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1. Introduction 

Due to the recent increased use of diagnostic abdominal imaging and/ or serum prostate 

specific antigen (PSA) test, both incidental small renal tumors and low-risk prostate cancer 

are being detected more frequently. This leads to greater numbers of asymptomatic organ-

confined early cancers in urology. Treatment strategy needs therefore to be reassessed 

because of the lack of comparative evidence in effectiveness and the harm of current 

standard radical invasive treatments especially for such early low-risk asymptomatic 

cancers (Hollingsworth et al 2006, Wilt et al 2007). The precision of the imaging for staging and 

localization of the diseases is an important problem so that this brings patients a benefit, 

avoiding the over-diagnosis of clinically insignificant cancer (which does not need to be 

treated) as well as under-diagnosis of advanced cancers (which definitely need to be 

treated.)  As such, imaging technology is now evolving, and focal therapy for prostate and 

kidney cancer has attracted attention in urology (Gill et al 2010, Eggener et al 2007).  Focal 

therapy aims to achieve targeted control or cure of the malignancy as well as preservation of 

organ function in order to maintain the QOL of individual patients.   

Looking back on the history of urology, there was a definite step when urologists began to 

practise transurethral resection of bladder tumors (TUR-Bt), and this can be clearly categorised 

as a type of minimally invasive focal therapy.  TUR-Bt can achieve the clinical control or cure 

of superficial bladder cancer as well as preservation of the bladder in order to maintain QOL, 

while allowing the patient to urinate through his or her own urethra, avoiding problematic 

urinary stoma on the abdominal skin.  Such focal therapy can be performed generally in the 

out-patient day surgery, and is also repeatable at a certain interval if indicated. Should the 

disease become upgraded or upstaged during active surveillance after such focal therapy, the 

patients would reasonably accept radical treatment when indicated later.  

On the other hand, historically we also find shared critical opinion against focal therapy in 

prostate cancer for 3 main reasons in recent years: firstly, the technological therapeutic 

difficulty of focal treatment; secondly, the lack of reliable imaging to localize and 

characterize potentially multifocal and multi-grade prostate cancers; and thirdly, the 

immaturity of navigation technology to achieve precise 3-dimensional targeting to the 

biopsy-proven cancer lesion.    
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However, with increased knowledge of the natural history of prostate cancer, it is now 

discussed that the prognostic importance of the index prostate cancer, which is a cancer 

with the highest grade and largest volume in an individual prostate and must determine the 

individual prognosis of the disease. As such, the important hypothesis has arisen that we 

might be able to achieve reasonable oncological control by focal therapy, targeting the 

index-lesion at least, while preserving the healthy parts of the prostate and peri-prostatic 

tissue that contribute to maintaining urinary continence and sexual function. This would be 

recommended for patients who are reluctant to accept active surveillance or conservative 

treatment (Eggener et al, 2007).    

The current therapeutic standard for clinical localized renal cancer is surgical removal, 

preferably in the form of nephron-sparing surgery, supported by durable oncological 

outcomes and overall survival, while active surveillance and minimally invasive ablative 

techniques have emerged as potential alternatives in carefully selected patients (Gill et al, 

2010).   

Accordingly, for both kidney and prostate cancers, we are facing a real challenge towards 

endoscopic robotic-assisted surgery, focal ablative therapy, and further computer-assisted, 

minimally invasive ablation (such as cryosurgery, laser therapy, radiofrequency ablation), or 

extra-corporeal therapy (such as high-intensity focused ultrasound). A reliable image 

navigation system would become an essential tool, to facilitate realization of where the 

surgical pathological targets and vital healthy anatomies are located in the surgical field 

beyond the surgeon’s direct vision or underneath the palpable anatomies.  Image-navigation 

would help intra-operative appropriate decision-making before surgical exposure of the 

target has even been made, to minimize any iatrogenic injury to the surrounding healthy 

tissues, and to lead to precise surgical dissection or appropriate delivery of the ablative 

energy to the surgical target while preserving safe surgical margins. Real-time anatomical 

and pathological visualization is required for intra-operative navigation, although there 

may be no perfect single imaging modality to achieve this image-navigation mission.  In 

addition, instead of free-hand control, computer-assistance and robotic control of the 

surgical instruments or interventional probes could increase procedural accuracy while 

potentially decreasing the learning curve. “Image-fusion”  integrated with such computer-

assistance and robotic control would become the key technology.   

Active surveillance could increasingly become an important option for the management of 

low risk kidney and prostate cancers. The optimal biopsy protocol is still controversial in 

both kidney and prostate, and a new reliable biopsy protocol should be considered since the 

pathological evidence given by needle biopsy specimens could be one of the key 

components for determining the oncologic management of these organs.    

To obtain reliable information from biopsy sampling, precise spatial targeting accuracy is 

critical. Since CT-guidance and MR-guidance require expensive facilities and significant 

expertise in intervention, image-fusion guidance, such as real-time US fusion with 

previously acquired enhanced CT for the kidney and enhanced MR for the prostate, would 

provide a clinically relevant opportunity for urologists. The recently emerging technology of 

“ image-fusion” in urology includes the spatial tracking system of a 2D US probe or 

interventional needle with attached electromagnetic and/ or optical sensors or with robotic 

control. Another technology involves the acquisition of real-time 3D volume data in order to 

track with more reality in the spatial targeted fields. This article intends to discuss the 

advantages and limitations in the current proposed techniques of “ image fusion”  in biopsy, 

intervention, and surgery in urology.   
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Among the various image-guided procedures in urology, percutaneous 

drainage/ aspiration, percutaneous nephrostomy, percutaneous renal biopsy or renal 

ablative therapy (for placement of a cryo-surgery probe or radiofrequency probe), 

transrectal/ transperineal prostate biopsy, and transperineal cryo-surgery or brachytherapy 

for prostate cancer could be listed as clinically frequent in diagnostic and interventional 

procedures.   Image-guidance in urology could be performed by an urologist with expertise 

in imaging, but has frequently been performed with the help of an uro-radiologist. The 

choice of the imaging modality for kidney intervention has been based on the preference of 

the physicians. For prostate intervention, transrectal ultrasound (TRUS) has been the gold 

standard as the guidance tool for prostate biopsy delivery. However, controversial issues 

continue due to a current misjudgment of the true value of TRUS as well as emerging MR 

technology. 

2. Percutaneous renal intervention 

Percutaneous imaging guided biopsy and tumor ablation has an increasingly prominent role 

as minimally invasive management for renal tumors. Precise biopsy needle and ablative 

probe placement as well as safe and effective ablation are key steps for successful 

management. In renal intervention such as in the development of neprostomy, investigators, 

especially in the USA, considered fluoroscopy as an essential tool for guide-wire 

introduction, nephrostomy tract dilation, and nephrostomy tube placement (Barbaric et al 

1984, Ko et al 2008). Others, especially in Europe and Japan, have preferred ultrasound 

guidance during puncture of the renal collecting system (Saitoh e al 1982, Skolarikos et al, 

2005). Most often many current investigators now understand the advantages in combining 

the use of these 2 real-time imaging modalities for renal puncture.  Since the pathologic fluid 

collection or renal collecting system are generally dilated to >10 mm, such a dilated 

collection system can be targeted so easily that image-guidance at this setting may not 

require very detailed anatomical signal/ noise ratio or imaging expertise. On the other hand, 

in order to achieve precise targeting of a small renal mass, renal tumor biopsy and tumor 

ablative therapy are most often guided by CT fluoroscopy (Remzi e al 2009, Leveridge et al 

2010), although it may be also precisely guided under US-guidance if performed by US 

experts (Atwell et al 2007, Bassignani et al 2004). Although US visualization of the kidney is 

excellent, the major disadvantages of US-guidance include the requirement of significant 

experience in interpretation of the peri-renal anatomy and vasculatures, difficulty of 

obtaining high-quality images in obese patients, and the difficulty in access of the upper-

pole where the US-beam is blocked by the 11th and 12th rib-bones. The major disadvantage of 

CT fluoroscopy is the radiation exposure for both patients and physicians, and almost all of 

these CT-guided procedures were performed by radiologists because of its availability.  In 

addition, since percutaneous CT-guided intervention generally uses un-enhanced CT 

images, intra-renal tumor margins are often hardly identified. Similarly, although the recent 

introduction of real-time MR is a promising tool, there is also the considerable issue in the 

availability of such expensive MR-compatible instruments and facilities. As such, pioneer 

experience of image-guided percutanous renal intervention required considerable expertise 

with such high-resolution imaging, and the limited availability of the expensive imaging 

modality was the significant issue for urologists.   There is no doubt that enhanced CT is the 

most reliable, standard imaging for the diagnosis of renal mass. However, enhanced 

visualization of the renal tumor is dynamically transient. It does not continue long enough 
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to be useful during entire interventional real-time procedures, and importantly, it can not be 

repeated often since the contrast enhancer is harmful to the renal function.     

As such, to my best knowledge, the most promising solution for overcoming both the 

technical difficulties and the lack of availability of enhanced CT imaging is to use image-

fusion of real-time imaging with pre-operatively acquired enhanced CT volume data, which 

can be integrated with a needle/ probe tracking system by GPS(global positioning system)-

like technology. Recently, various image-fusion guided techniques have been proposed, 

which are undergoing research to demonstrate their technical feasibility in preliminary 

clinical studies (Ukimura & Gill 2008, Ukimura & Gill 2009, Haber et al 2010). However, it may 

be still challenging to achieve clinically relevant accuracy in image-registration as well as in 

needle/ probe placement, which has to be available during the limited computation time, 

taking into account each patient’s deformable anatomies during the real-surgical 

procedures.   

In 2002, Leroy et al reported a pioneer work on the registration of kidney contours by CT 

and US images, and also investigated the automated voxel based registration of CT with 3D 

US, achieving 3.1 mm in registration accuracy, although requiring 80 sec. in computation 

time (Leroy et al 2002, Leroy et al and 2004).  In 2004, Osorio et al presented augmented reality 

visualization that allowed projection of pre-operative CT onto the patient’s body, although 

this system does not achieve real-time monitoring of the procedure (Osorio et al 2004). In 

2005, Mozer et al evaluated the accuracy of the fusion of CT with real-time US for 

percutaneous renal access, reporting the encouraging registration accuracy of 4.7 mm 

between planned and reached targets (Mozer et al 2005).  They noted that error was mainly 

due to needle deflection during puncture.    

For precise needle/ probe placement, a GPS-like technique for navigation of the needle tract 

would be ideal in combination with image-fusion guidance. For this purpose, investigators 

have used an infrared optical tracking system, to track optical sensors which were located 3-

dimensionally, and a tracking handle for guidance of the cryoprobe placement (Haber et al 

2010). Similarly, a magnetic sensor mounted radio-frequency ablative probe can be used for 

real-time surgical planning to overlay 3D data of the theoretical therapeutic area onto the 

registered 3D volume of the CT which was pre-registered with real-time US images (Crocetti 

et al 2008).   

In the fusion of two imaging modalities, image-registration has been classified as “rigid 

registration”  or “non-rigid registration” . Since the urological organs are often shifted by 

respiration or deformed by surgical manipulation, rigid registration may not be a 

sufficiently precise image-fusion for routine clinical use in urology. Recent efforts in non-

rigid registration between pre-operative high-resolution imaging and real-time imaging 

potentially provide a new powerful opportunity to take into account the deformation of the 

organs in image-fusion guided intervention or surgery. 

Wein et al reported a non-rigid registration for the image fusion of pre-operative contrast 

enhanced CT with intra-operative US images at the time of renal biopsy and radio-

frequency-ablation, to achieve a fiducial registration error of 5 mm (Wein et al 2008).  More 

recently, Oguro et al have proven that a non-rigid registration technique (fiducial 

registration error of 1.7 mm) was more accurate than a rigid registration technique (fiducial 

registration error of 5 mm) when fusing pre-procedural contrast-enhanced MR images to 

unenhanced CT images during CT-guided percutaneous cryoablation of renal tumors 

(Oguro et al 2010).  The non-rigid registration technique promises to improve visualization of 

renal tumors using pre-procedural enhanced imaging during unenhanced CT-guided 
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cryoablation procedures, although current limitation of the highly precise non-rigid 

registration does require the significantly long time of 15 minutes to perform.  Further 

technological improvements are being investigated. 

3. Augmented reality in surgical navigation 

Soft tissue navigation systems in urologic surgery are evolving. The augmented reality 

surgical navigation technique has been most widely used in the field of neurosurgery (Iseki 

et al 1997, Kawamata et al 2002), in which there is a clear advantage of minimum organ 

motion in a relatively fixed surgical field within a bony frame, facilitating the registration of 

the 3D image data. Augmented reality for the management of intra-abdominal soft organs 

was challenging (Marescaux et al 2004, Osorio et al 2004, Ukimura & Gill 2007), because intra-

abdominal organs may suffer more from respiratory motion or deformation by 

manipulation.  

Ukimura and colleagues have demonstrated the feasibility of augmented reality in 

laparoscopic surgery for partial nephrectomy and prostatectomy, using optical tracking 

systems of the dynamic motion of the surgical instruments, with computer-assisted 

synchronization of the developed 3D image from the 3D volume data of enhanced CT or 

intra-operatively acquired 3D volume data of transrectal ultrasound images (Ukimura & Gill 

2007, Ukimura & Gill 2008, Ukimura & Gill 2009).  The approach is technically feasible, but 

many issues need to be resolved before its clinical wide-spread use in the fields of surgery 

dealing with soft tissue organs. Nevertheless, recent advancement in augmented reality in 

urological surgery deserves attention.    

Su et al. described a stereo-endoscopic visualization system for augmented reality overlay 

during robot assisted laparoscopic partial nephrectomy. The stereoscopic system allows the 

3D-to-3D registration system of the preoperative CT scan without external tracking devices, 

using image-based surface tracking technology to track gross movement, with an update 

rate of 10 Hz and an overlay latency of four frames to place a reconstructed 3D CT image 

onto the stereo video footage (Su et al 2009). Teber et al. reported an augmented reality 

assisted soft-tissue navigation system using a mobile C-Arm capable of cone-beam imaging, 

which required the surgeon to insert four or more needle-shaped navigation aids into the 

target organ (Teber et al 2009). Herrell et al. demonstrated an augmented reality guided 

laparoscopic procedure using tissue mimicking phantoms, to compare their named 

‘resection ratio’, that was defined as the ratio of dissected tissue compared to the ideal 

resection, between with and without augmented reality image guidance (Herrel et al 2009). 

The resection ratio (3.26) in using image guidance was significantly smaller than that (9.01) 

in using no image guidance, potentially leading to a decrease of benign tissue removal while 

maintaining an appropriate surgical margin. 

The challenge continues in the real-time tracking of organ motion and deformation, to 

achieve real-time dynamic navigation through an ongoing surgical procedure. In particular,  

conventional optical tracking systems and wired magnetic tracking systems are not suitable 

for tracking internal organ motion. An emerging technology, named the Calypso 4-D 

localization system (calypso Medical Technologies, Inc., Seattle, WA, USA), is a miniature, 

wireless magnetic tracking system, which was applied to tracking the prostate motion 

during external radiotherapy (Kupelian et al 2007). We have applied this new technology for 

an endoscopic augmented reality system to demonstrate real-time dynamic superimposition 

of the pre-operatively acquired CT image onto the endoscopic image of the moving organ 
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during advancing surgical manipulation (Nakamoto et al 2008, Ukimura & Gill 2009). Such 

augmented reality image navigation with a 4D-dynamic organ tracking system, being 

integrated with robotic controlled surgical systems, is likely to herald higher precision 

surgery in the near future. 

4. Image-fusion for radiotherapy, prostate biopsy, and lesion-targeted 
prostate intervention 

Pioneer works in the image-fusion of prostate imaging were reported in the field of 

radiotherapy including external beam radiation therapy and brachytherapy, using fusions of 

CT, MR, ultrasound, and/ or fluoroscopy (Holupka et al 1996, Lau et al 1996, Kagawa et al 1997, 

Amdur et al 1999, Reynier et al 2004, Daanen et al 2006, Su et al 2007). In addition, the potential 

value of image fusion of Doppler TRUS with MRI in the staging of prostatic cancer was 

discussed (Selli et al 2007). However, recent attention to image fusion technology for prostate 

cancer is more toward its value in improving the quality of prostate biopsy by precisely 

targeting the image-suspicious area, in mapping the 3D localization of biopsy-proven 

prostate cancer, as well as its value in navigating image-guided focal therapy  

(Ukimura 2010).   

Real-time TRUS has been the gold standard of prostate biopsy guidance, and therapeutic 

intervention, because of the advantages of its real-time nature, its easy-handling, the fact 

that it is urologist-friendly, its relatively inexpensiveness, and its non-invasiveness.  

However, the current role of 2D real-time TRUS imaging to visualize the prostate anatomy 

as a simple delivery tool of biopsy rarely provides information on the spatial location of 

prostate cancer. On the other hand, diagnostic multi-function MRI for the prostate has 

achieved increasingly higher levels of accuracy in detection and localization of cancer in its 

3D volume data (Kirkham et al 2006, Villers et al 2006, Yakara et al 2010). However, since real-

time MR-guided targeted biopsy is still a complicated and expensive procedure, there is 

considerable interest in a technique of MR/  TRUS hybridized image-guided biopsy.    

Reported rigid MR/ TRUS fusion techniques (Kaplan et al 2002, Xu et al 2007, Singh et al 2008, 

Turkbey et al 2010) had a limitation when deformation occurred between MR and TRUS.   

Importantly, because the 3-D shapes of the prostate at the time of image-acquisition at 

preoperative MRI are likely to be different from the intra-operative TRUS images, the 

precise registration of each 3-D volume data is critical. In order to reduce the potential errors 

in rigid registration of TRUS with MRI, one solution may include preoperative MR images 

being obtained while a plastic outer-frame, of exactly the same shape as the real TRUS 

probe, is placed in the rectum, in order to simulate the deformation of the prostate caused 

by the absence or presence of a TRUS probe during the acquisition of MR or TRUS images 

(Ukimura 2010). For another potential solution, Hu and colleagues described a technique 

using a patient specific model of MR/ TRUS deformation built from simulated data for 

image-registration (Hu et al 2009). A more attractive developed technique for improvement 

of registration in MR/ TRUS image-fusion is the introduction of automatic, non-rigid 

(elastic) registration technology (Baumann et al, 2009, Martin et al 2010). This new elastic 

fusion technique allows making automatic segmentation of the prostate in TRUS images by 

deforming a patient specific 3D model built from MR image to TRUS data.  

As mentioned already, unfortunately, clinical urologists generally use TRUS only as a 

simple delivery system for systematic sextant biopsies toward the planned segmental 

locations, with no detailed 3D anatomical records of the sampled localization, and by just 
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naming the biopsy sample with a rough sextant site for review.  Since urologists often need 

repeat biopsies, this led to the current trend of taking an increased number of initial 

biopsies, and also to the risk of delivering the repeat biopsy needle to spots that have 

previously been shown to be negative for cancer, and of failing to make the necessary 

deliveries for previously un-sampled locations. In order to facilitate the emerging strategy of 

focal therapy for prostate cancer which may require precise 3D mapping of biopsy-proven 

cancer, individual recording of the 3D localization of each biopsy would be the key issue.   

As such, transperineal template grid-based 3D mapping biopsy has been proposed (Barzell 

& Melamed 2007, Onik et al 2009). However, current ongoing transperineal template 3D 

mapping biopsy may require 5-mm grid based techniques to detect clinically significant 

cancer, resulting in a tremendous number of required biopsies, for example, over 100 

samples in a large prostate. We are hoping that the improved image-fusion technique of MR 

and TRUS, and the elastic fusion of 3D real-time TRUS for 3D biopsy mapping techniques 

(Mozer et al 2009, Ukimura 2010) could improve the clinically relevant strategy for prostate 

biopsy, and also the image-guided management of prostate cancer in the near future.  

5. Molecular and radionuclide imaging for urology 

Targeted radionuclide therapy offers potential determination of targeted cancer specific 

accumulation by molecular imaging with single photon computed tomography (SPECT) or 

positron emission tomography (PET). In this decade, computer-assisted integration of 

anatomical and functional images has been demonstrated as a hybrid of PET/ CT 

[Townsend, 2001] as well as a fusion of SPECT/ CT (Schillaci et al 2005), providing us a new 

opportunity of interpretation of side-by-side or overlaid dual modalities. Cancer specific 

molecular imaging and radionuclide therapy is attractive for the early detection and staging 

of malignancies, and for the precise selection of patients who would benefit from molecular-

based targeted therapy and monitoring.     

18F-FDP (fluorodeoxyglucose) PET/ CT has been widely used in the management of various 

malignancies showing an increase of glucose metabolism leading to uptake of 18F-FDP, 

although the urinary excretion of 18F-FDP and relatively low uptake of 18F-FDP especially 

in small sized foci (<5mm) of prostate cancer and some types of renal cancer were a clear 

limitation of its expansion in urology. At the same time, other PET tracers have recently 

demonstrated improved accuracy of PET/ CT, which include 11C-choline, 18F-fluorocholine, 

11C-acetate, and 18F- fluoride that might correlate to prognosis and localization in prostate 

cancer (Wachter et al 2007, Bouchelouche& Oehr J Urol 2008, Piert et al 2009, Poulsen et al 2010).   

The fusion image of SPECT with CT might also improve the role of imaging in the diagnosis 

and therapy of prostate caner (Krengli et al 2006, Sodee et al 2007). The usefulness of 

pretreatment 111-Indium capromab pendetide radio-immuno-scintigraphy plus SPECT co-

registration with CT scans has been demonstrated in detection of occult metastatic disease 

and predicting for biochemical failure in patients who had evidence of that possibility after 

radiotherapy (Ellis et al 2008). This image-fusion capability leads to a new proposed strategy 

for image-guided radiation therapy to favor dose-escalation to the regions as defined by 

focal uptake on radio-immuno-scintigraphy fusion with anatomical image sets (CT or MRI) 

(Ellis & Kaminsky 2006). 

However, there is still challenge in molecular-based diagnosis and radionuclide therapy for 

clinically personalized use, which requires improved detection and efficacy in large clinical 

trials. 
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6. Conclusions 

Image-fusion technology would improve detection of urological malignancies and precision 

of intervention in minimally invasive urology, and are now increasingly under research for 

biopsy needle guidance and therapeutic navigation. In particular, the non-rigid image 

fusion of real-time US with contrast-enhanced CT/ MR, 3-dimensional mapping of biopsy 

localization, 3-dimensional image-guided lesion-targeted ablation therapy, augmented 

reality, and tumor-specific diagnostic imaging have been attracting increased attention. 

7. Figure legends 

 
Fig. 1. Augmented reality during laparoscopic nerve-sparing radical prostatectomy 

The biopsy-proven cancer area (blue), built from intra-operatively acquired 3D TRUS image, 

was overlaid on the real-time laparoscopic image during laparoscopic nerve-sparing radical 

prostatectomy 

 

 
Fig. 2. Augmented reality during laparoscopic partial nephrectomy 

The color-coded zonal anatomy (tumor by red, 0-5 mm margin by yeallow, 5-10 mm margin 

by green, beyond 10mm margin by blue), built from pre-operative contrast enhanced CT 

image, was overlaid on the real-time laparoscopic image during laparoscopic partial 

nephrectomy 
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Fig. 3. 4D Augmented reality navigation  

Using body-GPS (left, Calypso miniature wireless magnetic tracking system) to track real-

timely the motion of the organ, 3D model of pre-operative CT was real-timely overlaid onto 

the laparoscopic view during ongoing surgical manipulation (middle, overlaid image at the 

initial position of the tumor) (right, real-timely overlaid image on the lifted-up tumor with 

safe surgical margin) 

 

 
Fig. 4. MR/ TRUS fusion image-guided biopsy with overlaid images of each biopsy 

trajectory 

Left, positive cancer biopsy trajectory overlaid on the MR-visible lesion (low intensity lesion 

on T2 image) 

Middle, overlaid images of each biopsy trajectory on the 3D MR image 

Right, overlaid images of each biopsy trajectory on the 3D TRUS image 
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