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1. Introduction  

Acquisition of unique robotic motions by machine learning is a very attractive research 

theme in the field of robotics. So far, various learning algorithms—e.g., adaptive learning, 

neural network (NN) system, genetic algorithm (GA), etc.—have been proposed and 

applied to the robot to achieve a target. It depends on the persons, but the learning method 

can be classified roughly into supervised and unsupervised learning (Mitchell, 1997). In 

supervised learning, the ideal output for target task is available as a teacher signal, and the 

learning basically proceeds to produce a function that gives an optimal output to the input; 

the abovementioned learning methods belong to supervised learning. Thus, the learning 

results should be always within the scope of our expectation. While, the teacher signal is not 

specifically given in unsupervised learning. Since the designers do not need to know the 

optimal (or desired) solution, there is a possibility that unexpected solution can be found in 

the learning process. This article especially discusses the application of unsupervised 

learning to produce robotic motions. 

One of the most typical unsupervised learning is reinforcement learning that is a 
evolutionary computation (Kaelbling et al., 1996; Sutton & Barto, 1998). The concept of this 
learning method originally comes from the behavioral psychology (Skinner, 1968). As seen 
in animal evolution, it is expecting that applying this learning method to the robot would 
have a tremendous potential to find unique robotic motions beyond our expectation. In fact, 
many reports related to the application of reinforcement learning can be found in the field of 
robotics (Mahadevan & Conell, 1992; Doya, 1996; Asada et al, 1996; Mataric, 1997; Kalmar et 
al., 1998; Kimura & Kobayashi, 1999; Kimura et al., 2001, Peters et al., 2003; Nishimura et al., 
2005). For example, Doya has succeeded in the acquistion of robotic walking (Doya, 1996). 
Kimura et al. have demonstrated that reinforcement learning enables the effective 
advancement motions of mobile robots with several degrees of freedom (Kimura & 
Kobayashi, 1999; Kimura et al., 2001). As a unique challenge, Nishimura et al. achieved a 
swing-up control of a real Acrobot—a two-link robot with a single actuator between the  
links—due to the switching rules of multiple controllers obtained by reinforcement learning 
(Nishimura et al., 2005). Among these studies, Q-learning, which is a method of 
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reinforcement learning, is widely used to obtain robotic motions. Our previous studies have 
also introduced Q-learning to acquire the robotic motions, e.g., advancement motions of a 
caterpillar-shaped robot and a starfish-shaped robot (Yamashina et al., 2006; Motoyama et 
al., 2006), gymnast-like giant-swing motion of a humanoid robot (Hara et al., 2009), etc. 
However, most of the conventional studies have discussed the mathematical aspect such as 
the learning speed, the convergence of learning, etc. Very few studies have focused on the 
robotic evolution in the learning process or physical factor underlying the learned motions. 
The authors believe that to examine these factors is also challenging to reveal how the robots 
evolve their motions in the learning process.  
This article discusses how the mobile robots can acquire optimal primitive motions through 

Q-learning (Hara et al., 2006; Jung et al., 2006). First, Q-learning is performed to acquire an 

advancement motion by using a caterpillar-shaped robot. Based on the learning results, 

motion forms consisting of a few actions, which appeared or disappeared in the learning 

process, are discussed in order to find the key factor (effective action) for performing the 

advancement motion. In addition to this, the environmental effect on the learning results is 

examined so as to reveal how the robot acquires the optimal motion form when the 

environment is changed. As the second step, the acquisition of a two-dimensional motion by 

Q-learning is attempted with a starfish-shaped robot. In the planar motion, not only 

translational motions in X and Y directions but also yawing motion should be included in 

the reward; in this case, the yawing angle have to be measured by some external sensor. 

However, this article proposes Q-learning with a simple reward manipulation, in which the 

yawing angle is included as a factor of translational motions. Through this challenge, the 

authors demonstrate the advantage of the proposed method and explore the possibility of 

simple reward manipulation to produce attractive planer motions. 

2. Q-learning algorithm 

Q-learning is one of reinforcement learning methods and widely used in the field of 

robotics. In Q-learning, an agent selects an action from all the possible actions in a state 

following some policy—a mapping of probability selecting action—and causes an 

interaction with an environment at a certain time. A reward based on the interaction and the 

target task is allocated to the selected action from the environment as a scalar value. At this 

time, the agent renews the database due to the given reward. Repeating this process, the 

action values are renewed and stored in each state. After the learning, an optimal motion for 

the desired task can be realized by just selecting the actions with the highest action value in 

each state. In Q-learning, the convergence to the optimal solution is promised as long as the 

series of learning process follows Markov Decision Process (MDP). The equation is simply 

expressed as follow: 

 1t , t t , t t t , t , t
a

Q(s a ) Q(s a ) [r maxQ(s a) Q(s a )]α γ +← + + −  (1) 

 

where Q(st, at) is action-value function when the agent selects an action at in a state st at time 

t. α and γ represent learning rate and discount rate, respectively. α (0 < α < 1) dominates the 
learning responsiveness (speed); basically, a value near 1 is selected. On the other hand, γ is 
related to the convergence of learning. In general, Q-learning can be considered as a 
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learning method to maximize the expected value of reward that will be received in the 
future. However, the rewards which will be given from the environment in the future are 

basically unknown. So, the future rewards should be estimated by using the discount rate γ, 
as shown in equation (2): 

 2
1 2 3 1

0

k
t t t t t k

k

R r r r rγ γ γ
∞

+ + + + +
=

= + + ⋅ ⋅⋅ = ∑  (2) 

 

Without the discount rate, the agent gets interested in only the immediate rewards and this 

causes the myopic action selection. Therefore, the introduction of the discount rate enables 

Q-learning with a long-term view. Ideally, an eigenvalue near 1 is used for the discount rate, 

but it is pointed out that the duration until the convergence of learning becomes longer if 

the value is too close to 1 (Schewartz, 1993; Mahadevan, 1996). Hence, the discount rate is 

set at 0.8 or 0.9 in this article. 

In previous studies, several augmented Q-learning methods have been proposed and 

discussed in order to improve the learning performance (Konda et al., 2003; Mori et al., 2005; 

Peter & Shaal, 2008; Juang & Lu., 2009; Rucksties et al., 2010). For example, Mori et al. 

demonstrated that the application of Actor–Critic using a policy gradient method is effective 

to the learning of CPG-Actor-Critic model even if a high-order state space is configured 

(Mori et al., 2005). Peters and Schaal proposed Natural Actor-Critic expanding the idea of 

Actor–Critic using a policy gradient method (Peter & Shaal, 2008). However, in this article, 

the simplest Q-learning algorithm is applied to mobile robots in order to achieve robotic 

primitive motions with as minimum information as possible and to facilitate the discussion 

of how the robots acquire the primitive motion in such the condition. 

3. Experimental system 

3.1 Mobile robots 
As mentioned above, this article introduces the acquisition of advancement and planar 

motions generated by Q-learning. In Q-learning for the advancement motion, a simple 

caterpillar-shaped robot is designed and employed. The caterpillar-shaped robot comprises 

four actuators (AI-Motor, Megarobotics Co., Ltd.) as shown in Fig. 1. In this robot, two 

actuators on both the tips are enabled; the others are completely fixed under the position 

control. On the other hand, a starfish-shaped robot, which has four enabled AI-Motors as 

shown in Fig. 2, is applied in Q-learning for acquiring the planar motion. In these robots, the 

motor commands are communicated between a computer and each AI-Motor via RS232C 

interface.  

3.2 Experimental system 
A schematic diagram of experimental system is shown in Fig. 3. In the experimental system, 

a function that provides rewards based on the robotic actions to these robots is required in 

order to renew the action-value function in each state. To perform Q-learning of the 

advancement and planar motions, it is necessary to measure the robotic travel distance in 

each leaning step by using some external sensor such as a motion capture system. In this 

article, a position sensitive detector (PSD) system (C5949, Hamamatsu Photonics) is   
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Fig. 1. Caterpillar-shaped robot for Q-learning of advancement motion: only the AI-Motors 
at both the sides are enabled 

 

Fig. 2. Starfish-shaped robot for Q-learning of two-dimensional motions: all the AI-Motors 
(legs) are enabled 

 

Fig. 3. A schematic diagram of experimental system: PSD system is used for motion-tracking 
of mobile robots 
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employed. The PSD system comprises a charge coupled device (CCD) camera, light-emitting 

diode (LED) targets, and an amplifier. In the PSD system, the CCD camera detects the LED 

targets which have individual IDs and the amplifier sends the two-dimensional position of 

each LED target to the computer as a voltage value; maximum 7 LED targets can be detected 

as analogue data at the same time. In Q-learning with the caterpillar-shaped robot, the CCD 

camera is fixed on the ground to enable tracking the LED targets attached on the side of the 

robot. Whereas, in Q-learning with the starfish-shaped robot, the CCD camera is attached on 

the ceiling to take a panoramic view of robotic two-dimensional motions. Two LED targets 

are attached on the top of the starfish-shaped robot; one is for measuring the robotic center 

position, and the other that is a bit shifted from the center of robot is for calculating the 

yawing angle. 

3.3 Off-line Q-learning simulator based on reward database 
In Q-learning, a considerable number of learning steps is required to reach an optimal 

solution. The long-term learning often causes the fatigue breakdown and the performance 

degradation in the real robot. In addition, the possibility that the mobile robots jump out of 

the motion-tracking-enabled area is quite high in the long-term learning; once the mobile 

robot gets out of the area, Q-learning has to be stopped immediately, and resumed after 

resetting the mobile robot within the motion-tracking-enabled area. So, the use of off-line 

learning is desired to facilitate Q-learning and to shorten the learning time. In general, 

robotic simulator is used instead of real robot to shorten the learning time. However, the 

robotic simulator has a technical issue related to the model error. The model error can be 

decreased by precisely configuring the robotic parameter in the simulator, but it causes the 

increase in the computational time (simulation time). Hence, this article proposes an off-line 

Q-learning simulator based on reward databases, which involving the real information of 

interaction between the robot and the environment. Here, the concept of reward-database-

based Q-learning is introduced. 

A flow chart of off-line Q-learning simulator is shown in Fig. 4. First, as for the reward 

database, ID numbers are assigned to all the action patterns and all the state transitions are 

performed among all the IDs several times by actually using robots. In parallel, some 

physical quantity related to the target motion, such as a travel distance and a yawing angle, 

all over the transition states are measured several times. The measured physical quantities 

are averaged by the number of times that the robot took the same state transition, and the 

averaged values are stored into a database as a representative reward data; the reward data 

is normalized at this time. In Q-learning with the real robots, the interaction between the 

robot and the environment must be simulated to allocate a reward to a selected action in 

each state to renew the action-value function. However, in the proposed method, once the 

reward database is established, the robot is not needed anymore because the reward 

database includes all the real interactions and related physical quantities. Hence, the 

proposed method can omit the computation of the interaction. In Q-learning with the 

reward database, a reward is just referred from the database depending on the state 

transition, and uses the selected reward to renew the action-value function. This is an 

advantage of the proposed method for the conventional methods with the robotic simulator 

although the preliminary experiment is needed; the conventional methods require the 

computation of the interaction every learning step. 
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Fig. 4. A flow chart of off-line Q-learning using the reward database 

4. Analysis of robotic advancement motions generated in Q-learning 

4.1 Acquisition of advancement motion with the caterpillar-shaped robot 
Q-learning is applied to acquire advancement motion of caterpillar-shaped robot. In this Q-

learning travel distance, which is the representative data averaged by 10000 step-actions, 

from a state to the next state is given as reward. The action patterns of the caterpillar-shaped 

robot are shown in Fig. 5; the two-enabled motors at both the sides are controlled at 5 

positions (0, ±26, and ±52 deg), respectively. The caterpillar-shaped robot randomly selects 

one of 25 actions in a learning step—random action policy. Totally, 625 (52 × 52) state 

transitions can be selected in the learning. The learning rate and discount rate are configured 

at 0.9 and 0.8, respectively. Under these experimental conditions, Q-learning is performed in 

the proposed off-line simulator. 

Fig. 6 shows the transitions of travel distances per a leaning step when only the highest Q-

values are selected, i.e., when the caterpillar-shaped robot takes the greedy action; the blue, 

red, and green lines—in this experiment, Q-learning was performed three times—

respectively indicate the relationships between the learning steps and the averaged distance 

traveled by the caterpillar-shaped robot in a step. From Fig. 6, it should be noted that the 

three trials finally reach the same performance (about 4.3 mm travel distance in a step) with 

the similar profile. This result also implies the good learning convergence and repeatability; 

all Q-learning are converged at around the 5000 learning steps in this case. 
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Fig. 5. Action patterns of caterpillar-shaped robot: 52 action patterns in each side 
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Fig. 6. Relationships between the number of learning step and averaged distance traveled by 
the caterpillar-shaped robot in a step under Q-learning conditions α = 0.9 and γ = 0.8 

4.2 Transition of motion forms during Q-learning 
When the caterpillar-shaped robot takes the greedy actions after Q-learning, a series of 
robotic actions defined by the ID numbers appear as an optimal motion. This article defines 
this series of robotic actions as “motion form”. The motion forms consisting of a loop of a 
few actions appear with different patterns during Q-learning. Here, the transition of motion 
forms is analyzed to reveal how the caterpillar-shaped robot acquires an optimal 
advancement motion through the interaction with the environment. To achieve this, the 
motion forms are observed by extracting the learning results every 100 step until 5000 steps. 
Through the observation, it is found that four representative motion forms, as shown in Fig. 
7, appear and disappear until the caterpillar-shaped robot reaches an optimal motion form. 
The number written over the robotic figure is the ID number that is allocated to the states in 
the database. Each motion form comprises a few actions and these actions are periodically 
repeated in the advancement motion. Note that these motion forms except the optimal 
motion form are not necessarily observed at the same timing when performing Q-learning 
several times because the random action policy is applied to the robot in this experiment; 
different environments and different learning parameters would cause other motion forms. 
However, since these four motion forms are frequently taken in Q-learning, this article 
discusses the transition of these motion forms. 
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Fig. 7. Representative motion forms frequently observed in Q-learning under the conditions 
of α = 0.9 and γ = 0.8: Type D is the optimal motion form which brings the most effective 
advancement motion to the caterpillar-shaped robot 

Fig. 8 shows a representative transition of motion forms until the caterpillar-shaped robot 

acquires an optimal motion form. In this learning, the optimal motion forms for the 

advancement motion is Type D consisting of three states (ID: 2, 14, and 20). In the early 

process of Q-learning, Type A, B, and C repeatedly appear and disappear until 800 steps; 

sometimes these motion forms are combined each other. From 800 steps to 4800 steps, major 

change in the motion form is not observed as shown in Fig. 8. In this phase, the states 14 and 

20 are almost fixed and the subsequent state was changed variously. Through the several 

transitions, finally, the motion form is converged to the optimal motion form—Type D. 

Focusing on the transition, Q-learning might be divided into two phases based on 800 

steps— early and later learning phases. In the early stage, the caterpillar-shaped robot 

attempts to establish some rough frameworks of motion forms for effectively performing the 

advancement motion. On the other hand, it seems that the robot selects a possible candidate 

from several key motion forms and performs the fine adjustment in the later phase. This 

implies the evolutionary feature of Q-learning. 

Here is the discussion about the transition of motion forms. In general, the rewards possess 
the following relationships: 

 1 2 3 1n nr r r r r −> > > ⋅ ⋅ ⋅ > >  (3) 

In a finite state, Q-learning is considered as a problem that finds out a group of actions that 
maximize the expected value of discount return Rt. Ideally, only the actions that have the 
highest Q-value should be selected in each state to maximize the expected value of Rt. 
However, the robot cannot take only the actions with the highest Q-value because of the 
finite space. So, the robot also has to select the actions with lower Q-value in some states to 
maximize Rt. Under this constraint, the robot attempts to find out a group of actions—
motion form—with a maximum expected value of Rt. This is a big feature of unsupervised  
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Fig. 8. A representative transition of motion forms during Q-learning process 

learning; such the process cannot be found in supervised learning. Here, from equations (1) 
and (2), it should be noted that the discount rate γ significantly affects the transition of 
motion forms. In fact, our previous studies demonstrated that it is easier to produce the 
optimal motion form with a very few actions when γ is configured at a large value; vice 
versa, an inverse result is observed when γ is a smaller value (Yamashina et al., 2006; 
Motoyama et al., 2006). Hence, it is assumed that the discount rate is a significant factor to 
generate the series of motion forms in the learning process. 

4.3 Environmental effect on the optimal motion form 
As the next step, the environmental effect on the optimal motion form is investigated to 
know how Q-learning adapts to the environmental change. It is expected that Q-learning is 
performed involving the environmental change in the interaction and generates a motion 
form optimized to the given environment. In this article, ascending and descending tasks 
are tried by changing the inclination of floor, as shown in Fig. 9. The inclination is adjusted 
at ±5 deg in each task. A carpet made of the same fiber, which is used on the flat floor in the 
experiment of section 4.1, is attached on the slope so as to make the friction property 
between the caterpillar-shaped robot and the slope the same. Under this condition, 
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Ascending task Descending task  

Fig. 9. Environmental changes in Q-learning: ascending and descending ±5 deg slopes 

 

 

Fig. 10. Optimal motion forms in the three environments 

Q-learning with the same learning parameters in section 4.1 was performed. Fig. 10 compares 
the optimal motion forms generated in the three environments—flat floor, uphill, and 
downhill. Here, let's define these optimal motion forms as normal-type, ascending-type, and 
descending-type motion forms, respectively. As expected, the caterpillar-shaped robot 
acquires different optimal motin forms. This implies that the caterpillar-shaped robot has 
learned the effective advancement motion in the individual environments. 
The performance of each motion form is examined by comparing the travel distance in each 
result. The cumulative travel distances over 20 steps are shown in Fig. 11. Figs. 11 (a) and (b) 
show the results on the uphill and the downhill, respectively. In the case of uphill, the 
caterpillar-shaped robot could advance when applying the normal-type and ascending-type 
motion forms, whereas the robot slipped on the slope toward the opposite direction during 
the descending-type motion form; in this case, the ascending-type motion form 
demonstrated the best performance. Here, these optimal motion forms are analyzed to 
reveal the key factor for ascending the uphill. In the ascending task, it is considered that 
generating the force against the gravity and keeping the friction force not to slip on the slope 
would be very important. Focusing on the normal-type and ascending-type motion forms, it 
should be noted that the rear part pushes the caterpillar-shaped robot when the state is 
shifted from 14 to the next state—20 in the normal-type motion form and 21 in the 
ascending-type motion form. Such the state transition cannot be found during the 
descending-type motion form. As for the advancement motion on the uphill, this pushing 
action might be needed to produce the propulsion in the caterpillar-shaped robot. In adition,  
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(a) Environment: Uphill 
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(b) Environment: Downhill 

Fig. 11. Performance of optimal motion forms in several environmental conditions 

the comparison of the normal-type and ascending-type motion forms tells us that the contact 

area between the robot and the slope is a bit larger in the ascending-type motion form after 

the pushing action. So, it results in larger friction force during the ascendig-type motion 

form and it would enable the caterpillar-shaped robot to advacne without slipping on the 

slope. This difference might produce the different performances of advancement motion in 

the normal-type and ascending-type motion forms, as shown in the blue and red lines in Fig. 

11 (a). Hence, these results imply that the pushing action and large contact area after the 

pushing action are necessary to make the robot effectively ascend the slope. On the other 

hand, in the case of downhill, the robot can take advantage of slip to make a large step. In 

this case, it is considered that the dynamic motion and less friction force would be effective 

to descend the slope. The descending-type motion form shows the best performance among 

the three types as expected. In this motion form, the shape like a bridge is formed (23 and 

24) and it is broken at the next state (1 and 2); this series of actions could be considered as a 

jumping. This jumping-like motion could produce the dynamic advancement motion with 

less friction and lead to a good performance, as shown in Fig. 11 (b). 

Thus, this section demonstrated that Q-learning could find out the most optimal motion 

form that is peculiar to the environment. In addition, the analysis of the motion forms 

implies that the learned motion form is reasonable from a viewpoint of robotic kinematics. 
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5. Acquisition of robotic planar motion by Q-learning 

5.1 Advancement motions of the starfish-shaped robot in X and Y directions 
The starfish-shaped robot can basically select two actions in the horizontal and vertical 
directions (X and Y directions). Here, the performances of advancement motions on the flat 
floor in the two directions are introduced. Regarding Q-learning, four enabled motors are 
controlled at 3 positions (0 and ±52 deg), as shown in Fig. 12. Similar to Q-learning in the 
caterpillar-shaped robot, the random action policy is taken; in a learning step, the starfish-
shaped robot randomly selects one of 81 actions. Totally, 6561 (34 × 34) state transitions are 
selectable. Under the conditions α = 0.9 and γ = 0.9, Q-learning, whose reward databases are 
based on the travel distances averaged by 10000 step-actions in each direction, is performed 
in the proposed off-line simulator. Fig. 13 shows the optimal motion form in the X direction; 
in the Y direction, the optimal motion form becomes the same as that in the X direction that 
rotated by 90 deg. The transitions of travel distances in a learning step and the robotic 
trajectories within 20 steps are shown in Figs. 14 and 15, respectively.  
As shown in Fig. 14, the performances in both the directions are almost the same. Here, the 
most noteworthy point is the magnitude of distance traveled in one step. The travel distance 
by the starfish-shaped robot (about 9.0 mm) is twice as long as that of caterpillar-shaped 
robot (about 4.3 mm) although each motor takes only the three positions. 
 

 

Fig. 12. Action patterns of starfish-shaped robot: 34 action patterns in each leg 
 

Swing legs

 

Fig. 13. Optimal motion form for the advancement motion in the X direction 
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Fig. 14. Relationships between the number of learning step and averaged distance traveled 
by the starfish-shaped robot per a step under Q-learning conditions α = 0.9 and γ = 0.9 
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Fig. 15. Trajectories of the starfish-shaped robot in the horizontal and vertical directions 

This difference would come from the availability of side legs (right and left motors); without 

the side legs, it can be considered that Q-learning of the starfish-shaped robot is almost the 

same as that of the caterpillar-shaped robot. Focusing on the motion form, it should be noted 

that the front and rear motors are driven for the advancement motion, whereas the right and 

left motors are used for helping the advancement motion. That is, it is thought that the motions 

of side legs prevent the starfish-shaped robot from slipping on the flat floor or moving 

backward. In fact, if the optimal motion form is performed without side legs, the travel 

distance in one step becomes significantly short. Therefore, these results imply that the 

starfish-shaped robot skillfully employed the advantage of the swing legs. 

5.2 Planar motion by a reward manipulation 
To achieve planar motion, the rewards should be configured at least including the 
horizontal and vertical positions and yawing angle of the starfish-shaped robot. The use of 
these parameters would make Q-learning complicated and it is not intuitive anymore. In 
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this article, the possibility of producing a planar motion by a reward manipulation is 
discussed. Concretely, the advancement motion in an oblique direction is challenged by 
simply manipulating the normalized reward databases for the horizontal and vertical 
motions, i.e., rx and ry obtained in the experiment of section 5.1. This challenge can be 
realized only in Q-learning based on the reward database; Q-learning with the robotic 
simulator cannot allow this. In the reward manipulation, the following equation is 
employed to make a new reward database rnew: 

 yx www rrr ⋅−±= ))(sgn(new 1  (4) 

where w (−1 ≤ w ≤ 1) is a weight parameter that determines the priority of the two rewards. 
sgn(w) represents the sign of the weight parameter. In this experiment, w is set at ±0.5 in order 
to achieve the advancement motions in the directions of 45 deg and 225 deg with respect to the 
horizontal direction. Based on rnew, Q-learning is performed in each condition by means of the 
proposed off-line simulator. Fig. 16 shows the trajectories of the starfish-shaped robot traveled 
within 20 steps. The results show that the starfish-shaped robot could approximately advance 
in the directions that the authors aimed at although the directions were not able to be 
completely corresponding to the requested directions. Also, this demonstrates the possibility 
of the proposed reward manipulation to generate several planar motions. In general, the 
acquired Q-values should be completely renewed due to the coherence of the rewards when 
the agent learns new tasks, i.e., the agent cannot acquire multiple actions at a time due to the 
oblivion of the knowledge. Therefore, the proposed method might bring a breakthrough in 
generating multiple and novel motions through Q-learning. 
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Fig. 16. Trajectories of starfish-shaped robot in the direction of 45 deg and 225 deg after Q-
learning based on new reward databases manipulated by rx and ry 

6. Conclusion 

In this article, the authors have focused on the key factors of robotic motions generated in Q-
learning process. First, an off-line learning simulator based on the reward databases was 
proposed to facilitate Q-learning. Then, Q-learning was performed in the caterpillar-shaped 
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robot to generate the advancement motion. The observation of learning process implied that 
some key motion forms appear or disappear in the early learning phase and Q-learning 
adjusts them to an optimal motion form in the later learning phase. In addition, the effect of 
environmental changes on the optimal motion form was discussed by using an uphill 
condition and a downhill condition. Even if the environment was changed, Q-learning 
resulted in the motion forms which are optimized for the individual environment. As the 
next step, the planar motion by the starfish-shaped robot was tried. The results in the 
horizontal and vertical actions demonstrated that the starfish-shaped robot skillfully used 
their advantage (side legs) to enable longer travel distance. In addition, a reward 
manipulation with multiple reward databases was proposed to produce the planar motions. 
The application implied that there is potential to yield unique robotic motions. 

7. Future works 

This article discussed the motion forms yielded during Q-learning by using a caterpillar-
shaped robot and a starfish-shaped robot. In our future work, the authors will examine the 
acquisition process of a gymnast-like giant-swing motion by a compact humanoid robot and 
explore the key factor. Through these attempts, the authors aim at having a much better 
understanding of evolutionary aspect of Q-learning. 
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