente supports any organism supported by NCBI’s Entrez Gene 
catalog. We built Cognoscente as a MySQL database with a web-based front end. An 
example query with Gata4 returns all first order interactions across all known orthologs 
(Figure 9). Cognoscente addresses several specific visualization tasks for understanding and 
appropriatly interpreting interaction data. One of the visualization tasks that Cognoscente 
addresses is the sorting of interaction knowledge by species. Nodes in networks created by 
Cognoscente are partitioned according to the species corresponding to an ortholog for a 
given gene, and these partitions are color-coded by organism. Each partition is actually a 
hyper-node that may represent the gene, transcript, and protein corresponding to the gene 
symbol. These different forms are distinguished by the type of edge drawn to the node 
partition, which explicitly indicates protein-protein, protein-DNA, and other types of 
interactions (see the EDGE KEY in Figure 9). Cognoscente supports multiple simultaneous 
queries (Figure 10), multiple groups of simulataneous queries (up to three, where each 
group has a different color-coded box around nodes), and zeroth, first, and second order 
networks. Figures 9 and 10 show first order networks, where all direct interactions are 
identified. Zeroth order interactions are just those interactions between members of a query 
group, which may be useful for analyzing gene lists generated by identifying differentially 
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expressed genes from a microarray experiment, or from gene clustering analysis. A second 
order network shows all direct interactions with query genes and all interactions with the 
first order interactants. Second order networks are often very large. 
As more biomedical knowledge is acquired from experimentation, the inclusion of prior 
knowledge in the process of network inference plays an increasingly crucial role. Using 
correlation networks from StarNet and documented interaction networks from 
Cognoscente, we plan to utilize known interaction networks to trim and refine predicted 
network influences that arise from the correlation network, and thus provide an algorithm 
for defining provisional developmental and regulatory pathways by inference. 

3.3 General network visualization with cytoscape 

Cytoscape is a powerful, general-purposed, open-source network visualization tool that 
offers assistance in analyzing the networks it builds (Shannon et al., 2003; Maere et al., 2005). 
It was initially developed in 2001 by a small group of researchers and software engineers at 
the Institute for Systems Biology and has since grown into a worldwide community project. 
The Cytoscape Core handles basic features like network layout and mapping of data 
attributes to visual display properties. It is also designed to allow users to create plugin 
modules that undertake customized network analysis. Here we show an example network 
of yeast proteins from the galactose pathway (http://www.Cytoscape.org) (Figure 11). 
 

 
 
 

 

Fig. 9. Literature-based network for known biomolecular interactions, seeded by Gata4 and 
built with Cognoscente. The Gata4 gene, mRNA, and protein are all considered in this 
query, and different types of interactions are displayed with different types of edges. 
Interaction lookups are automatically performed across all known orthologs of Gata4, and 
the species corresponding to each documented is indicated by the node color.  
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Fig. 10. Cognoscente has several useful capabilities, including support for multiple 
simultaneous queries. Here some well known transcription factors involved in cardiac 
development were queried as a group (red boxes) to examine documented interactions 
between these genes and gene products, as well all other first-order interactions with the 
query set.  

Further analysis of this visualized network may be performed with a myriad of available 
plugins that provide numerous options for analytical functionality. As discussed regarding  
StarNet analysis, tests for GO term enrichment are also available in Cytoscape. One popular 
plugin, BiNGO (Maere et al., 2005), can be used to map functional themes of a set of 
elements in a network on the GO hierarchy (Figure 12). Networks built by Cytoscape may 
be partitioned into several sub-networks based on the clustering of the network elements 
using known functional or expressional data.  
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Fig. 11. A Cytoscape example. A known tabular network (an excerpt is shown on the left) 
was loaded into Cytoscape. Next, the topological network was generated by the software 
automatically (shown right).  Cytoscape offers more than 20 layout algorithms, including 
standard layout algorithms such as hierarchical, edge-weighted, and spring-embedded 
methods. Here we used was the spring-embedded layout.   

Cytoscape offers very diverse and flexible tools for network visualization and analysis. In 
comparison, StarNet has much more specific functionality. Except for a sample network of 
yeast galactose metabolism, Cytoscape doesn’t offer precomputed networks. Cytoscape 
instead relies on the user to provide a network. So, while StarNet offers a mechanism for 
specifying and creating networks from precomputed correlation data, Cytoscape offers an 
open, flexible environment for drawing and analyzing networks created outside of 
Cytoscape. 

4. Conclusion & discussion 

Computational network analysis is increasingly used to set biomedical research priorities. In 
particular, functional networks of genes may incorporate literally millions of experimental 
observations into probabilistic networks that identify genes likely to have interactive 
relationships in cells.  Let’s look at an example to illustrate the feasibility of this strategy. 
The biogenesis of ribosomes is an essential cellular process conserved across all eukaryotes 
and is known to require >170 genes for the assembly, modification, and trafficking of 
ribosome components through multiple cellular compartments. Li and colleauges employed  
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Fig. 12. The upper two panels shows the generation of the sub-network from the network of 
galatose pathway seeded by Gal4. In the lower two panels, the plugin BiNGO is used to 
assess GO term enrichment and build a hierarchical GO network. The lower right panel is 
an enlarged excerpt of the left panel (red box). The BiNGO network is visualized with a 
range of colors expressing the overrepresentation significance of the GO category 
represented by a node (darker nodes are more overrepresented). 

network-guided genetics to set their research priorities (Li et al., 2009). They constructed 
computational predictor of ribosome biogenesis genes based on functional genomics and 
proteomics analysis, including mRNA-expression data across different conditions, protein-
protein interaction datasets derived from literature, high-throughput yeast two-hybrid 
assays, affinity purification coupled with mass spectrometry, genetic interaction data, and in 
silico interaction datasets, along with analysis of comparative genomics datasets, covering 
95% of yeast proteome (Figure 13). Next they calculated the naïve Bayesian probability that 
each yeast gene belongs to the ribosome biogenesis pathway based on gene connectivity 
information in the established gene networks. From the top-scoring genes, 212 candidates 
were manually selected based on expert knowledge for experimental validation (Table 3).  
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Fig. 13. Predicted ribosome biogenesis genes are labeled as red nodes. Green nodes are 
known ribosome biogenesis genes, and yellow nodes are genes that are not related to 
ribosome biogenesis. Edge color indicates how an association was established: co-expression 
(light blue), affinity purification (red), yeast two-hybrid assay (green), genetic interaction 
(yellow), co-citation (gray), and literature curation (black). This open-access figure was 
reproduced from Li et al., 2009. 

After obtaining the 212 candidates by computational analysis, they employed different 

experimental methods to trim this gene group by experimental validation.  

Finally, they computationally predicted and experimentally validated at least 15 previously 

unreported ribosome biogenesis genes (TIF4631, SUN66, YDL063C, JIL5, TOP1, SGD1, 

BCP1, YOR287C, BUD22, YIL091C, YOR006C/TSR3, YOL022C/TSR4, SAC3, NEW1, 

FUN12) which can be found in Table 3.  Most of these genes have human orthologs and thus 

represent evolutionarily conserved components of this essential process in cells.  

This is an excellent example of the integration between computational network retrieval and 

experimental validation to set research priorites and efficiently determine gene functions.  A 

current goal for our group is to leverage the tools we have built to automate the prediction 

of functional networks, and to impute directionality of regulatory influences in these 

networks. Correlation doesn’t imply causality, although it suggests a close relationship. 

Thus, the networks built by StarNet do not indicate that a given gene in the graph has a 

direct influence on any other. Moreover, edges in a StarNet network do not even imply a 

direct association between a given gene pair. High ranking correlates, however, can be 

judged to have a higher probability of a direct interaction than low-ranking correlates, so 

ranking the correlation of expression from numerous experimental samples remains a 

simple yet powerful predictive tool. Recent work has emphasized the utility of correlation as 

a measurement of gene co-expression relationships. For example, Reiss and colleagues 

(Reiss et al., 2006) discussed co-expression, noting that correlative relationships changed 

depending on the milieu and the similar phenomenon has also been identified by other 

groups.  This idea provides a basis for comparing different data sets to assess differential 

wiring, as we have shown above with HeatSeeker.  

Our current aim is to leverage StarNet data together with prior knowledge contained in 
Cognoscente as the basis for inferring complete transcriptional regulatory networks using 
Bayesian inference or other machine learning approaches. Although a high magnitude 
correlation does not imply a direct regulatory relationship, we may suspect that genes with 
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highly correlated (or highly anti-correlated) expression have a higher probability of having a 
regulatory relationship than genes with lower magnitude correlations, and that ranking the 
magnitude of correlations will uncover gene pairs with the highest likelihood of having a 
regulatory relationship. Assuming that for a given gene x, that high ranking correlates have 
a higher probability of having a direct association than low-ranking correlates, we can begin 
to infer a network of the most likely direct associations. For example, where x and y are any 
two genes with a high correlation, potential intermediates between x and y might be 
identified by finding genes that have a higher magnitude correlation with x and y than x 
and y have with each other. Thus, for the expression profile of a given gene, a high-ranking 
correlation coefficient with another gene in our database may be interpreted as an assertion 
that the association has a relatively high likelihood of being proximal, given the available 
data. 
 

 

Table 3. Some of the 212 top-scoring candidate genes for a functional role in ribosome 
biogenesis. This open-access table is reproduced from Li et al., 2009. 
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StarNet’s usefulness for inference of regulatory influences is mainly limited to the domain 
of transcriptional regulation where the abundance of the transcript of a transcription factor 
is closely related to the activity of the transcription factor protein.  This will be true 
sometimes, as indicated by a high-magnitude correlation of coexpression between a 
transcription factor and its target. In such cases the predictive power of StarNet should be 
good. As there are many other forms of regulation, StarNet will not capture all regulatory 
influences via co-expression correlations. For example, the activity of the transcription factor 
NF-kB requires the activity of IkB kinase (IKK) to phosphorylate IkB, which activates NF-kB 
by disassociation of IkB from NF-kB. This means that we should not expect a high-
magnitude correlation between the NF-kB expression and the expression of its targets 
(Brasier, 2006; Gilmore, 1999; Gilmore, 2006; Perkins, 2007). Thus, incorporating proteomics 
data and and other types of data will be important for the inferring a complete regulatory 
network. One important computational approach is to discover transcription factor binding 
site (TFBS) by clustering genes based on their expression profiles, then search for conserved 
motifs in the DNA sequence upstream of these tightly clustered genes, which are then 
inferred to be the TFBS (Bortoluzzi et al., 2005; Pavesi et al., 2004; Roth et al., 1998). 
Directionality of regultory influences could be provisionally annotated using this strategy.  
The most important ingredient in the process of inferring transcriptional regulatory 
programs and setting research priorities is the judgment of experts. That judgment is greatly 
enhanced by the development of effective data retrieval and visualization tools. We believe 
that the best tools will augment the expert’s ability to make inferences and judgments, 
rather than attempt to replace that expert judgement. What this implies is that all 
predictions that are made by software should be easy to interpret, easy to trace back to the 
orginal data, and that the overall methodology employed in making a prediction is 
transparent to the expert. These principles will foster synergistic progress in biomedical 
research via improved communication and understanding between experimental biologists 
and computational biologists. 
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