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1. Introduction     

Many autonomous tasks can be considered as having to satisfy multiple goals 
simultaneously. In particular, Autonomous Vehicle (AV) navigation can be considered as a 
task having to satisfy at least two goals in an environment. The first goal is to plan a path for 
an agent to move from an origin to a destination that takes the shortest number of 
navigation steps. If the environment is static and the destination is stationary, then this 
shortest path is constant and can be planned in advance if the environment is known a 
priori, or estimated as the agent explores the environment if it is initially unknown. If the 
environment or the destination is dynamically changing, then the shortest path is no longer 
constant. This problem may still be considered as a path planning issue if the environment 
at each sampled time is known. However, the problem is more appropriately dealt with by 
incorporating a second goal that aims to avoid collisions between the agent and its 
neighboring obstacles while executing an overall shortest path strategy towards the 
destination. The collision avoidance (CA) problem has been well studied in the context of 
static known or unknown environments (Latombe, 1991; Ge & Cui, 2000; Oriolo et al., 1998; 
Ye et al., 2003). In the case of dynamic environments (DE) (Stentz, 1994; Stentz, 1995; Yang & 
Meng, 2003; Minguez & Minguez, 2004; Minguez, 2005), the focus at present is on dynamic 
environment (DE) that is slowly changing with fairly low obstacle density. 
In theory, if the agent samples the environment fast enough, any environment would appear 
as a static environment and the navigation problem can be solved using existing solutions 
for static environments. In practice, this condition is difficult to achieve particularly when 
obstacles are moving at speeds higher than the agent or sampling rate is low. To deal with 
this situation, an obvious approach is to explicitly consider obstacle motions. Fiorini & 
Shiller (Fiorini & Shiller, 1998) proposed the concept of Velocity Obstacles that enables 
obstacle motions between two time steps to be considered in their formulation. Like other 
similar algorithms (Mucientes e al., 2001; Yamamoto et al., 2001; Feng et al., 2004; Qu et al., 
2004), they assumed that objects move in a constant velocity. Shiller et al. (Shiller et al., 2001; 
Large et al., 2002) further proposed the non-linear velocity obstacle concept which assumes 
that obstacles can have variable speed. Moreover, they described the obstacles’ trajectories 
using circular approximation. Although it may not always capture the correct movement of 
obstacles, it is an attempt to predict obstacle motions between two time steps. Similarly, 
Zhu’s hidden Markov model (Zhu, 1991) and Miura’s probabilistic model (Miura et al., 
1999) also attempted the same. The idea of considering obstacles motion within two time 
steps explicitly proves to be vital in enhancing the agent’s CA ability in reality. Motivated by 
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this idea, we propose in this chapter a new approach, which incorporates two major features 
that are not found in solutions for static environments: (1) actions performed by obstacles 
are taken into account when the agent determines its own action; and (2) reinforcement 
learning is adopted by the agent to handle destination seeking (DS) and obstacle actions. 
Reinforcement Learning (RL) (Sutton & Barto, 1998) aims to find an appropriate mapping from 
situations to actions in which a certain reward is maximized. It can be defined as a class of 
problem solving approaches in which the learner (agent) learns through a series of trial-and-
error searches and delayed rewards (Sutton & Barto, 1998; Kaelbling, 1993; Kaelbling et al., 
1996; Sutton, 1992). The purpose is to maximize not just the immediate reward, but also the 
cumulative reward in the long run, such that the agent can learn to approximate an optimal 
behavioral strategy by continuously interacting with the environment. This allows the agent to 
work in a previously unknown environment by learning about it gradually. In fact, RL has 
been applied in various CA related problems (Er & Deng, 2005; Huang et al., 2005; Yoon & 
Sim, 2005) in static environments. For RL to work in a DE containing multiple agents, the 
consideration of actions of other agents/obstacles in the environment becomes necessary 
(Littman, 2001). For example, Team Q-learning (QL) (Littman, 2001; Boutilier, 1996) considered 
the actions of all the agents in a team and focused on the fully cooperative game in which all 
agents try to maximize a single reward function together. For agents that do not share the 
same reward function, Claus and Boutilier (Claus & Boutilier, 1998) proposed the used of JAL. 
Their results showed that by taking into account the actions of another agent, JAL performs 
somewhat better than the traditional QL. However, JAL depends crucially on the strategy 
adopted by the other agents and it assumes that other agents maintain the same strategy 
throughout the game. While this assumption may not be valid, Hu and Wellman proposed 
Nash Q-learning (Hu & Wellman, 2004) which focuses on a general sum game that the agents 
are not necessarily working cooperatively. Nash equilibrium is used for the agent to adopt a 
strategy which is the best response to the other’s strategy. This approach requires the agent to 
learn others Q-value by assuming that the agent can observe other’s rewards.  
In this chapter, we propose an improved QL method called Double Action Q-Learning 
(DAQL) (Ngai & Yung, 2005a; Ngai & Yung, 2005b) that similarly considers the agent’s own 
action and other agents’ actions simultaneously. Instead of assuming that the rewards of other 
agents can be observed, we use a probabilistic approach to predict their actions, so that they 
may work cooperatively, competitively or independently. Based on this, we further develop it 
into a solution for the two goal navigation problem in a dynamically changing environment, 
and generalize it for solving multiple goal problems. The solution uses DAQL when it is 
required to consider the responses of other moving agents/obstacles. If agent action would not 
cause the destination to move, then QL (Watkins & Dayan, 1992) would suffice for DS. Given 
two actions from two goals, a proportional goal fusion function is employed to maintain a 
balance in the final action decision. Extensive simulations of the proposed method in 
environments with single constant speed obstacle to multiple obstacles at variable speed and 
directions indicate that the proposed method is able to (1) deal with single obstacle at any 
speed and directions; (2) deal with two obstacles approaching from different directions; (3) 
cope with large sensor noise; (4) navigate in high obstacle density and high relative velocity 
environments. Detailed comparison with the Artificial Potential Field method (Ratering & 
Gini, 1995) reveals that the proposed method improves path time and the number of collision-
free episodes by 20.6% and 23.6% on average, and 27.8% and 115.6% at best, respectively. 
The rest of this chapter is organized as follows: Section 2 introduces the concept of the 
proposed DAQL-enabled reinforcement learning framework. Section 3 describes the 
implementation method of the proposed framework in solving the autonomous vehicle 
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navigation problem. Section 4 presents the simulation procedures and results with 
comparisons with related method. Finally, conclusions are given in Section 5. 

2. DAQL-enabled multiple goal reinforcement learning 

2.1 General overview 
Autonomous navigation is inherently a multiple goal problem involving destination 
seeking, collision avoidance, lane/wall following and others. Fig. 1 depicts the concept of 
multiple goal Reinforcement Learning with totally G goals. A multiple-goal scenario can be 
generalized such that both conventional QL and DAQL can be used for learning depending 
on the nature of the environment. The individual Q-values are eventually fused to produce 
a final action. For instance, limit the vehicle navigation problem to two goals: DS and CA. If 
obstacles and destination are non-stationary, then both goals can be dealt with by DAQL, 
whereas if they are all stationary, then QL suffice. Here, this general concept is illustrated by 
assuming that the destination is stationary and the obstacles are mobile. As such, QL is used 
for DS and DAQL is used for CA. 
 

 

Fig. 1. Concept of multiple goal reinforcement learning. 

2.2 Reinforcement learning framework 

An effective tool for mapping states (that describe the environment) to actions (that are 
taken by an agent) and carrying out appropriate optimization (based on a value function) is 
the Markov Decision Process (MDP) model. It is a model for sequential decision making 
under uncertainty. In an MDP, the transition probability and the reward function are 
determined by the current state and the action selected by the agent only (Puterman, 1994). 
It can be explained by considering a specific time instant of an agent and its environment as 
depicted in Fig. 2. At each time step t, the agent observes the state st∈S, where S is the set of 
possible states, then chooses an action at∈A(st), where A(st) is the set of actions available in st, 
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based on st and an exploration policy (e.g. greedy policy). The action causes the 
environment to change to a new state (st+1) according to a transition probability, 

' 1Pr{ '| , }a
ss t t tP s s s s a a+= = = = . At the end of a sampling time T, the environment returns a 

reward or penalty to the agent according to a reward function, 

' 1 1{ | , , '}a
ss t t t tR E r a a s s s s+ += = = = . The agent then faces a similar situation in the next time 

instant. 
 

 

Fig. 2. State diagram of the MDP model given that st=s, st+1=s’, and at=a. 

In RL, the value function is introduced to estimate the value for the agent to be in a given 
state. It is the expected infinite discounted sum of reward that the agent will gain as follows 
(Sutton & Barto, 1998): 

 { } 1
0

( ) | |k
t t t k t

k

V s E R s s E r s sπ
π π γ

∞

+ +
=

⎧ ⎫⎪ ⎪= = = =⎨ ⎬
⎪ ⎪⎩ ⎭
∑  (1) 

where Eπ{} is the expected value when policy π is adopted and Rt is the discounted sum of 
future rewards; ┛ is the discounting factor and rt+k+1 is the reward (or penalty) received at time 
(t+k+1). Policy π is a mapping from each state-action pair to the probability π(s,a) of taking 
action a when in state s. To solve the RL task, an optimal policy should be determined that 
would result in an at with the highest expected discounted reward from s to the end of the 
episode. The optimal value function corresponding to the optimal policy is then achieved by 
maximizing the value function that represents the expected infinite discounted sum of reward: 

 ( )*
' '

( )
'

( ) max ( ')a a
ss ss

a A s
s

V s P R V sπγ
∈

= +∑  (2) 

The corresponding action-value function is given as: 

 { } 1
0

( , ) | , | ,k
t t t t k t t

k

Q s a E R s s a a E r s s a aπ
π π γ

∞

+ +
=

⎧ ⎫⎪ ⎪= = = = = =⎨ ⎬
⎪ ⎪⎩ ⎭
∑  (3) 

and the optimal action-value function is given as: 

 { }* * *
1 1 ' '

' '
'

( , ) max ( , ')| , max ( ', ')a a
t t t t ss ss

a a
s

Q s a E r Q s a s s a a P R Q s aγ γ+ +
⎡ ⎤= + = = = +⎢ ⎥⎣ ⎦∑  (4) 

2.3 Q-learning 

Q-Learning (Watkins & Dayan, 1992) is one of the efficient methods for solving the RL 
problem through the action-value function in Eqt. (4). In QL, the agent chooses at according 
to policy π and the Q-values corresponding to state st. After performing action at in state st 
and making the transition to state st+1, it receives an immediate reward (or penalty) rt+1. It 
then updates the Q-values for at in st using the Q-values of the new state, st+1, and the 
reward rt+1 as given by the update rule: 

s s’'
a

ssP ,
'

a
ssR  T

a
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1

1 1 1( , ) ( , ) max ( , ) ( , )
t

t t t t t t t t t
a

Q s a Q s a r Q s a Q s aα γ
+

+ + +
⎡ ⎤← + + −⎢ ⎥⎣ ⎦

 (5) 

QL has been proven to converge to optimal action-value with probability one if each action 
is executed in each state an infinite number of times (Kaelbling et al., 1996; Watkins & 
Dayan, 1992), and works reasonably well in single agent environment, where the agent is 
the only object that is able to evoke a state transition. 

2.4 Double action Q-learning 

In general, it is fair to assume that a DE consists of static obstacles (e.g. walls) and dynamic 
agents/obstacles. In this case, the assumption that state transition is solely caused by an 
agent is not exactly appropriate (Littman, 2001; Boutilier, 1995; Claus & Boutilier, 1998). In 
other words, state transition in a DE may be caused by the action taken by the agent, 

a1t∈A1(st), and a collective action taken by the other agents/obstacles, a2t∈A2(st), where A1(st) 
and A2(st) are the set of actions available in st for the agent and the obstacle in the 
environment respectively. Fig. 3 depicts a new MDP that reflects this relationship, whereas 
a2t describes the action performed by an obstacle. The net state transition at each time step is 
the result of all the action pairs taken together. 
 

s s’ 

1
a , 2

a  

1 2

,
a a

SS
P , 1 2

'
a a

ss
R  

T  
 

Fig. 3. State diagram of the new MDP model given that st=t, st+1=s’, a1t=a1, and a2t=a2. 

The seven parameters of the new MDP are: T, st, st+1, a1t, a2t, 
1 2

'
a a

ssP and 
1 2

'
a a
ssR , where 

1 2 1 1 2 2
1' Pr{ '| , , }a a

t t t tssP s s s s a a a a+= = = = =  is the transition probability from s to s’, when the 
agent takes action a1 and the environment takes action a2; and 

1 2 1 1 2 2
1 1' { | , , , '}a a

t t t t tssR E r a a a a s s s s+ += = = = =  is the reward received as a result. 
In this new model, state changes when either (or both) the agent or the environment has 
taken its action. To reflect the fact that state transition is now determined by a1 and a2, the 
new value function is formulated below: 
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 (6) 

where 1 2,
{}Eπ π   represents the expected value when policy π1 is adopted by the agent and 

policy π2 is adopted by the environment. Similarly, there exists an optimal value function 
when an optimal policy pair π1 and π2 is applied. Although there may be more than one pair, 
we called all the optimal pairs π1* and π2*. They have the optimal value function V*(s) 
defined as: 
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The corresponding optimal action-value function is given as: 
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Using the same technique as QL, the function Q*(st,a1t,a2t) can be updated continuously that 
fulfils the purpose of RL. The QL type update rule for the new MDP model is given below: 

 
1 2

1 1

1 2 1 2 * 1 2 1 2
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Although a2t is involved in calculating Eqt. (7), (8) & (9), it is inherently uncontrollable by 
the agent and therefore maximizing a2t in (7) and a2t+1 in (8) & (9) is meaningless. Instead, an 
approximation to the optimal action-value function by using the observed a2t+1 is found and 
maximizing Eqt. (8) by a1t+1 subsequently. As such, the new update rule for DAQL is: 
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1
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where st, a1t are known in t, a2t , st+1, and rt+1 are known in t+1, and a2t+1 can only be known in 
t+2. Therefore, the learning is delayed by two time steps when compared with conventional 
QL, but with a2t and a2t+1 appropriately included. 
When comparing Eqt. (5) with (10), the difference between DAQL and QL is that action a2t 
has been explicitly specified in the update rule. The optimal value function as a result of 
maximizing a1t only, while a2t is considered explicitly but unknown is given below: 
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The corresponding optimal action-value function is: 

 

2
1

1 2 1 2

1
2

* 1 2 * 1 2 1 1 2 2
1 1

'

2 2 * 1 2
' '

'' '

'( , , ) max ( , ', ')| , ,

( ', ') max '( ', ', ')

t t t t t
a

a a a a
ss ss

as a

Q s a a E r Q s a a s s a a a a

s a P R Q s a a

π γ

π γ

+ +
⎧ ⎫

= + = = =⎨ ⎬
⎩ ⎭

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑∑

 (12) 

It can be seen that Eqt. (4) is a special case of Eqt. (12). The DAQL formulation learns the 
expected Q-values by maximizing the future Q-values with a1t over actual a2t+1 through time 
iterations. Therefore, if the current state is known and a2t can be predicted, a1t can be selected 
by using proper exploration policy (e.g. greedy policy): 

 
1
t

1 1 2

a
arg  max( ( , , ))t t t ta Q s a a=  (13) 

To predict obstacles’ action, an AR model is applied, which allows the calculation of the 
expected Q-value. In case that other obstacles’ actions are not predictable, such as when they 
move randomly, we assumed that a2t has equal probability in taking any of the |A2(s)| 
actions. 

2.5 Goal fusion 

The purpose of goal fusion (GF) is to derive a single final action from the actions of different 
goals. Available methods for the coordination of goals include simple summation or switch 
of action value function (Uchibe et al., 1996), mixtures of local experts by supervised 
learning (Jacobs et al., 1991), and multiple model based reinforcement learning (Doya et al., 
2002). Here, we adopt a modified summation method to coordinate multiple goals. A GF 
function based on this is formulated as follow: 
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 (14) 

Where ┚1+┚2+…+┚G=1, G is the number of goals to be achieved and Q1(a1t),…,QG(a1t) are the 
Q-values of the G goals respectively. The importance of the goals with respect to the whole 
task is represented by the value of ┚. A more important goal is represented by a larger ┚ 
while a less important goal is represented by a smaller ┚. 

3. Autonomous navigation through moving obstacles 

3.1 Geometrical relations between agent and environment 

The control variables of the agent and the ith obstacle at time t are depicted in Fig.4. It is 
assumed that there are N moving obstacles in the environment and that obstacle distances 
can be sensed by distance sensors on the agent, which have a minimum and maximum 
detectable distance of ds,min (10cm) and ds,max (500cm) respectively. Further assume that only 
M obstacles in the environment can be detected, where M≤N. The location of the ith obstacle 

is denoted by distance di∈Do where Do=[ds,min, ds,max]⊂ℜ and angle θi∈Θ where Θ=[0,2π]⊂ℜ. 
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We assume that the agent is  ddest∈ℜ+ away from the destination and is at an angle  φ∈Θ. The 

four parameters: di, θi, ddest, and φ are quantized into states. The state set for the relative 

location of the destination is ldest∈Ldest where ( ){ }, |  and dest dest dest dest qL d d Dϕ ϕ= ∈ ∈Θ# ## # , 

Ddest={i|i=0,1,…,11} and  Θq={j|j=0,1,…,15}. The state set for obstacle location is si∈Si where  

( ){ }, |  and i i i i q i qS d d Dθ θ= ∈ ∈Θ# ## # , Dq={k|k=0,1,…,9} and  Θq ={j|j=0,1,…,15}. Quantization is 

achieved as follows and depicted in Fig. 5 for φ and θi: 

 

 

Destination 
ddest 

x 

ψ  

av :  Velocity of agent 

θa:  Heading angle of agent 
ddest : Distance between agent and destination 
ψ :  Angle between agent and destination 

id : Distance between agent and the ith obstacle 

iq : Angle of di w. r. t. the horizontal axis.  

iov ,
: Velocity of the ith obstacle 

io,q : Heading angle the ith obstacle 

io,d : Relative heading angle of the ith obstacle w. r. t. di.id  

av  

 

θa 

iq  

io,q  
io,d  iov ,

 

y 

ith obstacle 

Agent 

 

Fig. 4. Control variables of agent and the ith obstacle. 

 

Fig. 5. Quantization of φ  and iθ   into φ#  and iθ#  respectively. 
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0 for 31 /16 2

i
i

i

i

θ π
θ π

θ π
π θ π

⎧⎢ ⎥+
≤ <⎪⎢ ⎥= ⎨⎣ ⎦

⎪ ≤ <⎩

#  (18) 

There are altogether 192 states for Ldest and 160 states for Si. The output actions are given by 
a∈A  where A={(|va|,θa)||va|∈Va and θa∈Θ}, Va={m×vmax/5|m=0,1,...,15}, 
Θa={nπ/8|n=0,1,…,15}, and vmax is the maximum agent speed. For  av

j
=0, the agent is at rest 

despite of θa, resulting in only 81 actions. For DAQL, we assume that obstacles have speed 
vo∈ℜ+  and heading angle θo∈Θ. They are quantized to a2i∈Ao where 

( ){ }, |   and o o o o q o qA v v Vθ θ= ∈ ∈Θ# ## # ,  Vq={l|l=0,1,...,10}, and  Θq ={j|j=0,1,…,15}. Quantization 
is achieved as follows: 

 
5 for 0 105

100 for 105
o o

o
o

v v
v

v

⎧ + ≤ <⎢ ⎥⎪⎣ ⎦= ⎨
≥⎪⎩

#  (19) 

 
/8
o

o

θ
θ

π
⎢ ⎥

= ⎢ ⎥
⎣ ⎦

#  (20) 

where there are altogether 161 actions for each obstacle as observed by the agent. The 
concept of factored MDP (Boutilier et al., 2000; Guestrin et al. 2001) can be applied if 
necessary to reduce the number of states required. 

3.2 Destination seeking 
For convenience, destination is assumed stationary here, otherwise actions performed by the 
moving destination may be considered as in the case of obstacles, which the same DAQL 
formulation applies. 
 

 

Fig. 6. Change in ddest from t-1 to t. 

The purpose of using reinforcement learning in destination seeking is for the agent to learn the 
limitation of the underlying vehicle mechanics such as limited acceleration and deceleration. 
The crux of the QL formulation for DS is that the agent is punished if its trajectory towards the 
destination contains more steps than necessary. With reference to Fig. 6, let us define 
Δddest=ddest,t-1-ddest,t, where ddest,t-1 is the distance between the agent and destination at t-1, ddest,t is 
the distance at t; and the agent travels at va from t-1 to t. If the agent performs a shortest path 
maneuver, then |va|T=Δddest, otherwise |va|T>Δddest and the worst case is when the agent has 
moved away from the destination, i.e., Δddest=-|va|T. Let us define dextra as: 

 extra a destd v T d= − Δ  (21) 

ddest,t-1

ddest,t 
av Destination 
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where 0≤dextra≤2|va|T. The normalized reward function of the agent is thus defined as: 

 , ,max( ) /( )DS t dest extra ar d d v T= Δ −  (22) 

where -3≤rDS,t≤1. In Eqt. (22), dextra is a penalty to the agent in order to ensure that it follows 
the shortest path to travel to the destination. The reward function is further shifted to 
1≤rDS,t≤0 by rDS,t←(rDS,t -1)/4, so that the Q-values calculated are in line with those from CA. 
By using the QL update rule, the agent can learn to use the most appropriate action in the 
current state to reach the destination using the most direct path, as depicted in Fig. 7. 
 

 

Fig. 7. QL for destination seeking. 

3.3 Collision avoidance 
Given multiple mobile obstacles in the environment, DAQL is most applicable here. The 
reward function adopted by DAQL represents punishment (-1) to the agent when collision 
occurs: 

 , ,

0 if no collision occured

1 if collision occuredCA i tr
⎧

= ⎨−⎩
 (23) 

When rCA,i,t is available, the agent uses the DAQL update rule to learn CA, as depicted in Fig. 8. 
Given obstacles’ actions in two time steps (t-2 & t-1), the agent updates its Q-values 
(qi(si,t,a1t,a2i,t)) at t. If there are M obstacles that are detectable by the agent, the DAQL update 
rule is applied M times and the results are combined based the parallel learning concept 
introduced by Laurent & Piat (Laurent & Piat, 2001; Laurent & Piat, 2002). Their proposal of 
taking the sum of all the Q-values from all the obstacles is used, as oppose to taking the 
maximum Q-value over all the obstacles, as given in the following: 

 1 1 2
, ,( ) ( , , )CA t i i t t i t

i

Q a q s a a=∑  (24) 

where QCA(a1t) is the overall Q-value set for the entire obstacle population when the agent 
takes a1t; qi(si,t,a1t,a2i,t) is the Q-value set due to the ith obstacle; si,t is the state of the ith obstacle 
observed by the agent at time t; and a2i,t is the action performed by the ith obstacle at t. Since 
all M obstacles share a single set of Q-values, the Q-values are updated M times in one time 
step. As a2t is not known at t, it has to be predicted, which can be treated independently 
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from RL, i.e. the agent predicts from the environment’s historical information, or it can be 
based on concepts (rules learn from examples) and instances (pools of examples). To 
incorporate the predicted a2t, Eqt. (24) is modified as follows: 

 
2
,2

,

1 1 2
, ,( ) ( , , )

i t

i t

i t i i t t i ta
a

q a p q s a a=∑  (25) 

 1 1( ) ( )CA t i t
i

Q a q a=∑  (26) 

where 2
,i ta

p  is the probability that the environment takes action a2i,t. The expected value of 
the overall Q-value is obtained by summing the product of the Q-value of each obstacle 
when they take action a2i,t with their probability of occurrence. The combined Q-value for 
the entire DE, QCA(a1t), is the summation of Q-values of each obstacle. 
 

 

Fig. 8. DAQL for single obstacle. 

3.4 Prediction 
To predict a2i,t , a linear prediction technique based on the autoregressive (AR) model is 
adopted. We assume that the accelerations of obstacles are slowly changing in the time interval 
T between two time steps. A 1st order AR model (Kehtarnavaz & Li, 1988; Ye, 1999) is used to 
model the acceleration ai(t): 

 
,( ) ( 1) ( )i i t ia t B a t e t= − +  (27) 

where e(t) is the prediction error and Bi,t is a time-dependent coefficient and is estimated 
adaptively according to the new distance measurements. The acceleration is thus 
approximated by a combination of velocity and position representations: 

 
2

2

1
( ) [ ( ) ( 1)]

1
       {[ ( ) ( 1)] [ ( 1) ( 2)]}

1
        [ ( ) 2 ( 1) ( 2)]

i i i

i i i i

i i i

a t v t v t
T

r t r t r t r t
T

r t r t r t
T

= − −

= − − − − − −

= − − + −

 (28) 
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where vi(t) and ri(t) are the velocity and position of the ith obstacle at time step t, 

respectively. Substituting Eqt. (28) into (27) gives a 3rd order AR model: 
 

 , , ,( ) (2 ) ( 1) (2 1) ( 2) ( 3) ( )i i t i i t i i t ir t B r t B r t B r t e t− + − + + − − − =  (29) 

 

Therefore, the next position of the ith obstacle at time t+1 can be predicted by the following 

equation if the coefficient Bi,t is known: 
 

 2
,

ˆˆ ( 1) ( ) ( ) ( )i i k i t kr t r t v t T B a t T+ = + +  (30) 

 

where ,
ˆ

i tB  is time-dependent and is updated by the adaptive algorithm in (Shensa, 1981). 

The coefficient ,
ˆ

i tB  can thus be determined by the following equations: 

 1
, , ,

ˆ
i t i t i tB R−= Δ  (31) 

 , , 1 ( ) ( 1)T
i t i t k ka t a tλ −Δ = Δ + −  (32) 

 , , 1 ( 1) ( 1)T
i t i t k kR R a t a tλ −= + − −  (33) 

 

where 0<┣≤1 is a weighting factor close to 1. Since ak(t), Δk,t, Rk,t and ┣ are all known, ,
ˆ

i tB   

can be predicted and thus ˆ ( 1)ir t +  can be predicted, from which the action performed by the 

ith obstacle at t can be predicted and the probability 2
,i ta

p   can be determined. A probability 

of 1 is given to the predicted action and 0 is given to all other actions. 

3.5 Fusion of DS and CA 

Given two sets of Q values from DS and CA, they are combined by using ┚ - a parameter 

that varies between 0 and 1, to balance the influence of the two goals, as given in Eqt. (34), 

where QCA( a1t)) and QDS(a1t) are normalized. 
 

 

1 1

1 1
1

1 1

( ) ( )
( ) (1 )

( ) ( )

CA t DS t
final t

CA DS

a a

Q a Q a
Q a

Q a Q a
β β= − +
∑ ∑

 (34) 

 

For ┚ closer to 1, Qfinal(a1t) is biased towards DS, giving the agent better DS performance but 

poorer CA performance. Conversely, for ┚ closer to 0, Qfinal(a1t) is biased towards CA, giving 

the agent poorer DS performance but better CA performance. The final decision of the agent 

is made by using the ε-greedy policy as shown in Eqt. (35). Fig. 9 and Fig. 10 depict the 

functional diagram and pseudo code of the proposed method respectively for multiple 

obstacles. 
 

 1
t

1

1 a
arg  max ( ) with probability 1-

random with probability 
t

final tQ a
a

ε

ε

⎧⎪= ⎨
⎪⎩

 (35) 

www.intechopen.com



DAQL-Enabled Autonomous Vehicle Navigation in Dynamically Changing Environment 

 

397 

 
 

Fig. 9. Functional diagram of the proposed method. 

 

 

Fig. 10. Pseudo code of the proposed method. 

 

Initialize qi(s,a1,a2) arbitrarily  

Repeat (for each episode) 

 Initialize a1, a2, r, ldest, si, and si’ 

 Repeat (for each step of episode): 

  Get 2 'ia
p  by predicting the action a2

i’ that will be performed by the ith obstacle  

  Calculate 2

2

1 1 2
'

'

( ') ( , ', ')
i

i

i i i ia
a

q a p q s a a=∑  

  Calculate 
1 1( ') ( ')CA i

i

Q a q a=∑  

  Determine 
1( ')DSQ a  

  Calculate

1 1

1 1
1

1 1

( ') ( ')
( ') (1 )

( ) ( )

CA DS
final

CA DS

a a

Q a Q a
Q a

Q a Q a
β β= − +
∑ ∑

 

  Choose a1’ from s using policy derived from 
1( ')finalQ a  

  Take action a1’ using ε-greedy exploration policy 

  Observe the new state ldest’, si’’, r’ and a2
i’ 

 Determine the action a2
i that have been performed by the ith obstacle 

  
1

1 2 1 2 1 2 1 2
,

'
( , , ) ( , , ) max ( ', ', ') ( , , )i i i i i i CA i i i i i

a
q s a a q s a a r q s a a q s a aα γ

⎡ ⎤
← + + −⎢ ⎥

⎢ ⎥⎣ ⎦
 

  
'

( , ) ( , ) max ( ', ') ( , )DS dest DS dest DS DS dest DS dest
a

Q l a Q l a r Q l a Q l aα γ⎡ ⎤← + + −⎢ ⎥⎣ ⎦
 

  ldest ← ldest’, si ← si’, si’ ← si’’, a
1 ← a1’, a2 ← a2’, rCA,i ← rCA,i’ 

 until ldest’ is terminal 
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4. Simulations and results 

4.1 Simulation conditions 

In this simulation, length has unit of cm and time has unit of second. The agent and 
obstacles are assumed to be circular with diameter of 100 cm, and the environment is 

2500×2500 (cm2), as depicted in Fig. 11. The numbers in the figure represent the location of 
the agents and targets in every 10 s. The maximum speed of the agent (va,max) is assumed to 
be 50 cm/s, with a maximum acceleration and deceleration of 20 cm/s-2. The agent is 
required to start from rest, and decelerate to 0 cm/s when it reaches the destination. 
To acquire environmental information, a sensor simulator has been implemented to 
measure distances between agent and obstacles. The sensor simulator can produce either 
accurate or erratic distance measurements of up to 500 cm, at T interval (typically 1s) to 
simulate practical sensor limitations. The other parameters are set as follows: α for both DS 
and CA learning is set to 0.6 for faster update of Q-values; ┛ is set to 0.9 for CA and 0.1 for 
DS; ┚ of 0.1 is set to have strong bias towards CA, in the expense of longer path; ε is set 0.5 
for DS and 0.1 for CA. 
 

 

Fig. 11. Simulation environment. 

4.2 Factors affecting navigation performance 

The factors that affect an agent’s performance in a DE are: relative velocity, relative heading 

angle; separation; and obstacle density. They define the bounds within which the agent can 

navigate without collision from an origin to a destination. The relative velocity of obstacle as 

observed by the agent can be defined as: , , ,max ,maxr i o i av v v= −j j j
, where , ,maxo iv

j
 and ,maxav

j
 are 

velocity vectors of the ith obstacle (Oi) and agent (A) respectively. In essence, ,r iv
j

  represents 

the rate of change in separation between A and Oi. Given  , heading angle of Oi w.r.t. the line 

joining the centres of Oi and A, and δa, heading angle of A as depicted in Fig.12, relative 

heading angle is defined as ψ=π-(δa+δo,i). It should be noted that ψ equals π when A and Oi 

are moving towards each other, -π when A and Oi are moving away from each other, and 0 

when both are moving in the same direction. Let di be the separation between A and Oi. It 

determines the priority A would adopt when considering Oi among other obstacles. If ds,max 

is the maximum sensor measurement range of A, and if ds,max<di then Oi simple does not 

exist from A’s point of view. Obstacle density can be defined as D=Nπro2/(Aenv-πra2), where N 
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is the number of obstacle in the environment and Aenv is the area of the closed environment. 

We also assume that the obstacles are identical and have a radius of ro, and A has a radius of 

ra. Given Aenv=25002, ro=ra=50, D=0.00125N. 
 
 

 

Fig. 12. Heading angles of Oi and A. 

4.3 Training for destination seeking 
First, the agent was trained by randomly generated origin and destination (O-D) pairs in the 
environment without obstacles, where each training episode consisted of the agent 
successfully travelled from O to D. Second, 100 episodes were used to train the agent to obtain 
a set of Q-values and another 100 episodes of different O-D pairs were used to evaluate the 
path length versus the shortest path based on the trained Q-values without learning and 
exploration. Step 2 was repeated 100 times to get an average performance over 10,000 
episodes. Fig.13 depicts the mean % difference between the actual and the shortest paths.  
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Fig. 13. Percentage difference in path length. 

It can be seen that given sufficient training, the agent achieves a path difference of 3-4%. This is 
so because of the discrete actions the agent adopted in the simulation. In Fig.13, the data are 
curve fitted with a 6th order polynomial (solid line), from which a cost function is applied to 
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aδ  

io ,δ

max,av
j

 : Velocity of A 
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j
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aδ  : Heading angle of A 

io,δ  : Heading angle of Oi 

ψ  ＆ Angle of Intersection 
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j
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j

 

ψ
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determine the optimal number of training required. The cost function is defined as 
C=f(x)×ln(E) and plotted in Fig. 14, where f(x) is the polynomial function for the mean % 
difference and E is the number of episodes. From Fig. 14, minimum cost is achieved when the 
number of training episodes is around 1500. The Q-values for DS that correspond to this are 
used in all subsequent simulations. 
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Fig. 14. Cost function. 

4.4 Training for collision avoidance 

For different environmental factors, we trained the agent with Q-values for CA set to zeros 
initially for 10000 episodes in each case. After training, simulation results are obtained by 
allowing the agent to maneuver in an environment with the same set of environmental 
factors without learning and exploration. When obstacles are present, the agent travels 
between a fixed OD pair. The agent learnt from the rewards or punishments when it 
interacted with the obstacle. When the agent reached the destination, an episode was 
terminated and the agent and obstacle were returned to their origins for the next episode. 
Furthermore, to illustrate the behavior of the agent in a more complex environment which 
involves multiple sets of different environmental factors at the same time, environments 
with randomly moving obstacles are constructed. Q-values for CA are set to zeros initially 
and the agent is trained for 10000 episodes in each test case. After training, simulation 
results are obtained by allowing the agent to maneuver in the same environment without 
learning ability and exploration. In each training episode, the agent was required to travel to 
a fixed destination from a fixed origin through the crowd of randomly moving obstacles 
which were randomly placed in the environment, and the termination condition was the 
same as before. 

4.5 Obstacles at constant velocity 

This simulation investigates how the agent reacts to one or more obstacles at constant 
velocity with an initial separation of larger than 500 cm. The AR model in Section 3.4 was 

used for obstacle action prediction. For one obstacle, two vo values and two ψ were 
considered: 50 cm/s and 100 cm/s; and π and ¾π. The simulation was repeated for vo=50 
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cm/s when two obstacles were present at different heading angles. It was also repeated for a 
group of obstacles having the same heading angle. These cases are tabulated in Tables 1 to 3.  
 

Case ψ (rad) vo (cm/s) ,r iv
j

 (cm/s) 

A π  50 100 

B π  100 150 

C 3 / 4π  50 92.39 

D 3 / 4π  100 139.90 

Table 1. Summary of simulation parameters with ONE obstacle. 
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(f) Heading angle profile (Case B) 

Fig. 15. Simulation results of Cases A and B. 

1. Cases A and B: The obstacle moved directly towards the agent at different velocities 

respectively, as depicted in Fig. 15. For Case A, the obstacle moved at the same speed as the 

agent. The agent maintained at a maximum speed until the obstacle was within range. It 

responded appropriately as seen from its Velocity and Heading angle profiles. The agent 

responded with a gradual change in heading angle to avoid collision. It remained at the 

changed course for a while before converging to the destination. For Case B, as the obstacle 
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moved faster than the agent, the agent responded earlier with a larger change in velocity. As 

the CA event ended faster, the agent in Case B reached the destination earlier. 
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(c) Heading angle profile (Case C) 
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(f) Heading angle profile (Case D) 

Fig. 16. Simulation results of cases C and D. 

2. Cases C and D: The obstacle crossed path with the agent at an angle of ¾π, as depicted in 
Fig. 16. For Case C, when obstacle speed is the same as the agent, the agent moved to the 
right slightly to let the obstacle pass. For Case D, the agent responded earlier and also 
decided to let the obstacle passed first. As the obstacle moved faster in this case, the velocity 
and heading angle changes of the agent were larger. 
 

Case ψ (rad) vo (cm/s) ,r iv
j

 (cm/s) 

Obstacle 1 3 / 4π  50 92.39 
E 

Obstacle 2 3 / 4π  50 92.39 

Obstacle 1 /2π  50 70.71 
F 

Obstacle 2 /2π  50 70.71 

Table 2. Summary of simulation parameters with TWO obstacles. 

3. Cases E and F: To deal with two obstacles simultaneously. The obstacles moved at speed 
vo=50 cm/s in both cases, but at different heading angles. Case E, as depicted in Fig. 17(a-c), 
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consists of two obstacles moved at an intersecting angle of ¾π with respect to the agent. As 
can be seen from its V and H profiles, there are two responses: one at t=23s when Obstacle 1 
approached the agent first, and one at t=29s when Obstacle 2 followed. The speed changes 
in both responses were minor, while the agent stepped backward in the first instance to 
avoid collision. For Case F, two obstacles moved perpendicularly to the agent as depicted in 
Fig. 17(d-f). There were two distinct responses (at t=9s and 22s), both of which required 
slowing down and change in heading angle to let the obstacle pass first. 
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(c) Heading angle profile (Case E) 
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(d) Path (Case F) 

-＃°

-￥＄

°

￥＄

＃°

° ′° ″° ℃° ￥° ＄° ¢°

⊆im∇ ＜s＞

H
∇a

∂
in

g
 A

n
gl

∇

＜∂
∇g

＞

 
(f) Heading angle profile (Case F) 

Fig. 17. Simulation results of cases E and F. 

 

Case ψ (rad) vo (cm/s) ,i rv
j

 (cm/s) 

G π  50 100 

H 3 / 4π  50 92.39 

Table 3. Summary of simulation parameters with a GROUP of obstacles. 

4. Cases G and H: To deal with a larger number of obstacles in the DE. In Case G, seven 
obstacles moved in a cluster towards the agent at vo=50 cm/s. From the path diagram as 
depicted in Fig. 18(b), as the obstacles were well apart, the agent found no difficulty in 
navigating through them, as shown in its V and H profiles. For Case H, the cluster of seven 
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obstacles moved at an angle of ¾π with respect to the agent. Again, the agent navigated 
through the cluster appropriately, without collision. 
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(h) Heading angle profile (Case H) 

Fig. 18. Simulation results of cases G and H. 

4.6 Obstacles at variable velocity 

The objective of this simulation is to study agent behavior in handling a simple randomly 

changing environment. In Cases I and J, a single obstacle moved at varying velocity directly 

towards the agent (ψ=π). The obstacle’s velocity ranges are 0-50 cm/s and 0-100 cm/s 

respectively, in step of 10 cm/s. The agent was evaluated over 1,000 episodes in the same 

environment in each case. A summary of the two cases is given in Table 4. 

 

Case ψ .rad) vo (cm/s) ,r iv
j

.(cm/s) Number of collision-
free Episodes 

Mean Path Time (s) 

I  0-50 50-100 976 62.97 

J  0-100 50-150 957 59.32 

Table 4. Simulation parameters with ONE obstacle at random speed. 

The results show that for Case I, the proportion of collision-free episodes is 97.6% and a 

mean path time of 62.97s. A collision-free episode is one that the agent travels to the 

destination without causing any collision. When compared with the shortest path time (50s), 

the agent used an extra of 12.97s more. For Case J, the obstacles moved faster in a wider 

range. As a result, the number of collision-free episodes was reduced to 95.7%, but the mean 

path time was also reduced to 59.32s. This can be explained as because of the faster moving 

obstacles, the agent experienced more collisions, but managed less convoluted paths. 
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4.7 Inaccurate sensor measurement 
In this simulation, we investigate how the proposed method tolerates inaccuracy in sensor 
measurements. As in Cases A & B at three different speeds (vo=10, 50 or 100 cm/s), the output 
of the sensor simulator was deliberately corrupted by a Gaussian noise function that has a 
mean (┤) of ┤=di and standard deviation (σ) of n×μ where n=0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 (Ye 
et al., 2003). For each set of n and vo, Q-values for CA are set to zeros initially and the agent 
was trained for 10,000 episodes. After training, and the agent was evaluated in the same 
environment for 1,000 times with different n and vo. Table 5 depicts the simulation summary. 
 

vo = 10 cm/s 

( ,r iv
j

= 60 cm/s) 

vo = 50 cm/s 

( ,r iv
j

= 100 cm/s) 

vo = 100 cm/s 

( ,r iv
j

= 150 cm/s) 
n 

Collision-free 
Episodes 

Mean Path 
Time (s) 

Collision-free 
Episodes 

Mean Path 
Time (s) 

Collision-free 
Episodes 

Mean Path 
Time (s) 

0 1000 57 1000 57.00 1000 53.00 

0.1 1000 56.79 1000 54.43 1000 54.71 

0.2 999 55.40 987 56.05 957 59.89 

0.3 979 62.37 996 58.45 987 61.49 

0.4 997 65.55 979 58.33 725 80.45 

0.5 991 57.52 989 59.04 816 71.31 

0.6 995 61.93 954 65.58 576 92.01 

Table 5. Robustness to sensor noise. 

From Table 5, for n<0.2, none of the obstacle speed would cause collision. For n≥0.2, 
collision began to appear. At low speed, the number of collisions can be kept small with a 
worst case of 2.1%. For ov

j
=50 cm/s, the number of collision-free episodes was reduced to 

95.4% at n=0.6. For ov
j

=100 cm/s, it went down to 57.6%, or almost half of the episodes 
have collisions. This is logical as slow obstacles are easier to avoid compared with fast 
obstacles, and inaccurate sensor measurements make it harder to avoid collision. 
For mean path time, it generally increases when n increases, although minima appear at 
n=0.2 for low speed, n=0.1 for medium speed and n=0 for high speed. As in Case A, the 
mean path time is longer when obstacle speed is low because of more convoluted paths. As 
n increases, the agent learnt to respond earlier to such inaccuracy and resulted in shorter 
paths. However, for larger n, the agent travels extra steps in order to cope with the large 
sensor error, which resulted in even longer path. The same applies when obstacle speed is 
relatively higher, except that the minima appear when n is smaller because the agent 
responded earlier in this case. 

4.8 Randomly moving obstacles and performance comparison 
The purpose of this simulation is to evaluate the proposed method in an environment with 
up to 50 moving obstacles, and compare it against another navigation method that is 
designed to work in such a complex environment. Obviously, those that work on static 
environment (Pimenta et al., 2006; Belkhouche et al. 2006; Jing et al. 2006), those that 
consider relatively simple cases with very low obstacle density (Soo et al. 2005; Kunwar & 
Benhabib, 2006), or those that assume perfect communication among agents, e.g. robot 
soccering (Bruce & Veloso, 2006), are unsuitable. A suitable candidate is the artificial 
potential field method proposed by Ratering & Gini (R&G) (Ratering & Gini, 1995), which 
was simulated in a relatively complex environment with high density of multiple moving 
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obstacles. To enable the comparison, obstacles size was reduced to 20 cm in diameter, and 
the obstacles were placed and moved randomly in speed and direction, as in (Ratering & 
Gini, 1995). The origin and destination of the agent were located at the lower left hand 
corner and upper right corner of the environment, respectively. Since the obstacles moved 
randomly, the prediction was not used in the proposed method. Different obstacle density D 
and obstacle velocity vo were studied, and results are tabulated in Table 6. Each result 
shown in the table was derived from 100 episodes after training. The R&G method used 
static potential filed and dynamic potential fields to handle static and moving obstacles 
respectively, and their results are also depicted in Table VI.  
 

Obstacle 
speed vo 
(cm/s) 

No. of 
obstacles

Obstacle 
Density D

,r iv
j

 

(cm/s)

Average 
path time (s)

St. dev. 
path time

No. of 
collision-

free 
episodes 

Average 
no. of 

collisions 

St. dev. 
No. of 

collisions 

10 10 0.0005 40-60 
68.25 

(79.07) 
16.16 

(13.40)
99 (99) 0.01 (0.02) 0.1 (0.20) 

10 20 0.001 40-60 80.1 (93.92)
50.27 

(20.93)
100 (95) 0 (0.06) 0 (0.28) 

10 30 0.0015 40-60 
92.71 

(110.19) 
59.19 

(27.35)
97 (98) 0.11 (0.02) 

0.83 
(0.14) 

10 40 0.002 40-60 
99.24 

(126.23) 
53.56 

(34.25)
95 (92) 0.07 (0.09) 

0.33 
(0.32) 

10 50 0.0025 40-60 
111.55 

(135.06) 
58.39 

(41.06)
94 (82) 0.15 (0.25) 

0.63 
(0.61) 

30 10 0.0005 20-80 
68.58 

(80.75) 
7.84 

(11.98)
99 (99) 0.01 (0.01) 0.1 (0.10) 

30 20 0.001 20-80 
75.03 

(96.17) 
14.27 

(23.43)
99 (95) 0.01 (0.05) 0.1 (0.22) 

30 30 0.0015 20-80 
80.12 

(110.95) 
16.29 

(28.18)
96 (89) 0.07 (0.18) 

0.43 
(0.59) 

30 40 0.002 20-80 
89.58 

(116.94) 
28.13 

(28.91)
94 (80) 0.08 (0.46) 

0.34 
(1.11) 

30 50 0.0025 20-80 
91.93 

(125.46) 
21.07 

(32.30)
92 (72) 0.14 (0.59) 

0.62 
(1.18) 

50 10 0.0005 0-100 
69.62 

(85.10) 
8.60 

(18.56)
91 (92) 0.25 (0.46) 

1.53 
(2.41) 

50 20 0.001 0-100 
74.39 

(97.56) 
10.68 

(19.37)
88 (75) 0.2 (0.74) 

0.64 
(1.56) 

50 30 0.0015 0-100 
84.19 

(111.48) 
15.47 

(23.09)
85 (63) 0.17 (1.44) 

0.43 
(3.16) 

50 40 0.002 0-100 
93.67 

(123.48) 
24.95 

(29.11)
77 (37) 0.43 (2.66) 

0.98 
(3.60) 

50 50 0.0025 0-100 
101.31 

(127.72) 
29.13 

(29.49)
69 (32) 0.68 (3.22) 

1.64 
(3.61) 

 

Table 6. Cases of randomly moving obstacles in a fixed area. (Numbers in brackets show the 
results of R&G Method (Ratering & Gini, 1995)) 
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In general, for the same ,r iv
j

, the no. of collision-free episodes decreases as D increases for 
the proposed method. Obviously, more obstacles in a fixed area increase the chance of 
collision. This is also true when ,r iv

j
 increases. In the extreme, only 69% of episodes are 

collision-free when ,r iv
j

=0-100 cm/s and D=0.0025 (max). When compared with the R&G 
method, when D is very low, differences in no. of collision-free episodes between the two 
methods are insignificant. However, when D is larger (>10 obstacles), the proposed method 
performed consistently better. This is also the case when ,r iv

j
 increases. On average, the 

improvement on the no. of collision-free episodes is 23.63%, whereas the best is slightly over 
115% for the largest D. 
For average path time, it increases as D increases. This is to be expected as there are more 
obstacles and more CA actions that resulted in longer path time. On the other hand, for small 

,r iv
j

 and large D, clustering of obstacles becomes a real possibility that can block the agent’s 
path. This is confirmed by the large standard deviation of path time when compared with 
other larger ,r iv

j
. Although the R&G method employed the adjustable hill extent method to 

deal with this issue, their average path times are in fact longer. When ,r iv
j

 is large, obstacle 
clustering is reduced, but their speed makes it necessary to make more convoluted path to 
avoid them, therefore the resultant path time is longer, with smaller standard deviation. 
Again, there is a minimum in average path time at medium ,r iv

j
 depending on D. When 

compared with R&G method, an average improvement of 20.6% is achieved. 

5. Conclusion 

In this chapter we have presented a multiple goal reinforcement learning framework and 
illustrated on a two-goal problem in autonomous vehicle navigation. In general, DAQL can be 
applied in any goals that environmental response is available, whereas QL would suffice if 
environmental response is not available or can be ignored. A proportional goal fusion function 
was used to maintain balance between the two goals in this case. Extensive simulations have 
been carried out to evaluate its performance under different obstacle behaivors and sensing 
accuracy. The results showed that the proposed method is characterized by its ability to (1) 
deal with single obstacles at any speed and from any directions; (2) deal with two obstacles 
approaching from different directions; (3) cope with large sensor noise; (4) navigate in high 
obstacle density and high relative velocity environment. Detailed comparison of the proposed 
method with the R&G method reveals that improvements by the proposed method in path 
time and the number of collision-free episodes are substantial. 
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