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1. Introduction 

Recent progress in the theory of neural networks played a major role in the development of 
new tools and techniques for modelling, identification and control of complex nonlinear 
dynamic systems. Intelligent control, with a special focus on neuro-control has been used 
successfully to solve difficult real control problems which are nonlinear, noisy and relatively 
complex. This is due to the fact that neural networks have an inherent ability to learn from 
input-output data and approximate an arbitrarily nonlinear function well. The inclusion of 
semi-linear sigmoid activation functions offers nonlinear mapping ability for solving highly 
nonlinear control problems (Omatu et al., 1995).  
A large number of identification and control structures have been proposed on the basis of 
neural networks in recent years (Jain & Medsker, 1999). Most of the developed neural 
networks use a feed-forward structure along with the back-propagation training algorithm. 
Recently, more research interest is given to recurrent networks with special application to 
dynamic systems. A Recurrent Neural Network (RNN) exhibits internal memory due to its 
feedback structure, which gives the network the possibility of retaining information to be 
used later. By their inherent characteristic of memorizing past information, for long or short-
term periods, RNNs are good candidates for nonlinear system identification and control 
(Narendra & Pathasarathy, 1990). 
Although control theory has made great advances in the last few decades, which has led to 
many sophisticated control schemes, PID control remains the most popular type of control 
being used in industry today. This popularity is partly due to the fact that PID controllers 
have simple structures that are easily implemented. On-line self-tuning PID controller offer 
an advantage for plants that have uncertain dynamics, time varying parameters, and 
nonlinearities. Recently a lot of attentions have been focused on neural based PID controller, 
and many efforts have been done to investigate different aspects of deploying neural 
networks in the area of adaptive PID control (Puskorius & Feldkamp, 1993), (Saikalis, 2001) 
The concept of adaptive PID control was introduced to compensate the drawbacks of the 
fixed-gains PID controller. For example, if the operating point of a process is changed due to 
disturbances, there is a need to adjust the controller parameters manually in order to keep 

www.intechopen.com



Advances in Reinforcement Learning 

 

276 

the optimal settings. Usually this procedure known as tuning is difficult and time 
consuming for systems with interacting loops. In addition to these difficulties, the 
conventional PID tuning methods have major drawbacks. For example, the Ziegler-Nichols 
(Astrom & Wittenmark, 1989) tuning method is sensitive to disturbances because of its 
reliance on open loop experiments. The tuning method proposed by Nishikawa (Nishikawa 
et al. 1989) requires man-machine interaction in which the operator needs to generate input 
signals every time the parameters have to be modified in order to adapt to changes in the 
process dynamics. Adaptive controller with the ability of self-tuning is therefore the ideal 
solution to all these difficulties. 
Substantial research effort is also ongoing in the general area of adaptive control with neural 
networks, both in designing structures and learning algorithms (Chang et al. 2003), (Kuc & 
Gie, 2000), (Ranger & Desbiens, 2003), (Liu, 2001), (Mandic & Chamers, 2001). The design 
and implementation of adaptive control for nonlinear dynamic systems is challenging and 
extremely difficult. In most cases, developing adaptive control strategies depend on the 
particular information of the nonlinear structure of the plant that needs to be controlled. 
Neural networks with the ability to deal with nonlinearities can be used to develop an 
adaptive controller for unknown systems. If the relationship between the input and the 
output of an unknown nonlinear plant is modeled by an appropriate neural network, the 
model obtained can be used to construct a proper controller. The whole procedure of 
training and construction of a neural based controller can be implemented on-line. The 
neural network model is updated by measured plant input and output data and then the 
controller parameters are directly tuned using the updated model. 
 

 

Fig. 1.1 Adaptive PID with RNN based emulator 

In this chapter RNNs are used in system modeling and in the design of an adaptive PID 
controller for nonlinear electromechanical systems such as servo drives in robot 
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manipulators. The design of a servo drive system represents a difficult problem in most 
cases because of troublesome characteristics such as severe friction nonlinearities, variable 
parameters, time–varying process dynamics and unobservable system states and 
disturbances.  
The proposed adaptive control scheme studied in this chapter is based on a RNN-PID 
controller combined with a RNN system emulator as shown in Fig. 1.1 (Dhaouadi & Jafari, 
2007). The RNN-PID controller is designed based on the discrete equations of the PID 
controller transfer function. The parameters Kp, Ki and Kd of the partially connected RNN are 
regarded as the gains of the PID controller. These gains are not fixed, but can be adjusted 
on-line based on an adaptation law so as to achieve the desired control objectives. The plant 
direct model is constructed with the RNN emulator as shown in Fig. 1. The network is tuned 
online to provide the Jacobian coefficients of the system which are needed to adapt the PID 
gains. The self-tuning RNN will be trained using the gradient decent RTRL algorithm, (Kuc 
& Gie, 2000). The training of the RNN emulator will be first performed off-line so as to learn 
the dynamics of the plant and will be next optimized on-line.  
Such control approach can be classified as indirect adaptive control, as the parameters of the 
plant model are adapted and control is computed based on the current model, rather than 
directly adapting the controller parameters. 
Global asymptotic stability of the closed loop system is a challenging problem. Absolute 
stability analysis of RNN in general is investigated via Linear Matrix Inequality (LMI) 
(Barbanov & Prokhorov 2002). Barabanov and Prokhorov derived a sufficient condition for 
the network parameters which guarantees the absolute stability of RNN in a general form. 
The method is based on the sector condition. Barabanov and Prokhorov introduced later a 
new algorithm for global asymptotic stability of nonlinear discrete-time systems (Barbanov 
& Prokhorov, 2003). The new method, for reduction of a dissipativity domain of a discrete-
time system, approximates level surface of Lyapunov function. In this paper, we develop a 
criterion to prove the stability of the RNN-PID controller in the sense of Lyapunov.  
In summary, the analysis presented in this chapter shows that appropriately structured 
recurrent neural networks can provide conveniently parameterized dynamic models of 
nonlinear systems for use in adaptive PID control. The main features of the proposed new 
adaptive PID controller are 

• Compensation of different process and unmodelled uncertainties, 

• Simple to configure since it does not require a process model. 

• Could track changes of process dynamics on-line. 

• Has all the properties of PID control. 
The chapter is organized as follows: section 1 gives a literature review and introduces a 
general overview of the control methodology used. The main contribution of this work is 
represented in section 2 where an adaptive RNN-PID controller is developed for Reference 
Model Control.  Stability analysis of the designed controller is investigated via Lyapunov 
theory in section 3. Finally, discussion of simulation results and conclusions are given in 
section 4. 

2. Adaptive RNN-PID design 

The PID controller is one of the most useful and familiar controller used in industry. PI and 

PID controllers have been proven to be remarkably effective in regulating a wide range of 

processes. However, the PID controller may give low performance when dealing with 
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highly nonlinear and uncertain systems. The abilities of neural networks in dealing with 

nonlinear dynamical systems make them a viable alternative approach to deal with complex 

systems. RNNs will be used next to develop an adaptive PID controller which is robust to 

system parameters variation and uncertain dynamics. 

In this section, we will develop an adaptive RNN based PID controller for nonlinear 

dynamic systems. The parameters of the proposed RNN-PID controller are adjusted on-line. 

A single-axis servomechanism is used as a case study to study the performance of the PID 

controller and validate the proposed adaptive control scheme. 

2.1 Discrete-time PID controller 

The design of the RNN based PID controller starts by deriving the discrete-time PID 

equation. From this difference equation the network can be designed accordingly. The 

general PID transfer function in the s-domain is given by 

 
( )

( ) 1
i

p d

KU s s
K K

E s s sτ
⎛ ⎞= + + ⎜ ⎟+⎝ ⎠

. (2.1) 

For practical applications, an approximate derivative term is introduced to reduce the effect 

of measurement noise. Next, the discrete-time representation of the PID controller is 

obtained by mapping the transfer function from the s-domain to the z-domain using the 

bilinear transformation. 

 
1

1

2 1

1

z
s

T z

−

−

⎛ ⎞−⇔ ⎜ ⎟
+⎝ ⎠

, (2.2) 

The discrete-time control signal u(n) is derived from the error signal e(n) as follows. 

 ( ) ( ) ( ) ( )p i du n K e n K v n K w n= + + , (2.3) 

where  v(n) is the integral term, and w(n) is the derivative term. 
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The difference equation of the integral term v(n) is 

 ( ) ( 1) [ ( ) ( 1)]
2

T
v n v n e n e n= − + + − ,  (2.7) 

Similarly, 
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Defining 

 0 2 Tα τ= +  and 1 2 Tα τ= −  (2.9) 

The difference equation of the approximate derivative term is 

 0 1( ) ( 1) ( ) ( 1)
2 2
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α α

= − + − − , (2.10)  

This equation is written next in a modified form through a change of variables. Let’s define

0( ) ( )
2

p n w n
α

= , then 

 1

0

( ) ( 1) ( ) ( 1)p n p n e n e n
α
α

= − + − − , (2.11) 

The PID derivative gain will be therefore changed accordingly 
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, (2.12) 

2.2 RNN controller design 

Combining the derived discrete-time equations (2.5-2.12) of the PID controller, the 
corresponding recurrent neural network can be designed accordingly. The input to the 
network is the error signal and the output of the network is the control signal. There are 
several ways of designing the network architecture to represent the PID controller. In our 
approach, a partially connected recurrent neural network is used with a single hidden layer 
and three hidden neurons as shown in Fig. 2.1. The activation function is assumed to be 
linear. The feedback connections between the neurons in the hidden layer have one 
sampling time delay. The network parameters are clustered in three matrices Whi,  Rh, Wch. 
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where, hiW  represents the RNN gains between the input layer and the hidden layer,  chW  
represents the RNN gains between the hidden layer and the output layer, and hR  represents 
the RNN feedback gains between the neurons in the hidden layer. T is the sampling time, 
and pK , iK  and dK  are the controller gains. 
One of the major advantages of the designed network is the simplicity of the designed 
controller. The training procedure of the proposed controller is relatively easy due to the 
linearity of the activation functions. 
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Fig. 2.1 Partially connected RNN-based PID controller 

2.3 PID update equations 

As it is shown in Fig. 2.1, the network includes four weights pK , iK , 
0

2 dK

α
, and 1

0

α
α

,  which 

need to be tuned. The rest of the weights are fixed. The network output can be computed 
using the forward equations as follows   
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where the gains α and dK∗  are defined by 
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The training algorithm of the RNN-PID controller is based on the gradient descent method 

and uses the output error signal ( )e n , which is the difference between the actual RNN 

output and the desired output. 

 ( ) ( ) ( )n d n u nε = −  (2.19) 

For offline training, the data set ( ( ), ( ))n d nε  is generated from the simulated PID control 

system and is used to train the RNN.  The performance index to be minimized is the sum of 

squares of errors ( )sqE n of the training data set.  

)(ne )(nu

0

2

α

dK

iK

pK
1

1

1

2

T

1−

)(nv

)(np

)(ne

0

1

α

α
α =

1z−

1z−

1z−

2

T

1z−)( 1ne −

 

www.intechopen.com



Adaptive PID Control of a Nonlinear Servomechanism Using Recurrent Neural Networks 

 

281 

 2
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1
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N
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According to the gradient-descent method, the weights are updated by performing the 
following derivations. 
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where η is the learning ratio. The chain rule is used to back propagate the error to find the 
terms to minimize the performance index. The derivative of the sum squares errors with 

respect to the network parameters can be written as 

 1
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Based on the normal RTRL algorithm the derivative terms in equations 2.25-2.28 will be 
computed recursively at every time step and the network parameters are updated 
accordingly. 

2.4 Adaptive PID controller 

This section presents two direct and indirect adaptive control schemes for a PID controller 

using RNN. The first control scheme is based on one neural network to implement the 
RNN-PID, and the system Jacobian is computed by approximation. In the second control 
scheme, an RNN emulator is added to the system for the exact computation of the system 

Jacobian. 
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2.4.1 Adaptive PID controller without emulator 

In the first control scheme, we consider only a RNN-PID controller in the system as shown 

in Fig. 2.2. According to the desired response of the system, the reference model is chosen to 

obtain the desired settling time and damping characteristics. The RNN-PID controller is 

trained first off-line and is placed next in series with the system for on-line tuning. The 

system output is fed-back to be compared with the reference signal and form the error e1(k). 

This error is the input signal to the RNN-PID controller. On the other hand the system 

output is compared with the reference model output to form the second error e2(k). By 

minimizing this error the system response will become closer to the model response. This 

minimization is done by tuning the RNN-PID parameters as discussed in the following 

section. 

2.4.1.1 Update equations 

The adaptation procedure of the PID controller is quite different from that done in off-line 

learning. Here the error which needs to be minimized is not immediately after the network. 

The objective here is to minimize the performance index function 
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To be able to do this minimization, we need to differentiate (2.29) with respect to the 

network parameters. By applying the chain rule  
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where ( )pJ n  is the system Jacobian. The terms 
( ) ( ) ( )

,  ,  ,
p i d

u n u n u n

K K K∗
∂ ∂ ∂
∂ ∂ ∂

and 
( )u n

α
∂
∂

 can be 

calculated similar to equation 2.25-2.28 in section 2.3.  

The major difference between the above difference equations and the off-line training 

equations is the multiplication with two additional terms which are ( ) ( )2  and pe n J n . This is 

due to the fact that the error which needs to be minimized is not placed immediately after 

the network. Here the plant is placed between the error and the network. So the error 

should be back-propagated through the plant to reach to the networks parameters. This 

error back propagation through the plant requires the knowledge of the system Jacobian

( )pJ n . 

www.intechopen.com



Adaptive PID Control of a Nonlinear Servomechanism Using Recurrent Neural Networks 

 

283 

 

Fig. 2.2 Adaptive PID without emulator 

2.4.1.2 System Jacobian 

For MIMO system with n inputs and m outputs, the Jacobian is defined by the following 

matrix equation. 
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where [ ]1 2
T

ny y y y= A  is the output vector and  [ ]1 2
T

nu u u u= A  is the input vector to the 

system.  
In this work, because we are dealing with only one input and one output, the  

system Jacobian is a scalar. One way to approximate this term is by taking the ratio of the 

difference between the current and previous input/output signals of the system. This 

approximation can be considered to be sufficiently precise if the sampling time is made 

sufficiently small.   
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An alternative way to compute the Jacobian more accurately is by building an emulator of 

the system. This will be discussed in section 2.4.2. 

With this approximation, the system Jacobian is used in (2.30)-(2.33) to perform the RNN-

PID gains tuning and minimize the reference model error in the least squares sense. 

2.4.1.3 Reference model difference equation 

In the system simulation, the reference model is generated on-line within the control 

algorithm, so we need to find the difference equation for the desired model. Our desired 

model here is a second order model. With the general transfer function 
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The overall difference equation will be 
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where mr  and rmy are the input and output of the model and 
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2.4.1.4 Simulation results with constant mass 

To verify the performance of the adaptive RNN-PID controller and check whether it can 

force the servomechanism response to follow the reference model system, a multi-level step 

input signal is applied as shown in Figure 2.3. 

Figure 2.3 shows the input signal and the system response before adaptation, and Figure 2.4 

shows the response after 100 iterations. The sum of squares of errors is also illustrated in 

Figure 2.4. These Figures show clearly that the controller gains are adequately tuned to force 

the system output to follow closely the reference model output. 
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Fig. 2.3 Input signal and initial system response 

 

 

Fig. 2.4 System responses and sum of squares of errors after 100 iterations 

The system parameters and are summarized in Table 2.1. 
 

Simulation Parameters 

Simulation Time t  9 sec 

Sampling Time ST  0.001 sec 

Reference Time Constant rmτ  0.2 sec 

Damping Coefficient ξ  1 

Mass M  2 Kg 

Length L  0.2 m 

Damping Coefficient B  1 

Table 2.1 Simulation parameters for the adaptive PID controller with constant mass 

The PID gains variation during the last cycle after 100 iterations is shown in Figure 2.5. It 

is shown that the gains, Ki, Kd*, andα, have stabilized to nearly constant values, while the 
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gain Kp is continuously tuned around an optimum value as the reference signal is 
changed. 
 

       
 

       

Fig. 2.5 PID gains variation for last iteration 

2.4.2 Adaptive PID controller with emulator 

Usually, back-propagating the error through the hybrid system results in some errors due to 

the approximation of the system Jacobian. To avoid these errors it is better to model the 

plant with a neural network. This neural network is called an emulator. By adding a neuro-

emulator in parallel with the plant, the emulator will be trained to learn the dynamics of the 

system. So by having an RNN based plant, the system Jacobian can be computed more 

accurately. The emulator will be trained first off-line to make sure the RNN model is very 

close to the actual system. Next, the emulator will be trained on-line and will be used to 

compute the system Jacobian. 

The servomechanism under consideration is of a second order type. The corresponding 

difference equation will include inputs and outputs delayed with two sampling times. We 

need therefore to construct a recurrent network which can memorize inputs and outputs up 

to two samples back in time. Figure 2.6 shows the proposed RNN to represent the 

pendulum system. In this partially connected network there are no recurrent connections 

between the output layer and the input layer. The only connections are between the output 

layer and the hidden layer and some internal connections within the hidden layers. The 

input signal includes only the current signal x(n) and the delayed signal x(n-1). 
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Fig. 2.6 RNN Architecture for Pendulum Identification  

Figure 2.7 shows the general layout of the complete control system. As we can see from this 
figure the RNN based emulator is placed in parallel with the plant and is trained on-line to 
allow the computation of the system Jacobian. 
 

 

Fig. 2.7 Adaptive PID with RNN based emulator 

2.4.3 Jacobian computation 

For the exact calculation of the system Jacobian, there is a need to differentiate the plant 
output ( )y k with respect to the control signal ( )kτ . According to Figure 2.7, the forward 
equations of the emulator are written as 

 1 10 11 12 11 1 12 2( ) ( ) ( 1) ( 1) ( 1)O k w w k w k r O k r O kτ τ= + + − + − + −  (2.42) 

 
2 20 21 22 21 1 22 2( ) ( ) ( 1) ( 1) ( 1)O k w w k w k r O k r O kτ τ= + + − + − + −  (2.43) 
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 10 11 1 12 2 11( ) ( ) ( ) ( 1)y k w w O k w O k r y k′ ′ ′ ′= + + + −  (2.44) 

By differentiating (2.44) with respect to ( )kτ  

 1 2
11 12 11

( ) ( 1)( ) ( )

( ) ( ) ( ) ( )

y k y kO k O k
w w r

k k k kτ τ τ τ
∂ ∂ −∂ ∂′ ′ ′= + +
∂ ∂ ∂ ∂

 (2.45) 

1( )

( )

O k

kτ
∂
∂

and 2( )

( )

O k

kτ
∂
∂

can be derived by differentiating (2.42) and (2.43) with respect to ( )kτ  

 1 1 2
11 12 11 12

( ) ( 1) ( 1) ( 1)

( ) ( ) ( ) ( )

O k k O k O k
w w r r

k k k k

τ
τ τ τ τ

∂ ∂ − ∂ − ∂ −
= + + +

∂ ∂ ∂ ∂
 (2.46) 

 2 1 2
21 22 11 12

( ) ( 1) ( 1) ( 1)

( ) ( ) ( ) ( )

O k k O k O k
w w r r

k k k k

τ
τ τ τ τ

∂ ∂ − ∂ − ∂ −
= + + +

∂ ∂ ∂ ∂
 (2.47) 

To compute ( 1)

( )

k

k

τ
τ

∂ −
∂

 another approximation is used  

 ( 1) ( 1) ( 2)

( ) ( ) ( 1)

k k k

k k k

τ τ τ
τ τ τ

∂ − − − −
≈

∂ − −
 (2.48) 

Using (2.48), the terms in (2.46) and (2.47) are calculated recursively and are used to 
determinethe system Jacobian with a better approximation. The accuracy of the Jacobian 
depends on how good the emulator is trained. Consequently the overall performance of the 
controller will be improved. 
With the RNN based emulator, the update equations are the same as those derived in the 
previous section. Because the controller and emulator are both tuned on-line during each 
iteration, it is better to make the emulator training procedure faster than the controller.  This 
will help to increase the PID controller performance. 

The flowchart of the program adaptive PID controller algorithm with an RNN based 
emulator is shown in Figure 2.8. The program starts with some initializations such as 
allocating random weights, learning ratio and momentum term. Initially ( )kτ  which is the 
control signal, is assumed to be zero. ( )kτ  is feeding system and emulator to generate 

( )sysy k  and ( )sysy k
&

.  Based on these two values 3( )E k is calculated. The input signal is sent to 
the reference model to generate ( )rmy k . Based on the difference between ( )rmy k  and ( )sysy k , 

2( )E k  is calculated. Finally ( )sysy k  is compared with the reference point to form 1( )E k . By 
finding all errors the RTRL adaptation mechanism will tune the parameters accordingly. 
After adaptation and before executing the program for the next sample , the old values are 
updated. This procedure is repeated till the total number of samples is reached. The whole 
procedure is again executed for the given number of iterations. 
Figure 2.9 shows the initial system response before tuning and Figure 2.10 show the results 
after adaptation. Due to the better approximation of the Jacobian the controller tuning is faster. 
The simulation parameters are shown in Table 2.2.  Since the control scheme is based on two 
separate RNN’s that are tuned online the stability of overall system becomes a main issue. 
Each RNN with its inherent feed-back connections may cause one the networks to be 
unstable. Instability of one the networks make the whole control system to become unstable. 
The brief stability analysis of the designed controller will be discussed in section 3.  
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Simulation Parameters

Simulation Time t 9 sec
Sampling Time Ts 0.001 sec

Reference Time Constant τrm 0.2 sec 

Damping Coefficient ξ 1

Mass M 2 Kg
Length L 0.2 m
Damping Coefficient B 1

Controller Parameters

Controller Gain Kp 7.2464

Controller Gain Ki 18.8667
Controller Gain Kd* 0.7668
Controller parameter α 0.1826

Learning ratio η 1e-5

Momentum term ϑ 0.06
Emulator Parameters

Learning ratio η 0.09

Momentum term ϑ 0

Table 2.2 Simulation parameters for the adaptive PID controller with emulator 

 

 

Fig. 2.8 Control program flowchart 
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Fig. 2.9 Input signal and initial system response 

 
 

 

Fig. 2.10 Results after adaptation with 0.2rmτ =  sec 

2.4.4 Robot arm control 

A one-degree of freedom robot arm can be modelled as a pendulum system with a 
servomechanism at the joint. Controlling the robot arm position with variable load is a 
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challenging problem. In this section, the RNN based PID controller will be deployed to 
control the robot arm to follow a desired trajectory which consists of moving a load from 
one location to another location as shown in Figure 2.11. 
 

       

Fig. 2.11 Robot arm desired velocity and position 

Assume that the robot arm starts to move from the 0º initial position. During the first 2 
seconds the arm velocity will increase with a constant slope in the positive direction. In the 
next two seconds the velocity becomes constant which means the arm will move at constant 
velocity in the same direction. In the third two seconds when the arm is close to the target, it 
needs to decelerate or decrease its velocity. In the next two seconds the arm should stop 
(velocity become zero) to pick an object. Then this procedure will be repeated in the 
opposite direction till reaching to the initial position. As it can be observed form Figure 2.12 
which illustrates the system response without adaptation, at t=6 sec there is a disturbance 
applied to the system by picking up an object. It is assumed that the object mass is 10% of 
the initial system mass. 
 

 

Fig. 2.12 Initial system response with disturbance 
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the arm is moving. If the controller is capable to control the arm for the desired trajectory 

with the consideration of mass disturbance, it means that our designed adaptive PID 

controller works fine. As it is shown in Figure 2.13 after 2 iterations the sum of squares of 

errors which was initially 1042 reaches to 0.092. The PID gains are successfully adapted in 

order to make the robot arm follow the desired trajectory. 

 

      
 

      
 

      
 

Fig. 2.13 Results after adaptation 
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3. Stability analysis 

Global Asymptotic Stability (GAS) is a desired goal in designing any control system. 
However, this desired goal may not be easily achieved for systems involved with RNN. The 
inherent feedback properties of RNN make the analysis of this kind of systems complex.  
Several researches have been done to derive necessary and sufficient conditions for stability 
of RNN. Suykens (Suykens 2002) derived a necessary and sufficient condition for global 
stability of a specific class of RNN. The weak point of his criterion was due to the 
elimination of biases in the stability analysis. Barabanov and Prokhorov (Barbanov & 
Prokhorov 2002) observed that ignoring biases not only severely limits the mapping 
capabilities of RNN but also almost always results in extremely conservative stability 
criterion. They used the Linear Matrix Inequality (LMI) approach to derive a sufficient 
condition for the absolute stability of a given RNN. Their criterion was more useful 
compared to (Suykens 2002) due to the consideration of biases but still was not efficient. The 
derivation could not confirm the stability of many stable systems which are actually globally 
stable. Barabanov and Prokhorov later on proposed a new method of stability by 
approximating Lyapunov surface (Barbanov & Prokhorov 2003). The new method which is 
based on the reduction of a dissipativity domain can be applied to all bounded and 
differentiable systems. The proposed method can give the largest space of stable RNN 
parameters compared to all the previous studies. 
The designed RNN-PID controller in this work is fairly easy for stability analysis because  
of using linear functions in the hidden layer. In this section we will put the RNN-PID 
controller dynamics into a state equation to derive the stability criterion.  
Denote the output of the controller (control signal) as y(k) and the input to the controller 
(error) u(k). Define the output of the hidden layer as the state vector (shown in Figure 3.1) 
 

 

Fig. 3.1 RNN based PID controller in state space form  

 [ ]1 2 3( ) ( ) ( ) ( )
T

X k x k x k x k=  (3.1) 

Hence the controller dynamics can be written as  
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Where 
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 (3.3) 

System (3.2) is considered to be slowly varying if ║∆u(k)║ is sufficiently small. Considering 
the slow change in the rate of u(k) then the above system would be globally asymptotically 
stable if and only if the eigenvalues satisfy the following condition 

 | | 1,   1,2,3i iλ < =  (3.4) 

Where iλ  is the thi  eigenvalue of A . The eigenvalue of A  are 1
1 2 3

0

0, 1,
αλ λ λ
α

= = = . Since 

one of the eigenvalue is located on the unit circle then the designed controller cannot be 
asymptotically stable. However the controller can be stable in the sense of Lyapunov if and 
only if  

 1

0

1 1
α
α

− ≤ ≤  (3.5) 

Substituting for α0 and  α1 from equation (2.9) the stability criterion for the controller can be 
written as  

 2 2 2T T Tτ τ τ− − ≤ − + ≤ +  (3.6) 

4. Conclusion 

This work investigates the application of artificial neural networks for system identification 
and control of nonlinear dynamic systems with a special focus on Recurrent Neural 
Networks (RNNs). This work mainly focused on developing a RNN-based adaptive PID 
controller. The corresponding algorithms are developed and tested. 
The adaptive controller was designed to compensate the drawbacks of the conventional 
PID controller in controlling nonlinear dynamic systems. Two major control approaches 
have been verified. First, when the plant is known and we have some information about it 
in advance. The second control approach assumes a completely unknown plant. The 
comprehensive control approach for the second case contains two RNNs.  One of them 
acts as a controller and the other one as an emulator. It has been shown that the control 
system with two networks is more efficient, reliable and accurate. However, with the 
RNN it has been observed that the system becomes more sensitive which needs careful 
tuning of the learning ratio and momentum terms. 
In this research, the significant contribution is in the development of the RNN based 
controller with the self-tuning ability. Controlling unknown complex systems is a 
challenging problem, especially when the black-box system is highly nonlinear and the 
output is contaminated with disturbances. The authors have shown the power of RNNs to 
overcome these difficulties.  
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In the tuning process of the RNN-based controller with emulator, it is found that increasing 
the learning ratio and momentum term minimizes the error faster, but may deteriorate the 
network stability.  
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