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1. Introduction     

With Reinforcement Learning (RL), an agent learns optimal behavior through trial-and-error 
interactions with a dynamic environment. On each step of interaction, the RL agent receives 
as input some indication of the current state of the environment. The agent then chooses an 
action to generate as output. The action changes the state of the environment, and the value 
of this state transition is communicated to the agent through a scalar reinforcement signal. 
The agent behavior should choose actions that tend to increase the long run sum of values of 
the reinforcement signal[1].  
Cardiac Resynchronizayion Therapy (CRT) is an established therapy for patients with 
congestive heart failure (CHF) and intraventricular electrical or mechanical conduction 
delays. It is based on synchronized pacing of the two ventricles [5-7] according to the sensed 
natural atrium signal that determines the heart rhythm. The resynchronization task 
demands exact timing of the heart chambers so that the overall stroke volume for example is 
maximized for any given heart rate (HR). Optimal timing of activation of the two ventricles 
is one of the key factors in determining cardiac output. The two major timing parameters 
which are programmable in a CRT device and determine the pacing intervals are the 
atrioventricular (AV) delay and interventricular (VV) interval. 
The adaptive Cardiac Resynchronization Therapy (CRT) cardiac pacemaker control system 
[2-4], solves a reinforcement learning problem. Accordingly, an implanted cardiac 
pacemaker is an agent connected to its environment, the patient heart and body, through an 
implanted electric leads and a hemodynamic sensor. The agent chooses the actions to be 
delivered, which are the stimulation AV delay and VV interval parameters that are used to 
resynchronize the right and left ventricles contractions in each heart beat. The agent task is 
to learn the optimal AV delay and VV interval that maximize the long run cardiac 
performance in all heart rates. 
In order to simulate the resynchronization RL problem a responsive electro-mechanical 
heart model is needed for generating the expected environment responses to the agent CRT 
pacemaker stimulations with different AV delays and VV intervals. The responsive electro-
mechanical heart model needs to simulate both the heart electrical activity and the 
correlated heart and body mechanical activities responsive to electrical stimulation 
delivered in the right and left ventricles with different AV delay and VV interval. 
P. Glassel et al [8], provided a system for simulating the electrical activity of the heart that 
included a computer controlled heart model for generating and displaying the simulated 
electrogram signals. The simulation system included various hardware components and 
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software designed to realize the electrical activity of a responsive heart model.  However, P. 
Glassel et al heart model did not simulate the mechanical activity of the heart such as the left 
ventricle stroke volume, the volumes and pressures of the heart chambers during the systole 
and diastole cardiac cycles and hence cannot be used for developing a CRT device agent.   
A development system of adaptive CRT devices control systems that includes a simplified 
hemodynamic sensor model was presented by Rom [9]. The aim of the simplified 
hemodynamic sensor model was to allow a machine learning algorithm to be developed and 
tested in a simulation with no need to develop a full responsive electro-mechanical heart 
model. Developing a responsive electro-mechanical heart model is an immense task that 
needs a model of both the full cardiovascular system and the autonomous nerve system of a 
CRT patient.     
The hemodynamic effects of changes in AV delays and VV intervals delivered to CRT 
patients were studied by Whinnett et al [10].  In this study, the authors applied non-invasive 
systolic blood pressure (SBP) monitoring, by continuous finger photoplethysmography 
(Finometer), to detect hemodynamic responses during adjustment of the AV delay of CRT, at 
different heart rates. The authors presented CRT response surfaces of systolic blood 
pressure measurement dependence on paced AV delay and VV intervals. The CRT response 
surface changed from patient to patient and depended also on the heart rate. The authors 
suggested that optimization of CRT devices is more important at higher heart rates where 
CRT patients are more symptomatic. The authors concluded that continuous non-invasive 
arterial pressure monitoring demonstrated that even small changes in AV delay from its 
hemodynamic peak value have a significant effect on blood pressure. This peak varied 
between individuals, was highly reproducible, and was more pronounced at higher heart 
rates than resting rates. 
P. Bordachar et al [11] in a prospective echocardiographic study investigated the respective 
impacts of left ventricular (LV) pacing, simultaneous and sequential biventricular pacing on 
ventricular dyssynchrony during exercise in 23 patients with compensated heart failure and 
ventricular conduction delays. The authors concluded that the optimal interventricular 
delay was different in rest from exercise in 57% of the patients. In addition the authors 
showed that changes from rest to exercise in LV dyssynchrony were correlated with changes 
in stroke volume and changes in mitral regurgitation. 
Odonnell et al [12] showed, in 43 CHF patients after CRT implantation in a follow-up study, 
that the optimal AV delay and VV interval found with echocardiography changed 
significantly over 9 months  of follow-up period. 
G. Rocchi et al [13] showed recently that exercise stress Echo is superior to rest echo in 
predicting LV reverse remodelling and functional improvement after CRT. The authors 
reported that exercise stress Echo enables identification of CRT responders with about 90% 
success rate comparing to the current methods that give only about 70% success rate which 
is still a major problem with CRT today.    
According to the clinical studies recited above, the AV delay and VV interval need to be 
optimized for each CRT patient, may have different optimal values in exercise comparing to 
rest condition, and may change during 9 months follow up period.    
Several optimization methods of control parameters of pacemaker devices in correlation 
with hemodynamic performance were published. D. Hettrick et al [14], proposed to use the 
real time left atrial pressure signal as a feedback control mechanism to adjust one or more 
device parameters. D. Hettrick et al proposed to identify specific characteristics and 
attributes of the left atrial pressure signal that correlate to hemodynamic performance and to 
adjust the AV delay parameter of implanted dual chamber pacemaker accordingly. 
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R. Turcott [15], provided a technique for rapid optimization of control parameters of 
pacemakers and implanted cardioverters and defibrillators. Turcott proposed to pace the 
heart with a sequence of consecutive short evaluation periods of equal duration. Turcott 
proposed to monitor the transient cardiac performance during each of the evaluation phases 
and to estimate the optimal parameter settings based on changes in the transient cardiac 
performance from one parameter settings to another. 
Hettrick et al and Turcott proposed to use a gradient ascent scheme to adjust the AV delay 
and VV interval control parameters based on the left atrial pressure signal features (Hettrick 
et all), and changes in the transient cardiac performance from one parameter settings to 
another measured by any hemodynamic sensor (Turcott).  Hettrick et al and Turcott did not 
propose to use advanced optimization algorithms for the adjustments of the AV delay and 
VV interval. Gradient ascent methods may converge slowly, especially in a biological noisy 
environment, such as the cardiac system. Furthermore, gradient ascent methods may 
converge to a sub optimal local maximum. Hence, a simple gradient ascent method may 
result in sub-optimal therapy delivered to CRT patients. The mentioned gradient ascent 
methods disadvantages together with the clear clinical need of CRT patients to receive 
optimal therapy may open the door to a more sophisticated machine learning methods that 
can guarantee convergence and delivery of tailored to the patient optimal therapy. 
An adaptive CRT device control system based on reinforcement learning (RL) and using 
spiking neurons network architecture was presented in [2-4]. The adaptive CRT device 
control system architecture used a RL method combined with a Hebbian learning rules for 
the synaptic weights adjustments. The adaptive CRT device control system aim was to 
optimize online the AV delay and VV interval parameters according to the information 
provided by the implanted leads and a hemodynamic sensor.  
The adaptive CRT device control system used several operational states with a built in 
priority to operate in an adaptive state aimed to achieve optimal hemodynamic 
performance.  Other operational states were used to initialize the system and to operate as  
fallback states.  The adaptive CRT device control system architecture and operation is 
described in section 2 herein below.  
A Q Learning (QL) and a probabilistic replacement schemes were integrated with the 
adaptive CRT control system in [16] and are presented in section 3 herein below.  QL 
guarantees convergence online to optimal policy [17], and implemented in a CRT device 
controller, QL achieves optimal performance by learning the optimal AV delay and VV 
interval in all heart rates.   
With QL, an iterative equation that converges to the optimal policy is solved and a lookup 
table is calculated.  A probabilistic replacement scheme is utilized that replaces an input 
from a hemodynamic sensor with an input from the lookup table when selecting the next 
applied AV delay and VV interval.  The probability to replace the hemodynamic sensor 
input with the calculated lookup table value depends on the lookup table difference sign 
and magnitude that are used as confidence measure for the convergence of the QL scheme. 
QL combined with the probabilistic replacement scheme improve system performance over 
time that reach optimal performance even in the face of noisy hemodynamic sensor signal 
expected with the cardiac system, see Whinnett et al for example [10]. 
The major advantages of the adaptive CRT control system presented in this chapter are: 
1. QL scheme guarantees convergence to optimal policy which in the adaptive CRT 

application translates to a guarantee to learn the optimal pacing timings (i.e. guarantee 
to learn online the optimal AV delays and VV intervals).  
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2. QL converges to the optimal AV and VV values in rest and in exercise where CRT 
patients are more symptomatic and the converged optimal values are stored in a lookup 
table that guides the controller operations. 

3. Since the Adaptive CRT control system converges to the optimal AV and VV values 
online, a stress echo test proposed by P. Bordachar et al [11] and  G. Rocchi et al [13]  in 
a follow up procedure may not be needed.  

4. AV delay and VV interval optimization methods that use a pre-defined sequence of 
control parameters in a scan test may fail to converge to the true optimal values.  
Different pre-defined sequences of varying control parameters may lead to different 
heart conditions and responses, resulting in different estimated values of AV delay and 
VV intervals since the cardiac system is regulated by the autonomous nerve system and 
has a delayed time response till it stabilize in a new heart condition. 

In summary, an optimization method of the AV delay and VV interval that gradually 
converges to the optimal set of values is described in this chapter. The optimization method 
aim is to allow the cardiac system and the autonomous nerve system to stabilize gradually 
and reach optimum hemodynamic performance in correlation with a learned set of optimal 
control parameters delivered by the implanted pacemaker. Furthermore, the optimization 
method aim is to learn the optimal AV delay and VV interval in different heart conditions, 
and to identify and deliver the learned optimal values safely and efficiently. 
This chapter is organized as follows: In section 2 the adaptive CRT device control system 
architecture and operation are presented and the integration of QL and a probabilistic 
replacement scheme with the adaptive CRT device control system is presented in section 3. 
In section 4 simulation results performed with CRT response surface models are presented 
and section 5 is a conclusion. 

2. Adaptive CRT device control system architecture and operation  

The adaptive CRT device control system learns to associate different optimal AV delay and VV 
interval in each heart condition for a CHF patient treated with an implanted CRT device. The 
adaptive CRT control system uses a deterministic master module to enforce safety limits and 
to switch between operational states online with a build-in priority to operate in an adaptive 
state (implemented with a build-in priority state machine).  The adaptive CRT control system 
uses further a slave learning module that implements QL and a probabilistic replacement 
schemes. The learning module includes leaky I&F neural networks and sigmoid neural 
networks in order to learn to identify the heart state and to deliver optimal therapy. The 
adaptive control system uses both supervised learning and a model free reinforcement 
learning scheme. Supervised learning is used at initialization and fall back states of the priority 
state machine while QL is used in the higher priority adaptive atate. In the higher priority 
adaptive state, hemodynamic sensor signal and a QL lookup table calculted online are used. 
The control system architecture and operation is described herein below. 

2.1 Adaptive CRT device control system architecture 

The adaptive CRT device control system includes the following main modules: 
5. Spiking neurons network. 
6. Pattern recognition sigmoid neurons network. 
7. Built-in priority state machine. 
8. Configuration and register file. 
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2.1.1 Spiking neurons network architecture 

Neural network architectures are inspired by the human brain [18]. Spiking neural networks 
[19] are closer to biological neural networks and have advantages over other neural 
networks architectures (such as sigmoid neurons based network) in real time control 
applications. The spiking neural network perform parallel computation locally and 
concurrently, in real time. A leaky integrate-and-fire neuron module and a dynamic synapse 
module are the building blocks of the spiking neurons architecture.  
Leaky integrate-and-fire (I&F) neuron 
The leaky I&F neuron module is a simplified model of a biological neuron and is naturally 
adapted for control tasks where the learning objective is a time interval as in the adaptive 
CRT device where the learned control parameters are the AV delay and VV interval. The 
leaky I&F neuron is implemented as a digital state machine and two leaky I&F neurons 
networks are used, one for learning the right AV delay and the second for learning the left 
AV delay. The interventricular (VV) interval is the time difference between the right and the 
left optimal AV delays learned by the two leaky I&F neurons.  Each leaky I&F neuron is 
connected to a series of dynamic synapses, typically about 80 dynamic synapses are 
connected to each leaky I&F neuron.  The dynamic synapses weights are adjusted online, in 
each synapse locally and concurrently (in a hardware version of the controller), according to 
a set of learning rules in the non-adaptive state and to a second set of learning rules in the 
adaptive state.  
The leaky I&F neuron digital state machine is set initially to idle state waiting for an atrial 
sensed event. When an atrial sensed event occurs (sensed by an implanted lead in the right 
atria) the leaky I&F neuron state machine transits to a wait state where in each time step 
(typically a 1 milli second time step) the outputs of all dynamic synapses connected to the 
leaky I&F neuron are added to the value stored in a membrane potential register and 
compared with a threshold value. When the accumulated membrane potential value crosses 
the threshold value the state machine transits to a fire state, a spike is emitted through the 
leaky I&F neuron output, and the membrane potential register is reset to 0. The timing of the 
emitted spike measured relative to the sensed atrial event in milliseconds is the AV delay 
and the CRT device stimulates the right ventricles accordingly (the left ventricle is 
stimulated when the left leaky I&F neuron fires a spike similarly). Next the state machine 
transits to a refractory state for a predefined time period. The leaky I&F neuron state 
machine transits back to the initial idle state after the refractory period expired and it waits 
in the idle state to the next atrial sensed event.  
A leakage function that reduces the membrane potential value gradually at a pre-defined 
rate is implemented as a constant value subtracted from the membrane potential register at 
a constant rate. The leakage function adds timing sensitivity to the leaky I&F neuron and is 
used to generate a coherent operation of the dynamic synapse.  The I&F neuron membrane 
potential threshold is set to a value that can be crossed only when 3 to 5 dynamic synapses 
in a short time period emit a maximal post synaptic response (PSR). The dynamic synapses 
module is described below. 
Dynamic synapse 
Each dynamic synapse is implemented as a digital state machine. When an atrial event is 
sensed, a milli second timer starts to count and is used to trigger the dynamic synapses in a 
time sequence with a pre-defined time delay of 4 msec typically.  After receiving the trigger 
from the timer, each synapse state machine is propagated using it’s own local timer from 
state to state. The dynamic synapse states are: IDLE, WAIT, PRE-HEBB, HEBB, POST-HEBB, 
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REFRACTORY. Each dynamic synapse releases a post synaptic response in the HEBB state. 
The PSR magnitude is equal to the adjustable stored synaptic weight and is a time decaying 
function after the initial PSR is released.  All the dynamic synapses PSR’s are accumulated in 
the leaky I&F neuron membrane potential, and when the leaky I&F neuron emits a spike, 
the dynamic synapse state at the time of the spike in each synapse (may be WAIT, PRE-
HEBB, HEBB, POST-HEBB or REFRACTORY state) is captured and stored. The adjustments 
of the synaptic weights occur at the next sensed atrial event according to the locally 
captured synapse state and to the learning scheme (supervised learning in the non adaptive 
state and reinforcement learning in the adaptive state). Typically the synaptic weight stored 
in each synapse has values between 0 and 31.   
Dynamic synapse sub groups and time interleaving 
The dynamic synapses are divided to 5 sub groups according to heart rate ranges, from low 
heart rate range, to high heart rate range and are interleaved according to their excitation 
time order and heart rate group. The excitation timer triggers the appropriate dynamic 
synapses sub group according to the time relative to the sensed atrial event in each heart 
beat and to the current heart rate. The division of the dynamic synapse to sub groups allows 
learning and adjusting the optimal AV delay and VV interval in each heart rate range in real 
time throughout the CRT device operation in a patient body which is typically 5 to 7 years. 
This architecture allows efficient delivery and adjustment of the learned optimal values with 
faster convergence to the current optimal values.   
Supervised learning in the non adaptive state 
In the initial and the fall-back non-adaptive CRT state, the adaptive CRT device stimulates 
the two ventricles using the AV delay and VV interval values programmed by a clinician. 
The supervised learning task is to train the leaky I&F neurons to fire (i.e. emit a spike) at the 
programmed values relative to the sensed atrial event in each heart beat.  The learning task 
is to create significant and coherent post synaptic responses of 3 to 5 synapses at the proper 
times. The released PSR’s are then accumulated in the leaky I&F neuron membrane 
potential that crosses the threshold and fire at the target time (the programmed AV delay 
and VV interval). Generally, the learning rule increases the synaptic weights in those 
dynamic synapses that release a PSR just before the target time and reduces synaptic 
weights values of other dynamic synapses. 
 

 

Fig. 1. Hit count rate convergence.  
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A hit count rate is defined as the number of hits of the leaky I&F neuron spikes at a time 
window overlapping the target time (the programmed AV delay and VV interval).  The I&F 
neuron learns to fire at the target time window and the number of hits in a time frame of 32 
cardiac cycles  is used as a performance measure (shown in Fig. 1 above). When the leaky 
I&F neurons hit count rate achieves a high value (~30) in a time frame, the learning task is 
converged and a transition to the adaptive state is allowed. When the leaky I&F neurons hit 
count rate falls below a predefined value (~10) in a time frame, the learning task failed to 
and a transition to a lower priority state is forced by the build-in priority state machine. 
Reinforcement learning in the adaptive state 
In the adaptive CRT state a hemodynamic sensor signal responsive to pacing with different 
AV delay and VV interval is used as the reinforcement immediate reward [1]. Whinnett et al 
showed in a clinical study [10] that a CRT response surface with a global maximum as a 
function of the stimulation intervals AV delay and VV interval exist. The adaptive CRT 
device control system reinforcement learning scheme [2-4], assumes that a CRT response 
surface exists, and accordingly the synaptic weights reach a steady state values that causes 
the leaky I&F neurons to fire at the correct timings correlated with the CRT response surface 
maximum.   
The synaptic weights adjustments in the RL scheme are performed in two adjacent cardiac 
cycles as described in details below.  In the first cardiac cycle, a pacing register is increased 
or decreased by a pre programmed step, ∆. In the next cardiac cycle, the adaptive CRT 
controller stimulate the heart with the new value and the hemodynamic response is 
received. Using the current and the previous hemodynamic response and the stored HEBB 
states of each dynamic synapse, the synaptic weights adjustments are made in each synapse 
locally and concurrently.  
A random stepping mechanism is utilized as follows. In the first cardiac cycle a pacing 
register value is increased or decreased according to the I&F neuron spike timing, initialized 
by the sensed atrial event, and compared with the current pacing register value:  

 TSpike  >   P                               P = P + ∆ (1a) 

 TSpike  <   P                               P = P -  ∆ (1b) 

4 possible states are defined according to the flow diagram shown in Fig. 2 below  
 

 

Fig. 2. Synaptic adjustments flow diagram. 
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Where SV(P) and SV(P+/- ∆) are the hemodynamic response immediate reward stored in 

the current and the previous cardiac cycles (SV is the stroke volume extracted from the 

hemodynamic sensor signal and is used as a CRT response surface).  A hemodynamic 

sensor model [9] is used in the simulations presented in section 4 to extract the SV values 

with different AV delay, VV interval and heart rate. 

Next, according to the 4 possible states shown in Fig. 2 and the stored HEBB state in each 

synapse (PRE_HEBB, HEBB and POST HEBB) , the synaptic adjustments are : 

 Wi=Wi+λ when {PRE_HEBB, 3 or 1} or {HEBB, 4 or 2} or {POSTHEBB, 4 or 2} (2a) 

 Wi=Wi-λ when {HEBB, 3 or 1} or {POST HEBB, 3 or 1} or {PRE HEBB, 4 or 2} (2b) 

The synaptic weights are typically limited to the values of 0 to 31, with a a step value λ, 
typically 0.125. 
 

 

Fig. 3. Synaptic adjustments and the CRT response surface. 

In summary, the synaptic adjustments learning rule uses the Hebbian states stored in each 

dynamic synapse and the hemodynamic responses in two adjacent cardiac cycles to train the 

leaky I&F neurons to fire at the optimal timing that correlates with the maximal value of the 

CRT response surface (as a result of coherent release of several dynamic synapse PSR’s at 

the approperiate learned time). The adaptive CRT device control system learns to track the 

CRT response surface maximum online. When the heart rate changes, the CRT response 

surface shape changes too [10], and new optimal AV delay and VV interval values are 

learned and other steady state values of  synaptic weights are obtained and stored at the 

dynamic synapses.  Since these changes of the CRT response surface shape and the 

correlated optimal AV delay and VV interval are learned and stored at the dynamic 

synapses continuousuly in both the non adaptive and adaptive CRT states, the method 

maximizes the long term sum of the immediate rewards (i.e. the hemodynamic responses).  

In section 3 a QL scheme is presented that use Watkins and Dayan iterative equation and 

adds a probabilistic replacement scheme to QL [16]. 
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2.1.2 Pattern recognition sigmoid network architecture 

The pattern recognition sigmoid network includes two sigmoid neuron networks where each 
network has 16 sigmoid neurons in a layer, 16 synapses are connected to each sigmoid neuron, 
3 hidden layers and one linear output neuron. The two sigmoid networks are trained by a 
standard supervised learning delta rule [18]. The inputs to the pattern recognition networks 
are temporal patterns of the last 16 hemodynamic sensor responses stored at the controller 
memory in each heart beat. The supervised training values that the sigmoid network recieves 
every heart beat is the firing time of the leaky I&F neurons relative to the sensed atrial signal, 
i.e. the right AV delay for one network and the left AV delay for the second network. The 
pattern recognition networks learns to associate the learned optimal AV delay and VV interval 
of the leaky I&F neurons network with a temporal patterns of hemodynamic responses, i.e. 
hemodynamic performance signals exteracted from the hemodynamic sensor. Hence, the 
pattern recognition network learns to associate optimal AV delay and VV interval with a heart 
condition characterized by the temporal patterns of hemodynamic sensor. The operation of the 
build-in priority state machine described below depends on the successes and failures of the 
pattern recognition network to output the correct AV delay and VV interval values comparing 
to the values obtained by the leaky I&F neutons.     

2.1.3 Configuration and registers file  

The configuration and register file unit stores programmable parameters, such as the initial 

AV delay and VV interval, and other parameters needed for the initialization of the adaptive 

CRT control system. The programmable values of the AV delay and VV interval are used in 

the initialization and fall back non adaptive CRT state while in the non adaptive state the 

adaptive CRT device controller deliver stimulations with the learned optimal AV delay and 

VV intervals that correlates with the maximal hemodynamic responses values of the CRT 

response surface. 

2.1.4 Build-in priority state machine 

Fig. 4 shows the adaptive CRT priority state machine that has a build in logic that 
continuously directs the state machine to prefer and to transit to the highest priority 
adaptive state [21]. Switching to higher priority states require meeting convergence criteria 
and failing to meet convergence criteria results in transitions back to lower priority states.   
The lower priority initial and fallback state, the non adaptive CRT state, is the starting state. 
In the non adaptive CRT lower priority state, the leaky I&F neurons networks adjust their 
synaptic weights until convergence conditions are met (hit count rate is high) and the build-
in priority state machine can switch to a higher priority state, delivering optimal therapy 
with best hemodynamic performance. The build-in priority state machine in the higher 
priority adaptive state is guaranteed to deliver the optimal AV and VV Intervals using QL 
and a probabilistic replacement scheme. In the non adaptive CRT lower priority state the 
AV delay and VV interval programmed by a clinician are delivered as initialization and 
safety fallback values. The adaptive CRT build in priority state machine operation and 
switching conditions are described below. 
Non-adaptive CRT state 
In the non adaptive CRT state, the CRT device uses a programmed AV delay and VV 
interval delivering biventricular pacing with fixed AV delay and VV interval. In the non-
adaptive CRT state, a leaky integrate and fire (I&F) neurons synaptic weights are trained 
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using a supervised learning scheme and the synaptic weights reach a steady state values 
that bring the leaky I&F neurons to fire at the programmed AV delay and VV interval 
timings with high hit count rate as shown in Fig. 1 above, and after convergence is achieved 
switching to adaptive state is allowed. 
Gradient ascent (GA) state 
In the GA CRT state the AV delay and VV interval values are changed according to a 
random stepping mechanism (see equation 1a and 1b above), and the leaky I&F neurons 
synaptic weights are trained using a Hebbian and reinforcement learning scheme shown in 
Figs. 2 and 3 above. The leaky I&F neurons synaptic weights reach a steady state values that 
bring the leaky I&F neurons to fire at the optimal AV delay and VV interval correlated with 
the maximum of a CRT response surface extracted from a hemodynamic sensor that reflect 
for example the stroke volume dependence on the changing AV and VV delays. The GA 
scheme is designed to track continuously the maximum stroke volume on the CRT response 
surface as a function of pacing intervals in all heart condition. The leaky I&F neurons output 
the learned optimal pacing intervals with changing heart rates efficiently using a division of 
the dynamic synapses to sub groups according to the heart rate range.   
QL state 
In the QL state, the QL lookup table calculated according to Watkins and Dayan iterative 
equation [17], are used in addition to the hemodynamic sensor input according to a 
probabilistic replacements mechanism described in section 3. Q Learning combined with the 
probabilistic replacement mechanism enables the system to perform optimally also in a 
noisy biological environment and to improve the overall system performance online using 
its own predictions. The QL state brings the best hemodynamic performance, learned from 
the patient hemodynamic responses. The Adaptive CRT build-in priority state machine 
directs the control system to this highest priority QL state continuously [21]. 
Fail QL state 
In the FAIL-QL state the pattern recognition sigmoid neurons networks re-adjust their 
synaptic weights in order to map the input temporal patterns of CRT response with the 
leaky I&F neurons networks outputs. 
Switching criteria 
Switching between the four states occurs automatically back and forth during operation 
according to the heart condition and system performance with a build in preference to 
operate in the QL state that brings the best hemodynamic performance.  
Switching from the non-adaptive CRT state to the GA state occurs according to convergence 
of the leaky I&F neurons networks supervised learning scheme in the non-adaptive CRT 
state. The two leaky I&F neurons (one for the right AV delay and the second for the left AV 
delay) need to hit a target times with high rates in a time frame in order to enable a 
transition as shown in Fig. 1 above.  
Switching from the GA state to the optimal QL state occur according to successful 
association of the temporal pattern recognition sigmoid neural networks predictions 
(predicted AV delay and VV interval) compared with the I&F neurons network predictions. 
A hit count rate is calculated for the pattern recognition sigmoid neural networks similar to 
the hit count rate calculated for the leaky I&F neurons and the hit count rate value of the 
sigmoid neural networks are used as a performance measure that allows transition to the QL 
state when it crosses a predefined threshold value.   
Fallback from the GA state to the non-adaptive CRT state occurs according to pre-defined 
system failures that can be for example too low or too high AV delay and VV interval 
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(crossing pre-defined safety limits), too low or too high heart rate (or other arrhythmia 
detected) or a poor neural networks performance expressed as a too low hit count rate of the 
leaky I&F neuron due to sudden drifts of the networks outputs.    
Fallback from the QL state to the FAIL QL state occurs if too low hit count rate of the 

temporal pattern recognition sigmoid neurons networks are obtained. Fallback from the QL 

state to the FAIL QL state occurs when a sudden change in the heart condition occurs 

resulting in unfamiliar to the pattern recognition neural networks temporal patterns of 

hemodynamic sensor values. In such case, the pattern recognition sigmoid neurons 

networks need to learn to associate the new temporal patterns with new learned optimal 

values achieved by the leaky I&F neurons network in the new heart condition in order to 

switch back to a higher priority state. 

 

 
Fig. 4. Build-in priority state machine 

2.2 Device optimization during Implantation   

Due to the complexity and the cost of the follow up procedures using echocardiography, 

about 80% of CRT patients are not optimized in the US according to studies presented in 

Cardiostim conference, France 2006.  It is known that more then 30% of CRT patients do not 

respond to CRT and that CRT non-responders are identified only after 3 to 6 months with 

quality of life (QOL) questioners or 6 minutes hall walk distance test.  

The CLEAR study [22], with 156 pateints enrolled in 51 centers in 8 countries, demonstrated 

reduced mortality and heart failure related hospitalization in patients whose CRT device 

was optimized on a regular basis. Final results showed that regular optimization of CRT 

using Sorin Group’s SonR sensor technology improved clinical response rate to 86% as 

compared to 62% in patients recieving standard medical treatment.    

An adaptive CRT device, presented in this chapter, may be used to validate and identify 

responders to CRT in acute way[20]. The RL algorithm that changes automatically pacing 
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delays and converge gradually to maximal stroke volume of a CRT response surface will 

enable a clinician to identify a responder in 2-5 minutes during CRT implantation as 

simulated in Fig. 5 below.  A clinician may monitor the device operation on a programmer 

screen and validate the hemodynamic improvement according to a CRT responder curve 

shown in Fig. 5. Optimal CRT and lead positioning during CRT device implantation may 

turn a non-responder to a responder and a responder to a better responder [6]. The adaptive 

CRT device implant may allow a clinician using a responder curve to change and validate 

lead position and achieve optimal lead positioning sites during the implantation procedure. 

Hence, in addition to the potential long term benefits of a machine learning based adaptive 
CRT device control system, aimed to manage an implanted CRT device continuously in a 
patient body for typically 5 to 7 years, the adaptive CRT device control system presented in 
this chapter may allow: 
1. Acute Identification of CRT responders during implantation procedure. 
2. Optimal lead positioning validation during implantation procedure. 
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Fig. 5. CRT responder curve 

3. Q Learning and cardiac resynchronization therapy 

“Reinforcement learning differs from the more widely studied problem of supervised 

learning in several ways. The most important difference is that there is no presentation of 

input/output pairs. Instead, after choosing an action the agent is told the immediate reward 

and the subsequent state, but is not told which action would have been in its best long-term 

interests. It is necessary for the agent to gather useful experience about the possible system 

states, actions, transitions and reward actively to act optimally. Another difference from 

supervised learning is that on-line performance is important; the evaluation of the system is 

often concurrent with learning”[1]. 
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Watkins and Dayan QL is a model free reinforcement learning scheme where the agent 
converge to the optimal policy online solving an iterative equation, shown below, and 
without apriori knowledge of the environment states transitions [17].  

 (S,A)= Q(S,A)+ α( R(S,A)+ γ Q max A (S,A) -Q(S,A)) (1)  

A is the agent action, S is the environment state, Q(S,A)  is the expected discounted 
reinforcement of taking action A in state S, R(S,A) is an immediate reward response of the 

environment, α is a small learning rate factor (α << 1 ), γ is a discount factor (smaller then 1), 
Q max A (S,A) is the learned optimal policy, i.e. the optimal action A that give maximum Q 
value at a given state, S, out of the possible set of actions A.  The converged solution of 
Watkins and Dayan iterative equation is stored in a lookup table. 
With a CRT device, the two parameters that need to be optimized are the AV delay and the 
VV interval. Watkins and Dayan QL lookup table is calculated for each configuration of AV 
and VV values and for each configuration the possible actions assumed are limited to an 
increase or a decrease by constant value ∆P at a time (typically 5 ms step size is used) 
applied in the next cardiac cycle.  

 (S,A) = Q(AV, VV,  AV +/- ∆P, VV +/- ∆P) (2)  

A represents the pacemaker stimulation timings, AV delay and VV interval, S is the heart 
hemodynamic performance extracted from a hemodynamic sensor signal, Q(S,A)  is the 
calculated lookup table using a specific AV delay and VV intervals parameters and action A, 
R(S,A) is the immediate reward (a stroke volume  extracted from the hemodynamic sensor 
signal as an examples). Q max A (S,A) is the converged  Q value expected with the optimal AV 
delay and VV intervals and optimal action A.  
Watkins and Dayan proved [17] that by solving the iterative equation, the agent learns the 
optimal policy in a model free reinforcement leaning problem with a probability of 1 when 
the action space is visited enough times such that exploration of the action space is 
sufficient. The importance of Watkins and Dayan proof, adopted here for CRT pacemakers, 
is that the stimulation timings obtained by solving the iterative equation are guaranteed to 
converge to the optimal AV delay and VV without making any assumptions regarding the 
CRT responses surface shape. The guarantee to converge to the optimal AV delay and VV 
interval is the valuable benefit of using a sophisticated machine learning method, such as 
QL, in a CRT pacemaker. Since the AV delay and VV interval parameters are crucial for the 
success of the therapy [10-13, 21], the guarantee to converge to the optimal AV delay and VV 
interval is an important advantage over other optimization methods that do not guarantee 
convergence to optimal values. Furthermore, this advantage should open the door to 
implementation of machine learning methods, such as QL, in implanted medical devices 
such as CRT pacemakers and defibrillators. 
In the adaptive CRT control system presented here two control parameters, the AV delay 
and VV interval, were optimized at different heart rates. The QL scheme will be even more 
beneficial if more control parameters are needed to be optimized. In general, a QL scheme 
will be more beneficial when the action space is big and the agent needs to select its action 
from a bigger set of possible actions (i.e. control parameters).       

3.1 Probabilistic replacement scheme 
QL combined with a probabilistic replacement mechanism allows the adaptive CRT device 
to replace input gradients with its own predictions learned from the hemodynamic 
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responses to pacing with different AV delay and VV interval. Q Learning combined with 
probabilistic replacement mechanism enables the system to perform optimally also in a 
noisy biological environment, such as the cardiac system, and to improve the overall system 
performance using its own predictions. The probabilistic replacement scheme selects 
between input from a hemodynamic sensor and a calculated value obtained from the QL 
lookup table with a probability that depends on the calculated lookup table. The magnitude 
of the difference of the optimal action Q value and a sub-optimal action Q value is used as a 
confidence measure in the probabilistic replacement scheme [16].  
Fig. 6 is a flow chart diagram, explaining the leaky I&F spiking neurons synaptic weight 
adjustmants combined with the probabilistic replacement scheme.  The modification shown  
in Fig. 6 comparing to the flow diagram of Fig. 2 is that the selection conditions depends 
now on the stroke volumes difference (calculated in the current and previous cardiac cycle) 
or the QL lookup table difference magnitude which is used as a confidence measure of the 
probabilistic replacement scheme. After a selection of one out of four possible states is 
performed, the synaptic weight adjustment are performed in the same manner as described 
in [2-4 and 16].  The probabilistic replacement mechanism affects the synaptic weight 
adjustments directly since it determines the selection of one of the four possible states 
shown in Fig. 6 , and it affects the random stepping mechanism indirectly since the spike 
timing , T,  depends on the values of the adjusted synaptic weights and T value compared to 
the pacing register value, P, determines the step selection. 
   

 

Fig. 6. Synaptic adjustments with the probabilistic replacements scheme 

Regulation of α and threshold parameters  

Watkins and Dayan iterative equation (Eq. 1) learning rate parameter α, determines the 
convergence rate of the solution of the iterative Q Learning lookup table. With a high value of 

α the QL iterative equation will converge faster. However, in noisy environment a too big α 

parameter may cause instability in the Q Learning scheme. Hence an automatic regulation of α 
is used to ensure proper performance. The regulation scheme is based on a replacements rate 
counter calculated online and a maximal steady replacement rate value is typically 80%. This 
high limit value determines the effectiveness of the probabilistic replacement scheme. 
When a QL replacement is performed as shown in Fig. 6, a replacement counter is 
incremented and the replacement counter is reset to 0 every 2000 cardiac cycles typically. 
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The number of replacements performed in a time period depends on the α value and on 3 

threshold values that are used in the replacement probabilistic mechanism. The α  
parameter is set initially to a low value (typically 0.02) and is incremented slowly if the 
replacement rate is below the programmed high limit (typically 80%) until it reach the 

maximal value allowed for α (typically 0.05). When the replacement rate is higher then the 

maximal value allowed α is decreased (lower limit for α is typically  0.002).  

The 3 thresholds values regulation scheme depends on the value of α and on the calculated 

replacement rate. The initial thresholds values are set to low values (typically 10, 20 and 30).  

The values of the 3 thresholds determine three ranges for selecting the lookup table 

prediction replaceing the hemodynamic sensor input and determining 3 confidence ranges. 

The magnitude of the difference of the optimal action Q value and a sub-optimal action Q 

value is compared with the 3 threshold values and accordingly a replacement of the 

hemodynamic sensor input with the lookup table prediction is selected with a probability 

that depends on the 3 ranges. When the diffefence magnitude is high, a replacement is 

performed with a high probability and vice versa.  

When α is maximal (0.05) and the replacement rate is still too low the thresholds will be 

lowered. When α is minimal (typically 0.002) and the replacement rate is still too high the 3 

thresholds will be incremented gradually till the replacement rate will be lowered. The aim 

of both α and the 3 thresholds values regulation is to maintain a steady replacement rate 

close to the maximal value required  (typically 80%). The replacement rate value defines the 

efficiency of the QL scheme to correct errors of noisy biological inputs using the learned 

environment responses acquired in the QL lookup table (the probabilistic replacement 

mechanism use the magnitudes of the diffefnce in addition to it’s sign).     

4. Simulation results  

In the simulation results section we first show that the adaptive CRT control system learns to 

deliver the optimal pacing timings, i.e. the optimal AV delay and VV interval that maximize 

the CRT response with varying heart rate (Fig. 7). Next we show that with the combined QL 

and probabilistic replacement mechanism, the adaptive CRT control system reach the optimal 

performance in a noisy environment almost independent to the noise level (Fig. 8). We 

compare simulation results with and without the combined QL and probabilistic replacement 

mechanism to show that it out perform a simple gradient ascent scheme with varying noise 

levels (Fig. 9), and finally we show that QL scheme enables the system to escape from local 

maximum and to converge to the global maximum of a CRT response surface (Fig. 10).  

Simulations of the adaptive CRT device control system and the CRT response surface were 

performed using Matlab-Simulink version 7.6. The adaptive CRT control system application 

was coded in C and compiled as a Simulink S-function. Simulink S-functions were also used 

for implementing timers (Atrial-Atrial timer that defines the simulated heart rate and for the 

AV and VV delays for example) in order to simulate a real time, interrpts based application. 

Fig. 7 shows the AV delay and VV interval obtained in a  simulation that starts at a heart rate 

of 60 beats per minute (BPM), then the heart rate changes to 100 BPM and to 120 BPM and 

relax back to 100 BPM and to 60 BPM periodically. Pre programmed optimal AV delay of the 

simulated CRT response surface were 160 ms at 60 BPM, 130 ms at 100 BPM and 90 ms at 120 

BPM. Optimal pre programmed VV intervals were 0 at 60 BPM, -10 at 100 BPM and -30 at 120 

BPM. The simulation results shown in Fig. 7 follow accurately the optimal values. 
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Fig. 7. Dynamic optimization of AV and VV intervals 

 

Fig. 8. RT responses convergence with QL in a noisy environment  
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Fig. 8 shows a normalized CRT response (defined further below) in its upper part and an 
average deviation from optimal values in its bottom part, calculated during a long 
simulations with varying heart rate. The normalized CRT response grows during the 
simulation and shows deeps at the first part of the simulation. After convergence of the 
combined QL and probabilistic replacement mechanism, the normalized CRT response 
reach the maximal value with almost no deeps and remain steady at the maximal value 
while the noise level added to the hemodynamic sensor signal is effetive during all the 
simulation. The average deviation from optimal AV delay and VV values  shown in Fig 8 
bottom part is high initially, shows some peaks during a convergence period with generally 
lower values and then reach a minimal steady value of 10 msec. Fig. 8  proves in a 
simulation that the adaptive control system learns to deliver pacing with optimal AV and 
VV intervals in rest and exercise conditions in a noisy environment and the overall system 
performance improves during the simulation and reach the optimal performance, i.e. the 
agent learns and acts according to the optimal policy in a noisy environment. 
Since the CRT surface responses are proportional to the patient cardiac output, Fig. 8 shows 
that the combined QL and probabilistic replacement mechanism has the potential to increase 
the cardiac output of CRT patients which is a major goal of CRT. Hence machine learning 
methods may be clinically beneficial to CHF patients and this advantage may open the door 
for machine learning methods implemented in implanted medical devices [16, 23, 24].   
Fig. 9 shows the adaptive CRT device system performance with and without learning with 
varying random noise levels added to the hemodynamic sensor input, i.e. to the CRT 
response surface. The system performance with a simple gradient ascent scheme (without 
learning)  falls linearly with the growing random noise level to below 70% of the optimal 
performance while QL combined with the probabilistic replacement scheme is able to 
improve the system performance and keep it almost at the optimal system performance with 
no noise at all noise levels shown. 
 

 

Fig. 9. System performance with QL in noisy environment 

www.intechopen.com



 Advances in Reinforcement Learning 

 

468 

The normalized CRT response shown in Figs. 8 and 9 is defined as a normalizaed average of 
CRT responses calculated during each simulation period of 2000 cardiac cycles. 

 Averaged CRT Response =1/2000 * Σ12000  CRT Response(i) (3) 

A normalize CRT Response, that takes into account the surface global maximal value and 
the minimal value at a given heart rate is calculated according to  Eq. 4 below:  

Normalized CRT Response = [Averaged CRT Response – CRT Response 
Min]/[CRT Response Max – CRT Response Min] * 100 (4)  

Where at heat rate of 60 BPM :  
CRT Response Min  = CRT Response (worst values AV=60,VV=0) 
CRT Response Max  = CRT Response (optimal values AV=160,VV=0) . 
An important aspect of the QL based adaptive CRT control system is its ability to converge 
to the global maximum of the CRT response surface when it includes also a local maximum. 
Fig. 10 shows the pacing histogram obtained with a long simulations of 1 million cardiac 
cycles with random noise and compares the results obtained with and without Q Learning. 
The simulation starts at low AV delay of 90 ms in vicinity of a local maximum in the 
simulated CRT response surface. The simulated pacing histograms shows that without QL 
the histogram has a stronger peak at the local maximum of 90 ms and a weaker peak at the 
global maxima of 160 ms.  With Q Learning the histogram is peaked at the global maximum 
of 160 ms and only a small peak is seen at the local sub optimal maximum of 90 ms. 
 

 

Fig. 10. Convergence to the global maxima with QL  

7. Conclusions 

In this chapter we present an adaptive control system for a CRT device based on QL and a 
probabilistic replacement mechanism aimed to achieve patient specific optimal pacing 
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therapy for CHF patients implanted with a CRT device.  The learning target was to learn to 
deliver optimal AV delay and VV interval in all heart conditions and in a biological noisy 
environment.  The adaptive control system uses a deterministic master module that enforce 
safety limits and switch between operational states online with a build-in priority to operate 
in the adaptive state, and a learning slave module that use QL and probabilistic replacement 
mechanism and includes leaky I&F neural networks and sigmoid neural networks in order 
to identify heart conditions and to learn to deliver optimal therapy.  
A combined QL and probabilistic replacement mechanism may allow the adaptive CRT 
device to replace hemodynamic sensor inputs with its own calculated predictions learned 
from the environment responses to pacing. The combined QL and probabilistic replacement 
mechanism may enable the adaptive CRT control system to perform optimally in a 
biological noisy environment, such as the cardiac system. 
The adaptive CRT device aim is to increase the patient hemodynamic performance (cardiac 
output for example) and to be clinically beneficial to CRT patients especially in high heart 
rates where CRT patients are more symptomatic [10]. Pre-clinical and clinical studies are 
needed to prove the clinical benefits of an adaptive CRT device bases on machine learning 
methods.   
Adaptive control systems that learn to deliver optimal therapy were proposed for two other 
implanted medical devices:  Vagal stimulation device that learns to regulate the patient 
heart rate combined in one can with a CRT device that improve cardiac efficiency by 
learning to optimize at the same time also the AV delay and VV interval [23], and a deep 
brain stimulation (DBS) device adaptive control system that learns the optimal control 
parameters that reduce uncontrolled movements of Parkinson’s disease patients [24].  
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