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1. Introduction    

The applications of robot are very extended and have already become classic in different 
branches of mass industrial production such as welding, painting by spraying, antirust 
protection, etc. Though the operations performed by robots in these fields are very complex, 
the operations of assembly are even more complex. In fact, robot assembly operations 
involve the process of direct solving the conflicting situations being not within the classic 
repetitive work.  
Investigations treating typical assembly duties started forty years ago (Bohman, 1994). In the 
meantime, it was offered a series of control mechanism of mating date. Performing 
assemblies depends on sensation of and appropriate reaction to the forces of contact 
between mating components date (Wei, 2001).  
It is shown that with the intelligent techniques, example components can be assembled 
faster, gentle and more reliably. In order to create robot behaviours that are similarly 
intelligent, we seek inspiration from human strategies date (Chan, 1995). The working 
theory is that the human accomplishes an assembly in phases, with a defined behaviour and 
a subgoal in each phase. The human changes behaviours according to events that occur 
during the assembly and the behaviour is consistent between the events. The human’s 
strategy is similar to a discrete event system in that the human progresses through a series 
of behavioural states separated by recognizable physical events.  
In achieving acceptably fast robot behavior with assuring contact stability, many promising 
intelligent-control methods have been investigated in order to learn unstructured 
uncertainties in robot manipulators date (Chan, 1995), (Miyazaki et al., 1993), (Brignone et 
al., 2001). For example, (Newman et al., 2001) work describes intelligent mechanical 
assembly system. First phase for assembly is blind search. In this phase multiple parameters 
are assigned to rotational search attractor. If sensors register force values higher then 
thresholds, new parameters are assigned. Intelligent layer is represented on 22-dimensional 
space of trajectories, and based on blind search parameters (correct and incorrect) neural 
network is made. Correct assembly path is chosen by using form of Genetic algorithm 
search, so the new vectors are evolved from most successful “parents”. Using this process, 
the robot was allowed to generate and test its own program modifications. 
The primary source of difficulty in automated assembly is the uncertainty in the relative 
position of the parts being assembled (Vaaler, 1991). The crucial thing in robot assembly is 
how to enable a robot to accomplish a task successfully in spite of the inevitable uncertainties 
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(Xiao & Zhang, 1995). Often a robot motion may fail and result in some unintended contact 
between the part held by the robot and the environment. There are generally three types of 
approaches to tackle this problem. One is to model the effect of uncertainties in the off-line 
planning process, but computability is the crucial issue. A different approach is to rely on–
line sensing to identify errors caused by uncertainties in a motion process and to replann the 
motion in real-time based on sensed information The third approach is to use task-
dependent knowledge to obtain efficient strategies for specific tasks rader than focusing on 
generic strategies independent of tasks.  
(Xiao & Zhang, 1995) introduced a systematic replanning approach which consisted of 
patch-planning based on contact analyses and motion strategy planning based on 
constraints on nominal and uncertainty parameters of sensing and motion. In order to test 
the effectiveness of the replanning approach, they have developed a general geometric 
simulator SimRep on a SUN SPAR@ Station which implements the replanning algorithms, 
allows flexible design of task environments and modeling of nominal and uncertainty 
parameters to run the algorithms and simulates the kinematics’ robot motions guided by the 
replanning algorithms in the presence of uncertainties. 
In our paper, we present the complex robot assembly of miniature parts in the example of 
mating the gears of one multistage planetary speed reducer. Assembly of tube over the 
planetary gears was noticed as the most difficult problem of overall assembly and 
favourable influence of vibration and rotation movement on compensation of tolerance was 
also observed. There were extensive experimental complex investigations made for the 
purpose of finding the optimum solution, because many parameters had to be specified in 
order to complete assembly process in defined real-time. But, tuning those parameters 
through experimental discovering for improved performance was time consuming process.  
The main contribution of this work is the use of a task replanning approach in combination 
with robot learning from experimental setup. We propose neural network based learning 
which gives us new successful vibration solutions for each stage of reducer. With this 
extended optimal vibration values as source information, we introduce Deterministic search 
strategy in scope of Robot Assembly Replanning Agent. 

2. Machine learning 

Machine learning usually refers to the changes in systems that perform tasks associate 
with artificial intelligence date. The changes might be either enhancement to already 
performing systems or synthesis of new system. A learning method is an algorithm 
(usually implemented in software) that estimates an unknown mapping between a systems 
input and outputs from the available data set. Learning is required when these mappings 
cannot be determined completely in advanced because of a priory uncertainty date (Farrell 
& Baker, 1993). 
Generally speaking, there are two types of learning: supervised and unsupervised. These 
algorithms vary in their goals, in the available training data sets, in the learning strategies 
and representation of data. 
Supervised learning requires a trainer, who supplies the input-output training instances. 
The learning system adapts its parameters by some algorithms to generate the desired 
output patterns from a given input pattern. In absence of trainers, the desired output for a 
given input instance is not known, and consequently the learner has to adapt its parameters 
autonomously. Such type of learning is termed unsupervised learning.  
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When the data are preprocessed and when we know what kind of learning task is defined 
for our application, it is important to make decision about the application of one or more of 
machine learning approaches. The most frequently used techniques include statistical 
methods (involve Bayesian inference), symbolic, inductive learning algorithms (decision 
building tree), cluster analysis, multiple-layered, feed-forward neural networks such as 
Backpropagation networks, fuzzy logic and evolution-based genetic algorithms (Kantardzic, 
2001). These techniques are robust in their ability to analyze user queries, identify users' 
information needs and suggest alternatives for search.  

3. Robot learning 

Over the last few years, a number of studies were reported concerning machine learning 
and how it has been applied to help robots to improve their operational capabilities. Typical 
“things” that are learnt by robots are “how” to perform various behaviors: obstacle 
avoidance, navigation problems, planning robot control, etc. Imitation learning has helped 
significantly to start learning with reasonable initial behaviour. 
It is difficult to define a coherent experimental method for robot learning (Wyatt et al., 1999). 
That is partly because the robot’s behaviour may be the product of the robot’s learning 
algorithm, it’s  initial knowledge, some property of the it’s sensors, limited training time, 
stochastic actions, real-time responses, online learning, the environment or of an interaction 
between some subset of these. All of this makes it very difficult to interpret results. The 
robot learning experiments must be designed so as to generate meaningful results in the face 
of such complexity. 
Essentially, we can define the robot learning as one of learning a policy function π from 
some set of sensory states S to some set of actions A. In order words, a task-dependent 

control policy π maps a continuous-valued state vector x of a controlled system and its 
environment, possibly in a time t dependent way, to a continuous-valued control vector u: 

 ( , , )u x tπ θ=  (1) 

The parameter vector θ contains the problem-specific parameters in the policy π that need to 
be adjusted by the learning system. Examples of policy functions include desired control 
behaviours for mobile robots, such as avoiding obstacles, following walls, moving a robot 
arm to pick up some object. 
Approaches to robot learning can be classified using three dimensions: direct versus indirect 
control, the used learning method and the class of tasks in question (Schaal, Atkenson, 2010). 
How the control policy is learned, can be proceed in many different ways. Assuming that 
the model equation (1) is unknown, one classical approach is to learn these models using 
methods of function approximation and then compute a controller based on the estimated 
model, which is often discussed as the certainty-equivalence principle in the adaptive 
control. Such techniques are summarized under the name model-based learning, or indirect 
learning or internal model learning. Alternatively, model-free learning of the policy is possible 
given an optimization or reward criterion, usually using methods from optimal control or 
reinforcement learning. Such model-free learning is also known as direct learning, since the 
policy is learned directly, i.e., without a detour through model identification. 
From the viewpoint of machine learning, robot learning can be classified as supervised 
learning, reinforcement learning, learning modularizations or learning feature representations that 
subserve learning. 
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We can distinguish two supervised paradigms, inductive concept learning and explanation-
based learning (Mahadevan, 1996). Inductive concept learning, assumes that a teacher 
presents examples of the target function for the robot. In this paradigm, the temporal credit 
assignment problem is non-existent, since the teacher is essentially telling the robot what 
action to perform, in some situation. In explanation-based learning, the teacher not only 
supplies the robot with example of the target function, but also provides a domain theory 
for determining the range of sensory situations over which the example action is useful. It 
can be a logical function or a neural network, or even an approximate qualitative physics 
based theory. 
The unsupervised paradigms involve reinforcement learning and evolutionary learning. In 
reinforcement learning, the learner does not explicitly know the input-output instances, but it 
receives some form of feedback from its environment. The feedback signals help the learner 
to decide whether its action on the environment is rewarding or punishable. The learner 
thus adapts its parameters based on the states (rewarding/punishable) of its actions. 
Intuitively, RL is a process of trial and error, combined with learning. There are several 
popular methods of approaching model-free robot learning. Value function-based methods 
are discussed in the context of actor-critic methods, temporal difference (TD) learning and Q 
learning. A novel wave of algorithms avoids value functions and focuses on directly 
learning the policy, either with gradient methods or probability methods. 
The evolutionary learning is very similar to reinforcement learning, in that the robot is only 
provided with a scalar feedback signal, but the differences is in term of learning (online vs. 
offline), etc. 
It is useful too to distinguish between several general classes of motor tasks that could be 
the goal of learning. Regulator tasks keep the system at a particular set point of operation-a 
typical example is a balancing a pole on a finger tip or standing upright on two legs. 
Tracking tasks require the control system to follow a given desired trajectory within the 
abilities of the control system. Discrete movement tasks, also called one-shot tasks, are defined 
by achieving a particular goal at which the motor skill terminates (basketball foul shot). 
Periodic movement tasks are typical in domain of locomotion. The complex  movement tasks are 
composed of sequencing and superimposing simpler motor skills, e.g. leading to complex 
manipulation skills like assembling a bookshelf etc. 
In order to achieve faster and reliable above specified complex robot assembly process in 
this research, we validate the results concerning the robotic assembly by introducing of 
learning strategies. First, the supervised (neural network) based learning is capable to 
reproduce the training data and to form clutter of adjustable vibrations for assembly 
process. Second, the unsupervised form of learning is used to reach a goal matting point 
using minimal path searching actions. It is equipped with reinforcement signal detection, 
which can measure physical aspect of mating process (model-free learning). The robot 
moves with reward in case of tolerance compensation. In case of jamming, Robot Assembly 
Replanning Agent uses this signal as error detection in system and replanns actions in order 
to achieve a goal position.  

4. Planning agents 

Intelligent agents are able to perceive their environment and respond in a timely fashion to 
changes that occur in it in order to satisfy their design objectives (Wooldridge, 2008). They 
are able to exhibit goal-directed behaviour by taking the initiative in order to satisfy their 
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design objectives. But for non-functional systems, the simple model of goal-directed 
programming is not acceptable, as it makes some important limiting assumptions. In 
particular, it assumes that the environment does change and if the assumptions underlying 
the procedure become false while the procedure is executing, then the behaviour of the 
procedure may not be defined and it will be crash. In such environment, blindly executing a 
procedure without regard is poor strategy. In such dynamic environments, an agent must be 
reactive, i.e. it must be responsive to events that occur in its environment.  
Building purely goal-directed systems is not hard, but it is hard building a system that 

achieves balance goal-directed and reactive behaviour. The agents must achieve their goals 

systematically using complex procedure-like patterns of action. 

We assume that the environment may be in any of a finite set E of discrete, instantaneous 

states:  

 { }', ,...E e e=  (2) 

Agents are assumed to have a finite repertoire of possible actions available to them, which 

transform the state of the environment 

 { }0 1, ,...cA a a=  (3) 

A run r of the agent in an environment is thus a sequence of interleaved environment states 

and actions: 

 
0 3 11 2

0 1 2 3: ...
na a aa a

nr e e e e e
−

→ → → → →  (4) 

We model agents as functions which map runs to actions: 

 : E
g CA R A→  (5) 

where RE is subset of these that end with environment state. 

Means-ends reasoning is the process of deciding how to achieve an end using the available 

means (actions that can perform). Means-ends reasoning is known as planning.  

A planner is system that takes as input the following: representation of a goal, the current 

state of the environment and the actions available to the agent. As output, a planning 

algorithm generate a plan P. A plan P is a sequence of actions: 

 { }1 ,... nP a a=  (6) 

Many agents must have reactive role in order to achieve goal, i.e. agent must replann. In this 

case agent has next structure: 

 { }' ' '
1 1, , ...i i nP a a a a+=  (7) 

In practical reasoning agents, the plan function is implemented by giving the agent a plan 

library. The plan library is a collection of plans, which an agent designer gives to an agent. 

The control cycle of decision-making process of agent is a loop, in which the agent 
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continually observes the world, decides what intention to achieve, uses means-ends 

reasoning to find a plan to achieve these intentions and execute the plan (replann). 

Learning has an advantage that it allows the agents to initially operate in unknown 
environments and to become more competent than its initial knowledge alone might allow. 
The agent decides on actions based on the current environmental state and through 
feedback in terms of the desirability of the action (reward), learns from interaction with the 
environment.  
Examples of reaching a desired goal, avoiding obstacles, self-collisions, etc. using a 
combination of robot learning and task replanning are presented in (Banjanović-
Mehmedovic, et.al., 2008), (Ekvall & Kragic, 2008). 

5. Robot assembly system 

5.1 Assembly system 
The main difficulty in assembly of planetary speed reducers is the installation of tube over 
planetary wheels. Namely, the teeth of all three planetary wheels must be mated with 
toothed tube. Fig. 1. presents a). only one stage of planetary reducer, and b). planetary speed 
reducer (cross-section 20mm, height five degrees 36mm), which has been used for 
experiments. 
 

 

Fig. 1. One stage of planetary reducer, b). View inside of planetary speed reducer. 

 In this research has not been considered the complete assembly of each part of planetary 
reducer but only the process of connecting the toothed tube to five-stage planetary reducer. 
By solving the problem of assembly the gears, there will be no problem to realise complete 
assembly of planetary speed reducer.  
For the process of assembly, the vertical-articulated robot with six-degrees of freedom, type 
S-420i of the firm FANUC has been used, completed by vibration module (Fig. 2.), 
developed at Fraunhofer- Institut für Produktionstechnik and Automatisierung (IPA) in 
Stuttgart, Germany. Total form of movement should be produced by vibration module to 
allow the fastest possible way of mating the tube with base part of planetary reducer 
respectively to compensate tolerance by vibration (Schweigert, 1995).  
According to the functioning the individual systems of tolerance compensation can be 
divided into (Bernhart & Steck, 1992): 

• controllable (active) system for tolerance compensation in which, on base of sensor 
information on tolerance, the correction of movement is made for the purpose of 
tolerance compensation 
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• uncontrollable (passive) system for tolerance compensation in which the orientation of 

external parts is achieved by the means of advanced determined strategy of searching 

or forced by connection forces 

• combination of above two cases. 

For this system of assembly (Banjanovic-Mehmedovic, 1999), the passive mechanism of 

tolerance compensation has been used with specially adjusted vibration of installation tools. 

The assembly process starts with gripe positioning together with toothed tube exactly 5mm 

above the base part of planetary reducer and than moving in direction of negative z-axis in 

order to start assembly (Fig. 2.). 

 

   

Fig. 2. Particular phases of assembly process. 

The analysis of assembly process shows that movement based on vibration and rotation act 

positively on the course of process. Vibration module should be able to produce vibration in 

x- and y- direction, and rotation around the z-axis. Sensors (inductive sensor of passed way 

and vicinity) necessary in process of assembly ware mounted on vibration module. There 

was a special controlling card developed for control by step-motor and magnets for 

generating vibrations on vibration module. 

5.2 Search strategy 
The complex systems are often modelled according to either state-based or an event-based 

paradigm. While in state-based model, the system is characterized by states and states 

changes, in the latter case is characterized by event (actions) that can be performed to move 

from one state to another (H.ter Beek et.al., 2008). 

Transition system is described with quadruple (S,s0,AC, R), where S is set of states, s0 is 

initial state, A are transition from one state to another and R is transition relation. In our 

research, we used this concept in order to describe the relationships between the parts being 

assembled. Namely, the states are assembly parameters–vibration amplitudes and 

frequencies for each planetary reducer stage and transition action are used to move through 

assembly process from one stage to another of planetary reducer. 

During the robot assembly of two or more parts we encounter the problem of tolerance 

compensation. For automatic assembly the tolerance is especially difficult problem because 

in process of mating it must be compensated but it takes time and requires corresponding 

algorithms.  
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In order to compensate tolerance during robot assembly, we use the ‘search strategy’, which 

adjusted amplitudes and frequencies to optimal values gained from experimental 

experience (amplitude of upper plate, amplitude of down plate, frequency of upper plate, 

frequency of down plate) (Fig. 3.). In case of jamming from different physical reasons 

(position, friction, force etc.), robot returned to beginning of current reducer stage, where 

the jamming was made. The search strategy tried three times to continue assembly process 

with another optimal assembly vibration parameter stage set values. It exploited the 

technique of blind search in optimal parameter space with repeated trials at manipulation 

tasks. When the jamming has been overcome, robot kept moving until it reached the final 

point in assembly. On the opposite, flashing of red lamp informed the personnel that there 

has been a jamming. 

 

Replanning Algorithm 
using Random 
Optimal Values 

Goal point in 
z-direction

Optimal Values for 
each phase from 

Robot 
Experiments

Planning Parameter 
Strategy

(Dynamic effects of 
uncertainties )

Particular Phase Goal 
Achived

No Task 
achived

Phase Task

Robot Assembly 
Failure

2 times

 

Fig. 3. Search strategy in experimental robot assembly. 

There were extensive experimental complex investigations made for the purpose of finding 

the optimum solution, because many parameters had to be specified in order to complete 

assembly process in defined real-time. But, tuning those parameters through experimental 

discovering for improved performance is time consuming process.  

The search strategy involved in assembly experiments exploited the technique of blind 

search of optimal vibration values in repeated trials in each stage. If selected optimal value 

is in discontinuity area, then the path between one selected optimal stage parameter set and 

another will be outside of cone (Fig. 4.). 
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Phase 1

Phase 2

Phase 3

Translation in -Z-
axis

Rotation in x-y 
plane

(A1,f1)

(A2,f2)

(A3,f3)

Jamming
D>D0

D

D0

D

 

Fig. 4. Transition problems between states inside Search Strategy. 

In this case, the tolerance compensation isn’t achieved, because position tolerance of some 
stage D is greater than admitted position tolerance D0. What is solution for this? In order the 
path between two phases would be in cone towards stable tolerance compensation, we need 
deterministic transition action (directed path between vibration states based on minimal path 
finding).  
To make this search strategy more intelligent, additional learning software was created to 
enable improvements of performance.  

6. Robot assembly replanning agent 

Today robot need to react to stochastic and dynamic environments, i.e., they need to learn how 
to optimally adapt to uncertainty and unforeseen changes (Schaal&Atkenson, 2010). The robot 
learning covers a rather large field, from learning to perceive, to plan, to make decisions etc.  
 

Replanning Algorithm 
using Learned 
Optimal Values 

Neural Network 
Learning

Input Set 
from 

Experiments

NN 1

NN 3

NN 2

NN 4

NN 5

Extended Data 
Set for Robot 

Assembly Planning Parameter 
Strategy

(Dynamic effects of 
uncertainties )

Phase Goal 
Achived

No Task 
achived

Phase Task

 

Fig. 5. Robot Assembly Replanning Agent. 

Learning control is concerned with learning control in simulated or actual physical robots. It 
refers to the process of acquiring a control strategy for a particular control system and 
particular task by trial and error. 
Task planning is the problem of finding a sequence of actions to reach a desired goal state. 
This is a classical AI problem that is commonly formalized using a suitable language to 
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represent task relevant actions, states and constraints (Ekvall & Kragic, 2008). The robot has 
to be able to plan the demonstrated task before executing it if the state of the environment 
has changed after the demonstration took place. The objects to be manipulated are not 
necessarily at the same positions as during the demonstration and thus the robot may be 
facing a particular starting configuration it has never seen before. 
In this paper, we present a learning method in combination with robot path 
planning/replanning agent system. The performance of this method is demonstrated on a 
simulated robot assembly through intelligent agent system (Fig. 5.). We propose neural 
network based learning which gives us new successful vibration solutions for each stage of 
reducer. With this extended vibration parameters as source information for 
Planning/Replanning Task, we introduce advanced search strategy of robot assembly. 
In the replanning scheme, the error model is used to model various dynamic effects of 
uncertainties and physical constraints by jamming. Combing the efforts of the planner and 
learned optimal values, the replanner is expected to guarantee that agent system enters the 
region of convergence of its final target location. 

6.1 Neural network based vibration parameters learning 
The artificial neural networks (ANN), with their remarkable ability to derive meaning from 
complicated or imprecise data, can be used to extract patterns and detect trends that are too 
complex to be noticed by either humans or other computer techniques. A trained neural 
network can be thought of as an "expert" in the category of information it has been given to 
analyze. This expert can then be used to provide projections given new situations of interest 
and answer to question “what if” (Stergiou & Siganos, 1996). Another reason that justifies 
the use of ANN technology, is the ability of ANNs to provide fusion of different information 
in order to learn complex relationships among the individual values, which would 
otherwise be lost if the values were individually analyzed. 
There exist many types of neural networks, but the basic principles are very similar. Each 
neuron in the network is able to receive input signals, to process them and to send an output 
signal. The neural network has the power of a universal approximator, i.e., it can realize an 
arbitrary mapping of one vector space onto another vector space. The main advantage of 
neural networks is that they are able to use some a priori unknown information hidden in 
data, but they aren’t able to extract it. Process of ‘capturing’ the unknown information is 
called ‘learning of neural network’ or ‘training of neural network’. In mathematical 
formalism to learn means to adjust the free parameters (synaptic weight coefficients and 
bias levels) in such a way that some conditions are fulfilled  (Svozil et al., 1997). 
Neural network based learning is used in this research to generate wider scope of 

parameters in order to improve the robot behaviour. The parameter vector θ contains the 

problem-specific parameters in the policy π that need to be adjusted by the learning system. 
The amplitude and frequencies vibration data is collected during assembly experiments and 
is used as sources of information for the learning algorithm.  

 ( ), , , ru x t A fπ=  (8) 

By starting the robot work, vibration module vibrated with determined amplitude (to +/-
2mm) and frequency (to max. 10Hz) for each stage of reducer. For those experiments, the 
vibration figure horizontal EIGHT (Fig. 6) is used (the frequency ratio between down and 
above plate is fD/fU=2). 
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As optimum values of amplitudes of down and above plate that were valid for all stages of 

reducer are AD=AU=0.8mm. From experiments, we gained that smaller frequencies of 

vibration were better (fD/fU=4/2 or 6/3) for 1-2 stage (counting of stages starts from up to 

down), while for each next stage the assembly process was made better with higher 

frequencies (fD/fU=8/4 or 10/5). 

 

 
a) 

 
b) 

Fig. 6. Vibration figure-EIGHT: a) (1-2 stage; fD/fU=4/2 AD/AU=1.4/1.4); b) (3-4 stage; 
fD/fU=10/5 AD/AU=0.5/0.5). 

Multi-layer feed-forward neural networks (MLF), trained with a back-propagation learning 
algorithm, are the most popular neural networks. In our research we used MLF neural 
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network contains 10 tansig neurons in hidden layer and 1 purelin neuron in its output layer. 
The feed-forward neural networks were formed and tested for each stage of assembly 
process. Each one was initialized with random amplitudes AU=AD=Ai between 0 and 2 and 
frequencies values fi between 0 through 4. Namely, the range of the frequencies measurement 
is normalized by mapping from frequencies ratio fD/fU=(4/2, 6/3, 8/4,10/5) onto the range 
of the state frequencies values (0 through 4). To training the MLF network, we used 35 
vibrations sets for each 5 phases of assembly. The mean square errors (MSE) during the 
training of 5 MLF networks were achieved for 7-10 epochs. Two thousand data points were 
taken as a testing sample. 
The following picture (Fig. 7.) presents network’s trying to learn the new optimal stage 
vibration sets indicated by their respective picture. Each frame consists of the network's 
training true regions (circles mark) and network's training bad regions (rectangle marks). 
 

  

  

 

 

 Fig. 7. Results of neural network training for all 5 stages 
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The results show that the scope of adjusted vibration parameters obtained from autonomous 
learning is extended in respect to adjusted vibration sets from experimental robot assembly. 
We can see that critical moment in assembly process is second phase, which presents 
medium clutter position of optimal vibration parameter sets through stages. Phases 2 
presents discontinuity between first and third phase in clutter space. It can be reason for 
advanced form of planning/replanning too. 

6.2 Advanced replanning strategy 
The problem with applied search strategy in experiments was in case of behaviour 
switching (case of assembly jamming). The search strategy tried to continue assembly 
process with another optimal, but blind chosen parameter state value. With updated search 
strategy, named Deterministic search strategy, we propose next paradigm: 
1. In order to have deterministic transition action (DTA), minimal distance is used between 
vibration state sets. DTA finds minimal distance vector from selected optimal value (A(i),f(i)), 
i=1,..N from current extended vibration state s(k) gained from learning process towards next 
vibration state s(k+1).  

 ( ) ( ) ( )( )min ( ), ( ) ( 1), ( 1) , 1,..4path o o i iV k A k f k A k f k k= − + + =  (9) 

The minimal path between two phase is in cone and we have compensated tolerance 
(D<D0), see Fig. 8. 
2. In case of jamming (in our simulator: error event signal), we propose Replanning Algorithm 
with Learned Optimal values, which offers new plan for path tracking during simulation of robot 
assembly. Fig. 8. presents next situation: system detect error event during second state of 
assembly and strategy try to continue assembly process with another optimal set value 
(A2’,f2’) from state s(2). This another value is optimal parameter value, with mean value of 
distance from state s(1) to state s(2). We make enough offset from this critical optimal point to 
another optimal solution. After that, strategy establishes action between values (A2’, f2’) and 
(A3’, f3’). 
 

Phase 3

Rotation in x-y 

plane

(A1,f1)

(A2,f2)

(A3,f3)

D0

D

D

D

D<D0

(A4,f4)

(A5,f5)

Min. 

distance

Min. distance

Min. distance

Min. 
distance

(A2',f2')

(A3',f3')

Error

event

S(k+1)

S(k-1)

S(k)

Min. distance

 

Fig. 8. Deterministic search strategy uses minimization of transition path between states and 
recovery parameter algorithm in case of jamming. 
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To demonstrate the validity of this paradigm, we present test results obtained by 
implementation of Robot Assembly Replanning Agent in Matlab. We use random start point 
in vibration parameter space (1.0,1.0), but system detects error event signal and tries 
assembly with new start vibration value (1.53, 1.27) (Fig. 9.). 
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Fig. 9. Presentation of advanced search strategy in case of detecting error event signals. 

In case of detecting of error event signal in second state, deterministic search strategy tries 
instead optimal value (0.52,2.72) to continue assembly process with another optimal 
assembly vibration parameter stage set value (0.49, 3.19). New transition action is made 
from this new optimal value from current state with minimal path distance towards optimal 
vibration parameter stage set in next state. But here, system detects new error event and 
tries assembly instead (0.52,3.14) with (0.36,3.42), until it reaches the final point in assembly 
simulation process.  

7. Conclusion 

There is enough space for investigation in this class of robot assembly search strategy, 

because the selection of assembly strategy is based on inspiration from human strategies. As 

an example of robot assembly, it was researched the complex assembly of toothed tube over 

planetary gears. Important contribution of paper is combination replanning task approach 

with learning approach in order to accommodate the uncertainty in complex assembly of 

tube over planetary gears. Two form of learning are proposed in state and action domain. 
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First, supervised neural network based learning is used to generate wider scope of state 

parameters in order to improve the robot behaviour. Second, the unsupervised learning is 

used to reach a goal matting point. Using Deterministic search strategy based on minimal 

path tracking as transition action between vibration states and replanning of actions in case 

of error signal detection in system, it is possible to involve intelligent control of robot 

assembly. Simulations were performed in domain of robot assembly to demonstrate 

usefulness of the presented method. Robotic provides an excellent test-bench for studying 

different techniques of computational intelligence. 

Recent trends in robot learning are to use trajectory-based optimal control techniques and 

reinforcement learning to scale complex robotic systems. Future work in domain of 

replanning agent is research with genetic based replanning agent in order to  accelerate the 

optimization speed of path planning technique. 
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