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1. Introduction 

In field of robot learning (Kaplan et al., 2002), interactive reinforcement learning method in 

that reward function denoting goal is given interactively has worked to establish the 

communication between a human and the pet robot AIBO. The main feature of this method 

is the interactive reward function setup which was fixed and build-in function in the main 

feature of previous reinforcement learning methods. So the user can sophisticate 

reinforcement learner’s behavior sequences incrementally. 

Shaping (Konidaris & Barto, 2006; Ng et al., 1999) is the theoretical framework of such 

interactive reinforcement learning methods. Shaping is to accelerate the learning of complex 

behavior sequences. It guides learning to the main goal by adding shaping reward functions 

as subgoals. Previous shaping methods (Marthi, 2007; Ng et al., 1999) have three 

assumptions on reward functions as following; 

1. Main goal is given or known for the designer. 

2. Subgoals are assumed as shaping rewards those are generated by potential function to 

the main goal (Marthi, 2007). 

3. Shaping rewards are policy invariant (not affecting the optimal policy of the main goal) 

(Ng et al., 1999). 

However, these assumptions will not be true on interactive reinforcement learning with an 

end-user. Main reason is that it is not easy to keep these assumptions while the end-user 

gives rewards for the reinforcement learning agent. It is that the reward function may not be 

fixed for the learner if an end-user changes his/ her mind or his/ her preference. However, 

most of previous reinforcement learning methods assumes that the reward function is fixed 

and the optimal solution is unique, so they will be useless in interactive reinforcement 

learning with an end-user.  

To solve this, it is necessary for the learner to estimate the user's preference and to consider 

its changes. This paper proposes a new method how to match an end-user's preference 

solution with the learner's recommended solution. Our method consists of three ideas. First, 

we assume every-visit-optimality as the optimality criterion of preference for most of end-

users. Including this, section 2 describes an overview of interactive reinforcement learning 

in our research. Second, to cover the end-user's preference changes after the reward function 

is given by the end-user, interactive LC-learning prepares various policies (Satoh & 
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Yamaguchi, 2006) by generating variations of the reward function under every-visit-

optimality. It is described in section 3. Third, we propose coarse to fine recommendation strategy 

for guiding the end-user's current preference among various policies in section 4. 

To examine these ideas, we perform the experiment with twenty subjects to evaluate the 

effectiveness of our method. As the experimental results, first, a majority of subjects prefer 

each every-visit plan (visiting all goals) than the optimal plan. Second, the majority of them 

prefer shorter plans, and the minority of them prefer longer plans. We discuss the reason why 

the end-users' preferences are divided into two groups. These are described in section 5. In 

section 6, the search ability of interactive LC-learning in a stochastic domain is evaluated. 

Section 7 describes relations between our proposed solutions and current research issues on 

recommendation systems. Finally, section 8 discusses our conclusions and future work.  

2. Interactive reinforcement learning 

This section describes the characteristics on interactive reinforcement learning in our 

research, and shows the overview of our system. 

2.1 Interactive reinforcement learning with human 
Table1 shows the characteristics on interactive reinforcement learning. In reinforcement 

learning, an optimal solution is decided by the reward function and the optimality criteria. 

In standard reinforcement learning, an optimal solution is fixed since both the reward 

function and the optimality criteria are fixed. On the other hand, in interactive 

reinforcement learning, an optimal solution may change according to the interactive reward 

function. Furthermore, in interactive reinforcement learning with human, various optimal 

solutions will occur since the optimality criteria depend on human's preference. 

Then the objective of this research is to recommend preferable solutions of each user. The 

main problem is how to guide to estimate the user’s preference? Our solution consists of 

two ideas. One is to prepare various solutions by every-visit-optimality (Satoh & Yamaguchi, 

2006), another is the coarse to fine recommendation strategy (Yamaguchi & Nishimura, 2008). 

 

Type of 

reinforcement learning 
an optimal solution reward function optimality criteria 

standard fixed fixed fixed 

interactive may change interactive fixed 

interactive with human various optimal may change human's preference 

Table 1. Characteristics on interactive reinforcement learning 

2.2 Overview of the plan recommendation system 
Fig. 1 shows an overview of the plan recommendation system. When a user input several 

goals to visit constantly as his/ her preference goals, they are converted to the set of rewards 

in the plan recommendation block for the input of interactive LC-learning (Satoh & 

Yamaguchi, 2006) block. After various policies are prepared, each policy is output as a round 

plan for recommendation to the user. The user comes into focus on his/ her preference 

criteria through the interactive recommendation process. The interactive recommendation 

will finish after the user decides the preference plan. Next section, interactive LC-Learning 

block is described. 
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Fig. 1. The plan recommendation system 

2.3 Interactive LC-Learning block 
Fig. 2 shows an overview of interactive LC-Learning (Satoh & Yamaguchi, 2006) block that is 

extended model-based reinforcement learning. In Fig. 2, our learning agent consists of three 

blocks those are model identification block, optimality criterion block and policy search 

block. The details of these blocks are described in following section. The novelty of our 

method lies in optimality criterion as every-visit-optimality and the method of policy search 

collecting various policies. 

 
Fig. 2. Interactive LC-Learning block 

2.3.1 Model identification 
In model identification block, the state transition probabilities P(s’|s,a) and reward function 

R(s,a) are estimated incrementally by observing a sequence of (s,a,r). Note that s is an 

observed state, a is an executed action, and Rw is an acquired reward. This estimated model 

is generally assumed Markov Decision Processes (MDP) (Puterman, 2006). MDP model is 

defined by following four elements. 
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1. Set of states: 0 1 2{ , , , , }nS s s s s= A  

2. Set of actions: 0 1 2{ , , , , }mA a a a a= A  

3. State transition probabilities: P(s’|s,a) probability of occurring state s’ when execute 

action a at state s. 

4. Reward function: R(s,a) acquired reward when execute action a at state s. 

2.3.2 Optimality criterion 
Optimality criterion block defines the optimality of the learning policy. In this research, a 

policy which maximizes average reward is defined as an optimal policy. Eq. (1) shows the 

definition of average reward. 

 ( ) ( )
1

0

1
lim

N

t
N

t

g s E r s
N

π π
−

→∞ =

⎛ ⎞
≡ ⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (1) 

where N  is the number of step, ( )r sπ
τ  is the expected value of reward that an agent 

acquired at step t  where policy is π  and initial state is s  and ( )E  denotes the expected 

value. To simplify, we use gain-optimality criterion in LC-Learning (Konda et al., 2002a). In 

that, average reward can be calculated by both the expected length of a reward acquisition 

cycle and the expected sum of the rewards in the cycle.  

Then we introduce every-visit-optimality as the new learning criterion based on average 

reward. Every-visit-optimal policy is the optimal policy that visits every reward in the reward 

function. For example, if the reward function has two rewards, the every-visit-optimal policy 

is the largest average reward one which visits both two rewards. Fig.3 shows the example of 

an every-visit-optimal policy with two rewards.  

 
Fig. 3. An Every-visit-optimal policy with two rewards 

2.3.3 Policy search 
Policy search block searches every-visit-optimal policies on an identified model according to 
optimality of policies. Each policy is converted to a round plan by extracting a cycle. The 
detail of this block is described in next section. 

3. Preparing various round plans 

This section describes the definition of various round plans and the method for searching 
various policies. 
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3.1 Illustrated example 
To begin with, we show an illustrated example. Fig.4 shows an overview of preparing 

various round plans within two rewards. When a MDP has two rewards as shown in Fig.4 

(a), then 22 –1, three kinds of every-visit-optimal policies are prepared (Fig.4 (b)). Each 

policy is converted to a round plan by extracting a reward acquisition cycle (Fig.4 (c)), since 

each policy is consists of a reward acquisition cycle and some transit passes. 
 

 
Fig. 4. Overview of preparing various round plans  

3.2 Definition of various round plans by every-visit-optimality 
Various round plans are defined by following steps. 

1. Enumerate the all subsets of the reward function. 

2. Search an every-visit-optimal policy for each subset of the reward function. 

3. Collect all every-visit-optimal policies and convert them into round plans. 

Fig. 5 illustrates the process for searching various round plans. When a reward function is 

identified as {Rw1, Rw2}, enumerated subsets of the function are {Rw1}, {Rw2}, {Rw1, Rw2} in 

step 1. Then an every-visit-optimal policy is decided for each subset of the reward function in 

step 2. At last, these every-visit-optimal policies are collected as various round plans. The 

number of plans in the various round plans is 2r –1, where r is the number of rewards in the 

model.  

3.3 Searching various policies 
This section describes our various policies search method by interactive LC-Learning (Satoh & 

Yamaguchi, 2006). LC-Learning (Konda et al., 2002a; Konda et al., 2002b) is one of the 

average reward model-based reinforcement learning methods (Mahadevan, 1996). The 

features of LC-Learning are following;  

1. Breadth search of an optimal policy started by each reward rule.  

2. Calculating average reward by a reward acquisition cycle of each policy. 
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 {Rw1, Rw2} 

Rw2 Rw1 Rw1 & Rw2

Step 1 

Step 2 

Step 3 

Various round plans 

plan1 plan 2 plan 12 

every-visit 

-optimal policy12

every-visit 

-optimal policy2

every-visit 

-optimal policy1

 

Fig. 5. Process for searching various round plans 
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with AvRw

Optimal

Policy 

Model

Extended

(1) 

(2) 

(3) 

(1) 

(2) 

(3-a) 

Identified Model

(a) Standard LC- Learning   (b) Interactive LC-Learning 

(3-b)

 

Fig. 6. Algorithm for preparing various policies 
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Fig. 6 (a) shows standard LC-Learning algorithm. Previous LC-Learning decides an optimal-

policy by following three steps. 

1. Search policies that have a reward acquisition cycle. 

2. Calculate average reward of searched policies. 

3. Decide an optimal policy that has the maximum average reward. 

Fig. 6 (b) shows algorithm for interactive LC-Learning. Major differences from standard LC-

Learning are following; 

1. Collecting various policies by every-visit-optimality 

2. A stochastic version based on occurring probability 

3. Adaptable for incremental reward addition 

Next, we describe the three steps for interactive LC-Learning as shown in Fig.6 (b). 

(1) Search reward acquisition policies 

In this step, reward acquisition policies are searched by converting a MDP into the tree 

structures where reward acquisition rules are root rule. We show an illustrated example. 

Fig. 7 shows a MDP model with two rewards r1 and r2. It is converted into two tree 

structures. Fig. 8 shows two trees. First, a tree from reward r1 as shown in Fig. 8 (a) is 

generated, then a tree from reward r2 as shown in Fig. 8 (b) is generated. In a tree structure, 

a policy is a path from a root node to the state that is same state to the root node. In a path, 

an expanded state that is same state to the previous node is pruned since it means a local 

cycle. In Fig.8, node D and B are pruned states. 

Fig. 9 shows all reward acquisition policies in Fig. 7. In a stochastic environment, several 

rules branch stochastically. In such case, a path from parent node of a stochastic rule to the 

state that is already extracted is part of a policy that contains the stochastic rule. The policy 

12 in Fig.9 is an example of this.  

(2) Calculate average reward 

In this step, average reward of each policy is calculated by using occurring probability of each 

state of the policy. Occurring probability of a state is expected value of the number of 

transiting the state during the agent transit from the initial state to the initial state. Eq. (2) 

shows definition of the occurring probability of state sj where initial state is si. Occurring 

probability of each state is calculated approximately by value iteration using eq. (2). 

A B

C D

r1

r2  

Fig. 7. An example of MDP model 
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A

B

D

C

A

DA

B

r1

D

C

D

B

AC

r2

r2

C

r1
Policy 1

Policy 12

Policy 2

 

                             (a) A tree from reward r1             (b) A tree from reward r2 

Fig. 8. Searching reward acquisition policies 

A B

C D

r1

r2

A B

C D

r1

r2

Policy 1

Policy 2 Policy 12  

Fig. 9. Three kind of reward acquiring policies 
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Where ak is the action that is executed at state sk. 
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The average reward of policies is calculated by eq. (3) using occurring probability calculated 

by eq. (2). 

(3’-1) Classify policies by reward subset 

In this step, all policies searched by step 1 are classified by acquisition reward set. 

(3’-2) Decide every-visit-optimal policies 

In this step, an every-visit-optimal policy is decided for each group classified in step (3’-1). Each 

every-visit-optimal policy is a policy that had maximum average reward in the each group. 

4. Plan recommendation 

This section describes the plan recommendation system and the coarse to fine recommendation 

strategy (Yamaguchi & Nishimura, 2008). In this section, a goal is a reward to be acquired, 

and a plan means a cycle that acquires at least one reward in a policy. 

4.1 Grouping various plans by the visited goals 
After preparing various round plans in section 3.3, they are merged into group by the 

number of acquired reward. Fig. 10 shows grouping various plans by the number of visited 

goals. When three goals are input by a user, they are converted into three kinds of reward as 

Rw1, Rw2, and Rw3. Then, Group1 in Fig. 10 holds various plans acquiring only one reward 

among Rw1, Rw2, or Rw3. Group2 holds various plans acquiring two kinds of reward 

among Rw1, Rw2, or Rw3, and Group3 holds various plans acquiring Rw1, Rw2, and Rw3. 

 
Fig. 10. Grouping various plans 

4.2 Coarse to fine recommendation strategy 
After grouping various plans by the number of visited goals, they are presented to the user 

sequentially for selecting the most preferable plan. We call the way to decide this order as 

recommendation strategy. In this paper, we propose coarse to fine recommendation strategy 

that consists of two steps, coarse recommendation step and fine recommendation step. 

(1) Coarse recommendation step 

For the user, the aim of this step is to select a preferable group. To support the user’s 

decision, the system recommends a representative plan in each selected group to the user. 
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Fig. 11 shows a coarse recommendation sequence when a user changes his/ her preferable 

group as Group1, Group2, and Group3 sequentially. When the user selects a group, the 

system presents the representative plan in the group as the recommended plan. 

 

 
Fig. 11. Coarse recommendation 

(2) Fine recommendation step 

For the user, the aim of this step is to decide the most preferable plan in the selected group 

in previous step. To support the user’s decision, the system recommends plans among 

his/ her selected group to the user. Fig. 12 shows a fine recommendation sequence after the 

user selects his/ her preferable group as Group2. In each group, plans are ordered according 

to the length of a plan. 

 

 

Fig. 12. Fine recommendation in the selected group 

5. Experiment 

We perform the experiment with twenty subjects from 19 to 21 years old to evaluate the 

effectiveness of our method. 
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5.1 The round-trip plan task 
Fig. 13 shows the round-trip plan Recommendation task in Hokkaido. For a subject, this task 

is executed by following steps. 

1. Each subject selects four cities to visit. Various round-trip plans are recommended. 

2. The subject decides the most preferred round-trip plan among them. The task for a 

subject is to decide the most preferred round-trip plan after selecting four cities to visit 

among eighteen cities. The task for the system is to estimate the preferable round-trip plans 

to each user and to recommend them sequentially. 

 
Fig. 13. The round-trip plan Recommendation task 

5.2 Experimental results 
Fig.14 shows the result of the most preferred plans of each twenty subjects. Horizontal axis 

is the number of visited cities (goals), and vertical axis is the number of subjects. The 

summary of the experimental result is as follows. First, the majority of subjects prefer each 

every-visit plan (visit all four cities) than the optimal plan. Second, majority prefers shorter 

plans, and minority prefers longer plans. Then we focus on these two points. 

First point is the effectiveness of every-visit criterion. After selecting four cities, 15 (three-

quarter) subjects preferred every-visit plans those visit selected four cities. In contrast, only 5 

subjects preferred optimal plans with shorter length, yet these plans do not visit all four 

cities. This suggests that the every-visit criterion is preferable to the optimality criterion for 

human learners. 

Second point is that the users' preferences are divided into two groups, shorter plans, or 

longer plans. We look more closely the preference for every-visit plans among 15 subjects. 

Among them, 10 (two-thirds) subjects preferred shorter (every-visit-optimal) plans, and 5 

(third) subjects preferred longer (every-visit-non-optimal) plans. Among all 20 subjects, they 

indicate a similar tendency. Table 2 shows the summary of the experimental result. In table 

2, a majority of subjects prefer shorter plans those are either optimal or every-visit-optimal, a 
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minority of subjects prefer longer plans those are every-visit-non-optimal. The reason why the 

end-users' preferences are divided into two groups will be discussed in the next section. 

 

Fig. 14. The result of the most preferred plans 

 

every-visit plan 
optimal plan 

every-visit-optimal every-visit-non-optimal 

short shorter long 

5 10 5 

Table 2. Summary of the most preferred plans 

5.3 Discussions 

(1) Why the end-users' preferences are divided? 

We discuss the reason why the end-users' preferences are divided into two groups. Fig. 15 

shows one of the every-visit-optimal plans those major subjects preferred. According to the 

results of the questionnaire survey, a majority of subjects selected an every-visit-optimal plan 

have less knowledge on Hokkaido (or no experience to visit Hokkaido).  

In contrast, a minority of subjects selected every-visit-non-optimal plans those have additional 

cities to visit by the plan recommendation. Fig. 16 shows one of the every-visit-non-optimal 

plans the minority of subjects preferred. According to the results of the questionnaire 

survey, a majority of subjects selected an every-visit-non-optimal plan have much knowledge 

or interest on Hokkaido.  

It suggests that the preference of a user depends on the degree of the user’s background 

knowledge of the task. In other word, the change of the end-users' preference by the 

recommendation occurs whether they have the background knowledge of the task or not. 

Note that in our current plan recommendation system, no background knowledge on the 

recommended round-trip plan except Fig. 13 is presented to each subject. If any information 

about recommended plan is provided, we expect that the result on preference change of 

these two kinds of subjects will differ. 

www.intechopen.com



How to Recommend Preferable Solutions of a User in Interactive Reinforcement Learning?   

 

149 

 

Fig. 15. One of the every-visit-optimal plans 

 
Fig. 16. One of the every-visit-non-optimal plans 

(2) The search ability of interactive LC-learning 

The computing time of the round-trip plan task in Fig. 13 including graphical output by 

interactive LC-learning is no more than one second or less per user input, since it is a 

deterministic MDP model. So we summarize the search ability of LC-Learning in a 

stochastic case (Satoh & Yamaguchi, 2006).  

We compare two kinds of search abilities of LC-Learning to that of Modified-PIA 

(Puterman, 2006). First, the search cost of LC-Learning increases linearly when the number 

of rewards increases linearly. However, the search cost of Modified-PIA increases 

nonlinearly when the number of rewards increases linearly. Besides, Modified-PIA collects 

no every-visit optimal policy when the number of rewards is more than three. These suggest 

that our method is better than previous reinforcement learning methods for interactive 
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reinforcement learning in which many rewards are added incrementally. We go into the 

comparative experiments in detail in section 6. 

(3) Every-visit-optimality in a non-deterministic environment 

In a stochastic environment, every-visit-optimality is defined as p-every-visit-optimality where 

each reward is visited stochastically by not less than probability p (0 < p =< 1). It can be 

calculated by occurring probability of each rewarded rule described in section 3.3 (2). Note 

that 1-every-visit-optimality is that each reward is visited deterministically even in a 

stochastic environment. 

6. Evaluating the search ability of interactive LC-learning 

To evaluate the effectiveness of interactive LC-learning in a stochastic domain, comparative 

experiments with preprocessed Modified-PIA are performed when the number of rewards 

increases. We compare the two kinds of search abilities as follows. 

1. The search cost for every-visit optimal policies 

2. The number of collected every-visit-optimal policies 

6.1 Preprocess for Modified-PIA 
Modified-PIA(Puterman, 2006) is one of the model-based reinforcement learning methods 

based on PIA modified for the average reward. However Modified-PIA is the method to 

search an optimal policy. So it is not valid to compare the search cost of the Modified-PIA 

and LC-Learning that searches various policies. To enable to search various policies by 

Modified-PIA, following preprocess is added. Fig. 17 shows the preprocessed Modified-PIA. 

1. Enumerate the models those contain the subset of reward set of the original model. 

2. Search an optimal policy for each subset of the reward function using Modified-PIA. 

3. Collect optimal policies. 

 

Fig. 17. The preprocessed Modified-PIA 
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6.2 Experimental setup 
We use a hundred of MDP models those consist of randomly set state transition probability 

and reward function for experimental stochastic environment, in which the number of 

rewards is varied among 1 to 10, the number of states is 10 and the number of actions is 4. 

As the measure of the search cost, we used the iteration count in calculating the occurring 

probability of state for LC-Learning and we used the iteration count in calculating the value 

function for Modified-PIA. 

6.3 The search cost for every-visit-optimal policies  
To begin with, the search cost for every-visit-optimal policies is evaluated. Fig. 18 shows the 

comparative search cost when the number of rewards increases. The result indicates that the 

tendency of search cost of LC-Learning is linear and one of Modified-PIA is non-linear when 

the number of rewards increases.  

Then we discuss the theoretical search cost. In Modified-PIA, MDP models those contain the 

subset of reward set of an original MDP are made and an optimal policy for each MDP is 

searched. So original Modified-PIA is performed 2r-1 times where r is the number of 

rewards. After one reward is added, incremental search cost is following. 

 (2r+1-1) – (2r-1) = 2r (4) 

Eq. (4) means that the search cost of Modified-PIA increases nonlinearly when the number 

of rewards increases. In contrast, in LC-Learning, the number of tree structure increase 

linearly when the number of rewards is increase. So it is considered that the search cost of 

LC-Learning increase linearly when the number of rewards increase. 

 

 

 
 

Fig. 18. Search cost when the number of rewards increases 
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6.4 The number of collected every-visit-optimal policies 
To evaluate the effectiveness of interactive LC-learning, another search ability is compared 

with preprocessed Modified-PIA. Note that the experimental setup is same as the setup 

described in section 6.2. Fig. 19 shows the number of collected every-visit-optimal policies. 

Compared with LC-learning collecting all every-visit-optimal policies, the number of collected 

every-visit-optimal policies by preprocessed Modified-PIA is smaller than LC-learning.  

Then, carefully analyzing the case of six rewards, Fig. 20 shows the rate of collected every-

visit-optimal policies, that is percentage of LC-learning of preprocessed Modified-PIA. It  

 

 

Fig. 19. The number of collected every-visit-optimal policies 

 

Fig. 20. The rate of collected every-visit-optimal policies 
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shows that preprocessed Modified-PIA collects no every-visit-optimal policy when the 

number of rewards is more than three. 

Then we discuss the reason why the number of collected every-visit-optimal policies by 

preprocessed Modified-PIA is smaller than LC-learning. Since preprocessed Modified-PIA is 

based on the standard optimality, it searches an optimal policy in each MDP with the subset 

of reward set of the original model as shown in Fig.17. It means that preprocessed Modified-

PIA finds an every-visit-optimal policy only if it is same as the optimal policy in each MDP 

model. As the number of rewards increases, the rate of every-visit-optimal policy that is same 

as the optimal policy decreases. In other words, the distinction between two criteria becomes 

larger according to the number of rewards increases. 

Since most previous reinforcement learning methods including Modified-PIA are based on 

the standard optimality criterion, they only learn an optimal policy. Therefore, under every-

visit-optimality criterion, our method is better than previous reinforcement learning methods 

for interactive reinforcement learning in which many rewards are added incrementally.  

7. Related works on recommender systems 

This section describes relations between our proposed solutions and current research issues 

on recommendation systems. The main feature of our recommendation system is interactive 

and adaptable recommendation for human users by interactive reinforcement learning. 

First, we describe two major problems on traditional recommenders. Second, interactive 

recommendation system called Conversational Recommender is summarized. At last, 

adaptive recommenders with learning ability are described.  

7.1 Major problems on traditional recommenders 
Main objective of recommender systems is to provide people with recommendations of 

items, they will appreciate based on their past preferences. Major approach is collaborative 

filtering, whether user-based or item-based (Sarwar et al., 2001) such as by Amazon.com. 

The common feature is that similarity is computed for users or items, based on their past 

preferences. 

However, there are two major issues. First issue is the similar recommendations problem 

(Ziegler et al., 2005) in that many recommendations seem to be "similar" with respect to 

content. It is because of lack of novelty, serendipity (Murakami et al., 2007) and diversity of 

recommendations. Second issue is the preference change problem (Yamaguchi et al., 2009) 

that is inability to capture the user's preference change during the recommendation. It often 

occurs when the user is a beginner or a light user. For the first issue, there are two kinds of 

previous solutions. One is topic diversification (Ziegler et al., 2005) that is designed to 

balance and diversify personalized recommendation lists for user's full range of interests in 

specific topics. Another is visualizing the feature space (Hijikata et al., 2006) for editing a 

user's profile to search the different items on it by the user. However, these solutions do not 

directly considering a user's preference change. To solve this, this paper assumes a user's 

preference change as two-axes space, coarse and fine axes.  

7.2 Interactive recommendation systems 
Traditional recommenders are simple and non-interactive since they only decide which 

product to recommend to the user. So it is hard to support for recommending more complex 
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products such as travel products (Mahmood et al., 2009). Therefore, conversational 

recommender systems (Bridge et al., 2006) have been proposed to support more natural and 

interactive processes. Typical interactive recommendation is the following two strategies 

(Mahmood et al., 2008):  

1. Ask the user in detail about her preferences. 

2. Propose a set of products to the user and exploit the user feedback to refine future 

recommendations.  

A major limitation of this approach is that there could be a large number of conversational 

but rigid strategies for a given recommendation task (Mahmood et al., 2008). 

7.3 Adaptive recommenders with learning ability 
There are several adaptive recommenders using reinforcement learning. Most of them observe 

a user's behavior such as products the user viewed or selected, then learn the user's decision 

processes or preferences. To improve the rigid strategies for conversational recommenders, 

learning personalized interaction strategies for conversational recommender systems has been 

proposed (Mahmood & Ricci, 2008; Mahmood & Ricci, 2009; Mahmood et al., 2009). 

Major difference from them, the feature of our approach is adaptable recommendation for 

human users by passive recommendation strategy called coarse to fine recommendation. 

Adaptable recommendation means that during our recommendation, a user can select these 

two steps (coarse step or fine step) as his/ her likes before deciding the most preferable plan. 

8. Conclusions 

In this paper, we proposed a new method of interactive LC-learning for recommending 

preferable solutions of a user.  

1. Every-visit-optimality as the optimality criterion of preference for most of end-users was 

assumed.  

2. To cover the end-user's preference changes after the reward function is given by the 

end-user, interactive LC-learning prepared various policies by generating variations of 

the reward function under every-visit-optimality.  

3. For guiding the end-user's current preference among various policies, coarse to fine 

recommendation strategy was proposed. 

As the experimental results, first, the majority of subjects preferred each every-visit plan 

(visiting all goals) than the optimal plan. Second, majority preferred shorter plans, and 

minority prefers longer plans. We discussed the reason why the end-users' preferences are 

divided into two groups. Then, the search ability of interactive LC-learning in a stochastic 

domain was evaluated. 

The future work is to assist a user for deciding the most preference plan to make his/ herself 

known the potential preference of the user. To realize this idea, we are evaluating passive 

recommendation by visualizing the coarse to fine recommendation space and the history of the 

recommendation of it (Yamaguchi et al., 2009). 
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