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1. Introduction  

The increasing availability and deployment of imaging sensors operating in multiple 

spectral bands has led to a requirement for methods that combine the signals from these 

sensors in an effective and ergonomic way for presentation to the human operator. Effective 

combinations of complementary and partially redundant multispectral imagery can provide 

information that is not directly evident from the individual input images.  

Image fusion for human inspection should combine information from two or more images 

of a scene into a single composite image that is more informative than each of the input 

images alone, and that requires minimal cognitive effort to understand. The fusion process 

should therefore maximize the amount of relevant information in the fused image, while 

minimizing the amount of irrelevant details, uncertainty and redundancy in the output. 

Thus, image fusion should preserve task relevant information from the source images, 

prevent the occurrence of artifacts or inconsistencies in the fused image, and suppress 

irrelevant features (e.g. noise) from the source images (Smith & Heather, 2005). The 

representation of fused imagery should optimally agree with human cognition, so that 

humans can quickly grasp the gist and meaning of the displayed scenes. For instance, the 

representation of spatial details should effortlessly elicit the recognition of known Gestalts, 

and the color schemes used should be natural (ecologically correct) and thus agree with 

human intuition. Irrelevant details (clutter) should be suppressed to minimize cognitive 

workload and to maximize recognition speed. 

Some potential benefits of image fusion are: wider spatial and temporal coverage, decreased 

uncertainty, improved reliability, and increased robustness of the system. Image fusion has 

applications in defense for situation awareness (Toet et al., 1997b), surveillance (Riley & 

Smith, 2006), target tracking (Zou & Bhanu, 2005), intelligence gathering (O'Brien & Irvine, 

2004), and person authentication (Kong et al., 2007). Other important applications are found 

in industry and medicine  (for a recent survey of different applications of image fusion 

techniques see Blum & Liu, 2006).  

The way images are combined depends on the specific application and on the type of 
information that is relevant in the given context (Smith & Heather, 2005). By examining the 
effects of several image fusion methods on different cognitive tasks, Krebs et al. (Krebs & 
Ahumada, 2002) showed that the benefits of sensor fusion are task dependent. However, 
until now the human end user has not been involved in the design process and the 
development of image fusion algorithms to any great extent. Mostly, image fusion 
algorithms are developed in isolation, and the human end-user is little more than an 
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afterthought, so that separate follow-up evaluation studies are usually required to assess to 
what extent humans benefit from these methods (Aguilar et al., 1999; Dixon et al., 2005; 
Dixon et al., 2006a; Dixon et al., 2006b; Essock et al., 1999; Essock et al., 2005; Krebs & Sinai, 
2002; Smith et al., 2002; Toet & Franken, 2003; Waxman et al., 2006). Recently has it been 
realized that the only way to guarantee the ultimate effectiveness of image fusion methods 
for human observers is to include human evaluation as an integral part of the design process 
(Muller & Narayanan, 2009). 
In this chapter we present some image fusion techniques and assessment methods that are 
based on the principles of cognitive engineering. Cognitive image fusion is based on 
concepts derived from neural models of visual perception and pattern recognition. Here we  
focus on the intuitive representation of spatial structures (outlines) and image color. We will 
argue that cognitive fusion leads to fused image representations that are optimally tuned to 
the human information processing capabilities. 

1.1 The representation of spatial detail in fused imagery 
Human visual image recognition performance depends on the amount of informative 

spatial features (like edges, corners, and lines) that are available in the image (Ullman, 2007). 

Hence, for optimal interpretation a fusion scheme should maximize the number of 

meaningful details in the resulting fused image. However, there is still a large semantic gap 

between computer image representations and human image understanding (Vogel & 

Schiele, 2007). This is a significant obstacle for the development of effective image fusion 

schemes. For instance, image segmentation and decomposition schemes still lead to 

undesirable over- and under- segmentation of semantically contiguous boundaries. Edge 

representations of images still yield incomplete object boundaries or numerous spurious 

(noise related) edges. As a result most image representation schemes do not correspond to 

human perception. It has been suggested to use cognitive principles to bridge the gap 

between human and computer image understanding (Jakobson et al., 2004). Some first 

attempts to apply concepts derived from neural models of visual processing and pattern 

recognition to image fusion and interpretation have been quite successful (Chiarella et al., 

2004; Fay et al., 2004; Waxman et al., 2003).  

1.2 Color representation of fused imagery 
Fused imagery has traditionally been represented in graytones.  However, the increasing 
availability of fused and multi-band vision systems has led to a growing interest in color 
representations of fused imagery (Li & Wang, 2007; Shi et al., 2005a; Shi et al., 2005b; 
Tsagiris & Anastassopoulos, 2005; Zheng et al., 2005). In principle, color imagery has several 
benefits over monochrome imagery for human inspection. While the human eye can only 
distinguish about 100 shades of gray at any instant, it can discriminate several thousands of 
colors. As a result, color may improve feature contrast, thus enabling better scene 
segmentation and object detection (Walls, 2006). Color imagery may yield a more complete 
mental representation of the perceived scene, resulting in better situational awareness. Scene 
understanding and recognition, reaction time, and object identification are indeed faster and 
more accurate with color imagery than with monochrome imagery (Cavanillas, 1999; 
Gegenfurtner & Rieger, 2000; Goffaux et al., 2005; Oliva & Schyns, 2000; Rousselet et al., 
2005; Sampson, 1996; Spence et al., 2006; Wichmann et al., 2002).  Also, observers are able to 
selectively attend to task-relevant color targets and to ignore non-targets with a task-
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irrelevant color (Ansorge et al., 2005; Folk & Remington, 1998; Green & Anderson, 1956). As 
a result, simply producing a fused image by mapping multiple spectral bands into a three 
dimensional color space already generates an immediate benefit, and provides a method to 
increase the dynamic range of a sensor system (Driggers et al., 2001).   
However, the color mapping should be chosen with care and should be adapted to the task 
at hand. Although general design rules can be used to assure that the information available 
in the sensor image is optimally conveyed to the observer (Jacobson & Gupta, 2005), it is not 
trivial to derive a mapping from the various sensor bands to the three independent color 
channels, especially when the number of sensor bands exceeds three (e.g. with hyperspectral 
imagers; Jacobson et al., 2007). In practice, many tasks may benefit from a representation 
that renders fused imagery in natural colors. Natural colors facilitate object recognition by 
allowing access to stored color knowledge (Joseph & Proffitt, 1996). Experimental evidence 
indicates that object recognition depends on stored knowledge of the object’s chromatic 
characteristics (Joseph & Proffitt, 1996). In natural scene recognition paradigms, optimal 
reaction times and accuracy are obtained for normal natural (or diagnostically) colored 
images, followed by their grayscale version, and lastly by their (nondiagnostically) false 
colored version (Goffaux et al., 2005; Oliva, 2005; Oliva & Schyns, 2000; Rousselet et al., 
2005; Wichmann et al., 2002).   
When sensors operate outside the visible waveband, artificial color mappings inherently 
yield false color images whose chromatic characteristics do not correspond in any intuitive 
or obvious way to those of a scene viewed under natural photopic illumination (e.g. 
Fredembach & Süsstrunk, 2008). As a result, this type of false color imagery may disrupt the 
recognition process by denying access to stored knowledge. In that case, observers need to 
rely on color contrast to segment a scene and recognize the objects therein. This may lead to 
a performance that is even worse compared to single band imagery alone (Sinai et al., 
1999a). Experiments have indeed convincingly demonstrated that a false color rendering of 
fused night-time imagery which resembles natural color imagery significantly improves 
observer performance and reaction times in tasks that involve scene segmentation and 
classification (Essock et al., 1999; Sinai et al., 1999b; Toet et al., 1997a; Toet & IJspeert, 2001; 
Vargo, 1999; White, 1998), whereas color mappings that produce counterintuitive 
(unnaturally looking) results are detrimental to human performance (Krebs et al., 1998; Toet 
& IJspeert, 2001; Vargo, 1999). One of the reasons often cited for inconsistent color mapping 
is a lack of physical color constancy (Vargo, 1999). Thus, the challenge is to give nightvision 
imagery not merely an intuitively meaningful (“naturalistic”) color appearance, but also one 
that is stable for camera motion and changes in scene composition and lighting conditions. 
A natural and stable color representation serves to improve the viewer’s scene 
comprehension and enhance object recognition and discrimination (Scribner et al., 
1999).Several techniques have been proposed to render night-time imagery in color (e.g. Sun 
et al., 2005; Toet, 2003; Tsagiris & Anastassopoulos, 2005; Wang et al., 2002; Zheng et al., 
2005). Simply mapping the signals from different nighttime sensors (sensitive in different 
spectral wavebands) to the individual channels of a standard color display or to the 
individual components of perceptually decorrelated color spaces, sometimes preceded by 
principal component transforms or followed by a linear transformation of the color pixels to 
enhance color contrast, usually results in imagery with an unnatural color appearance (e.g. 
Howard et al., 2000; Krebs et al., 1998; Li et al., 2004; Schuler et al., 2000; Scribner et al., 
2003). More intuitive color schemes may be obtained through opponent processing through 
feedforward center-surround shunting neural networks similar to those found in vertebrate 
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color vision  (Aguilar et al., 1998; Aguilar et al., 1999; Fay et al., 2000a; Fay et al., 2000b; 
Huang et al., 2007; Warren et al., 1999; Waxman et al., 1995; Waxman et al., 1997; Waxman et 
al., 1998). Although this approach produces fused nighttime images with appreciable color 
contrast, the resulting color schemes remain rather arbitrary and are usually not strictly 
related to the actual daytime color scheme of the scene that is registered. We recently 
developed a color transform that can give fused multisensor imagery a natural color 
appearance (Hogervorst & Toet, 2008a; Hogervorst & Toet, 2008b; Hogervorst & Toet, 2010). 
The method derives an optimal color mapping by optimizing the match between a set of 
corresponding samples taken from a daytime color reference image and a multi-band 
nighttime image. Once the mapping has been determined, it can be implemented as a color 
lookup-table transform. As a result, the color transform is extremely simple and fast, and 
can easily be applied in real-time with standard hardware. Moreover, it yields fused images 
with a natural color appearance and provides object color constancy, since the relation 
between sensor output and colors is fixed. Since the mapping is sample-based, it is highly 
specific for different types of materials in the scene and can therefore easily be adapted for 
the task at hand, such as optimizing the visibility of camouflaged objects. 

1.3 The need for image fusion quality metrics 
Because the number of image fusion techniques and systems available is steadily increasing, 
there is a growing need for metrics to evaluate and compare the quality of fused imagery. 
Clearly, the ultimate image fusion scheme should use semantically meaningful image 
representations, and should use fusion rules that give higher priority (weights) to regions 
with semantically higher importance to the operator. Generally the ideal fused image 
(reference) is not available.  In applications where the fused images are intended for human 
observation, the performance of fusion algorithms can be measured in terms of 
improvement in user performance in tasks like detection, recognition, tracking, or 
classification. This approach requires a well defined task that allow quantification of human 
performance (e.g. Toet et al., 1997b; Toet & Franken, 2003). However, this usually means 
time consuming and often expensive experiments involving a large number of human 
subjects. In recent years, a number of computational image fusion quality assessment 
metrics have therefore been proposed (e.g. Angell, 2005; Blum, 2006; Chari et al., 2005; Chen 
& Varshney, 2005; Chen & Varshney, 2007; Corsini et al., 2006; Cvejic et al., 2005a; Cvejic et 
al., 2005b; Piella & Heijmans, 2003; Toet & Hogervorst, 2003; Tsagiris & Anastassopoulos, 
2004; Ulug & Claire, 2000; Wang & Shen, 2006; Xydeas & Petrovic, 2000; Yang et al., 2007; 
Zheng et al., 2007; Zhu & Jia, 2005). Although some of these metrics agree with human 
visual perception to some extent, most of them cannot predict observer performance for 
different input imagery and scenarios. Metrics that accurately describe human performance 
are of great value, since they can be used to optimize image fusion systems and to predict 
human observer performance for different scenarios. However, since reliable human 
performance related metrics are extremely difficult to design, they are not yet available at 
present.  

1.4 Overview of this chapter 
In the rest of this chapter we investigate how different grayscale and color image fusion 
methods affect the perception of scene layout, object recognition, and the detection of 
camouflaged objects. We assessed the different fusion techniques by quantifying the 
performance of human observers using the fused imagery. 
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2. Scene layout recognition 

In this section we investigate the effects of grayscale and color image fusion on a spatial 
localization task. We assess the different fusion techniques by quantifying the (objective) 
localization accuracy and the (subjective) confidence of human observers performing the 
task using the fused imagery. 

2.1 Imagery 
We recorded spatially registered visible light and mid-wave (3-5 μm) thermal motion 
sequences representing three military surveillance scenarios  (for details see Toet et al., 1997b). 
The individual images used in this study correspond to successive frames from these time 
sequences. Corresponding visual and thermal frames were fused using an opponent color 
fusion technique developed by the MIT Lincoln Laboratory (Waxman et al., 1995; Waxman et 
al., 1996a; Waxman et al., 1996b; Waxman et al., 1996c; Waxman et al., 1997; Waxman et al., 
1999). Grayscale fused images were obtained by taking the luminance component of the 
corresponding color fused images. The MIT color fusion method provides images with a semi 
natural color appearance, and enhances image contrast by filtering the input images with a 
feedforward center-surround shunting neural network (Grossberg, 1988). 
In all three scenarios, the thermal images provide a poor representation of the scene layout, 
whereas they clearly show the presence of a person in the scene (Fig. 1). In contrast, the 
visible images clearly show the scene structure, whereas they poorly represent the person. 
In the fused images, both the background details and the person are clearly visible. 
Situational awareness is tested by asking observers to report the perceived position of the 
person relative to characteristic details in the scene. Because the relevant information is 
distributed over the individual image modalities (the images are complementary), this task 
cannot be performed with any of the individual image modalities. We used schematic 
(cartoon-like) representations of the actual scenes to obtain a baseline performance and to 
register the observer responses. Fig. 1 shows an example of a scenario in which the reference 
features are the poles that support the fence. These poles are clearly visible in the CCD 
images but not represented in the IR images because they have nearly the same temperature 
as the surrounding terrain. In the (graylevel and color) fused images the poles are again 
clearly visible. 

2.2 Experiment 
Each image was briefly (2s) shown on a  CRT display, followed by the presentation of a 
corresponding schematic reference image. The subject's task was to indicate the perceived 
location of the person in the scene by placing a mouse controlled cursor at the 
corresponding location in this reference image. When the left mouse button was pressed the 
computer registered the coordinates corresponding to the indicated image location (the 
mouse coordinates) and computed the distance in the image plane between the actual 
position of the person and the indicated location. The subject pressed the right mouse button 
if the person in the displayed scene could not be detected. The subject could only perform 
the localization task by memorizing the perceived position of the person relative to the 
reference features in the scene.  
The schematic reference images were also used to determine the optimal (baseline) 
localization accuracy of the observers. Baseline test images (Fig. 1) were created by placing a 
binary (dark) image of a walking person at different locations in the reference scene. In the 
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resulting set of schematic images both the reference features and the person are highly 
visible. Also, there are no distracting features in these images that may degrade localization 
performance. Therefore, observer performance for these schematic test images should be 
optimal and may serve as a baseline to compare performance obtained with the other image 
modalities. 
A total of 6 subjects, aged between 20 and 30 years, served in the experiments reported 
below (for details see Toet et al., 1997b). 
 

 
II 

 
IR 

 
GF 

 
CF 

 
Baseline 

 
Reference 

Fig. 1. Original intensified visual image (II), original thermal image (IR), graylevel fused 
(GF) image, color fused (CF) image, baseline test image (Baseline), and reference (Reference) 
image. 

2.3 Results and discussion 
Fig. 2 shows that subjects are uncertain about the location of the person in the scene for 
about 20% of the visual image presentations and 22% of the thermal image presentations.  
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The (graylevel and color) fused images result in a smaller fraction of about 13%  “not sure'' 
replies. The lowest number of “not sure'' replies is obtained for the baseline reference 
images: only about 4%. This indicates that the increased amount of detail in fused imagery 
does indeed improve an observer's subjective situational awareness. 
Fig. 3 shows the mean weighted distance between the actual position of the person in each 
scene and the position indicated by the subjects (the perceived position), for the visual 
(CCD) and thermal (IR) images, and for the graylevel and color fusion schemes. This Figure 
also shows the optimal (baseline) performance obtained for the schematic test images 
representing only the segmented reference features and the walking person. A low value of 
this mean weighted distance measure corresponds to high observer accuracy and a correctly 
perceived position of the person in the displayed scenes relative to the main reference 
features. High values correspond to a large discrepancy between the perceived position and 
the actual position of the person.   
Fig. 3 shows that the localization error obtained with the fused images is significantly lower 
than the error obtained with the individual thermal and visual image modalities (p=0.0021). 
The smallest errors in the relative spatial localization task are obtained for the schematic 
images. This result represents the baseline performance, since the images are optimal in the 
sense that they do not contain any distracting details and all the features that are essential to 
perform the task (i.e. the outlines of the reference features) are represented at high visual 
contrast. The lowest overall accuracy is achieved for the thermal images. The visual images 
appear to yield a slightly higher accuracy. However, this accuracy is misleading since 
observers are not sure about the person in a large percentage of the visual images, as shown 
by Fig. 2. The difference between the results for the graylevel fused and the color fused 
images is not significant (p=0.134), suggesting that spatial localization of targets (following 
detection) does not exploit color contrast as long as there exists sufficient brightness contrast 
in the gray fused imagery. 
 

 

Fig. 2. Percentage of image presentations in which observers are uncertain about the relative 
position of the person in the scene, for each of the 5 image modalities tested (IR, intensified 
CCD, graylevel fused, color fused, and schematic reference images). 
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Fig. 3. The mean weighted distance between the actual position of the person in the scene 
and the perceived position for each of the 5 image modalities tested (IR, intensified CCD, 
graylevel fused, color fused, and schematic reference images). The error bars indicate the 
size of the standard error in the perceived location. 

Summarizing, for the scenarios investigated here, we conclude that fused images provide a 
better representation of the layout of the scene, but color does not help to localize the 
targets. 

3. Scene gist recognition 

In this section we investigate the effects of grayscale and color image fusion on the 
perception of detail and the global structure of scenes. We assess the different fusion 
techniques by quantifying the sensitivity of human observers performing the task using the 
fused imagery. 

3.1 Imagery 
A variety of outdoor scenes, displaying several kinds of vegetation (grass, heather, semi 
shrubs, trees), sky, water, sand, vehicles, roads, and persons, were registered at night with a 
dual-band visual intensified (DII) camera (see below), and with a middle wavelength band 

(3-5 μm) infrared (IR) camera (Radiance HS). An example is shown in Fig. 4. 
The DII camera provided a two-color registration of the scene, applying two bands covering 
the part of the electromagnetic spectrum ranging from visual to near infrared (400-900 nm). 
The crossover point between the bands of the DII camera lies approximately at 700 nm. The 
short (visual) wavelength part of the incoming spectrum is mapped to the R channel of an 
RGB color composite image. The long (near infrared) wavelength band corresponds 
primarily to the spectral reflection characteristics of vegetation, and is therefore mapped to 
the G channel. This approach utilizes the fact that the spectral reflection characteristics of 
plants are distinctly different from other (natural and artificial) materials in the visual and 
near infrared range (Onyango & Marchant, 2001). The spectral response of the 
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II 

 
DII 

 
IR 

 
GF 

 
CF1 

 
CF2 

Fig. 4. Example of the different image modalities used in this study. II and DII: the long 
wavelength band and both bands of the false color intensified CCD image. IR: the thermal 3-

5 μm IR image. GF: the greylevel fused image and CF1(2) and color fused images produced 
with Method 1(2). This image shows a scene with a road, a house, and a vehicle. 
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long-wavelength channel (‘G’) roughly matches that of a Generation III image intensifier (II) 
system, and is stored separately. 
The images were registered, and patches displaying different types of scenic elements were 
selected and cut out from corresponding images in the different spectral bands. These 
patches were deployed as stimuli in the pyschophysical tests. The signature of the target 
items (i.e. buildings, persons, vehicles etc.) in the image test sets varied from highly distinct 
to hardly visible. 
To test the perception of detail, small patches were selected that display either buildings, 
vehicles, water, roads, or humans. To investigate the perception of global scene structure, larger 
patches were selected, that represent either the horizon (to perform a horizon perception 
task), or a large amount of different terrain features (to enable the distinction between an 
image that is presented upright and one that is shown upside down).  
Grayscale fused (GF) images were produced by combining the IR and II images though a 
pyramidal image fusion scheme (Burt & Adelson, 1985; Toet et al., 1989; Toet, 1990b). Color 
fused imagery was produced by the following two methods. 
- Color Fusion Method 1  (CF1): The short and long wavelength bands of the DII camera 

were respectively mapped to the R and G channels of an RGB color image. The 
resulting RGB color image was then converted to the YIQ (NTSC) color space. The 
luminance (Y) component was replaced by the corresponding aforementioned grayscale 
(II and IR) fused image, and the result was transformed back to the RGB color space 
(note that the input Y from combining the R and G channel is replaced by a Y which is 
created by fusing the G channel with the IR image). This color fusion method results in 
images in which grass, trees and persons are displayed as greenish, and roads, 
buildings, and vehicles are brownish.  

- Color Fusion Method 2 (CF2): First, an RGB color image was produced by assigning the 
IR image to the R channel, the long wavelength band of the DII image to the green 
channel (as in Method 1), and the short wavelength band of the DII image to the blue 
channel (instead of the red channel, as in Method 1). This color fusion method results in 
images in which vegetation is displayed as greenish, persons are reddish, buildings are 
red-brownish, vehicles are whitish/bluish, and the sky and roads are most often bluish. 

The multiresolution grayscale image fusion scheme employed here, selects the perceptually 
most salient contrast details from both of the individual input image modalities, and 
fluently combines these pattern elements into a resulting (fused) image. As a side effect of 
this method, details in the resulting fused images can be displayed at higher contrast than 
they appear in the images from which they originate, i.e. their contrast may be enhanced 

(Toet, 1990a; Toet, 1992). To distinguish the perceptual effects from contrast enhancement 
from those of the fusion process, observer performance was also tested with contrast 
enhanced versions of the individual image modalities, using a multiresolution local contrast 
enhancement scheme. This scheme enhances the contrast of perceptually relevant details for 
a range of spatial scales, in a way that is similar to the approach used in the hierarchical 
fusion scheme (for details see Toet, 1990a; Toet, 1992). 

3.2 Experiment 
A computer was used to briefly (400ms) present the images on a CRT display, measure the 
response times and collect the observer responses.  A total of 12 subjects, aged between 20 
and 55 years, served in the experiments reported below. All subjects have corrected to 
normal vision, and no known color deficiencies. 
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The perception of the global structure of a depicted scene was tested in two different ways. 
In the first test, scenes were presented that had been randomly mirrored along the 
horizontal, and the subjects were asked to distinguish the orientation of the displayed scenes 
(i.e. whether a scene was displayed right side up or upside down). In this test, each scene 
was presented twice: once upright and once upside down. In the second test, horizon views 
were presented together with two horizontally aligned short markers on the left and right 
side of the image. In this test, each scene was presented twice: once with the markers located 
at the true position (height) of the horizon, and once when the markers coincided with a 
horizontal structure that was opportunistically available (like a band of clouds) and that 
could be mistaken for the horizon. The task of the subjects was to judge whether the 
markers indicated the true position of the horizon. The perception of the global structure of 
a scene is likely to determine situational awareness.  
The capability to discriminate fine detail was tested by asking the subjects to judge whether 
a presented scene contained an exemplar of a particular category of objects. The following 
categories were investigated: buildings, vehicles, water, roads, and humans. The perception 
of detail is relevant for tasks involving visual search, detection and recognition. 

3.3 Results and discussion 
For each visual discrimination task the numbers of hits (correct detections) and false alarms 
(fa) were recorded to calculate d' = Zhits-Zfa , an unbiased estimate of sensitivity (Macmillan 
& Creelman, 1991). 
The effects of contrast enhancement on human visual performance is similar for all tasks. 

Fig. 5 shows that contrast enhancement significantly improves the sensitivity of human 

observers performing with II and DII imagery. However, for IR imagery, the average 

sensitivity decreases as a result of contrast enhancement. This is probably a result of the fact 

that the contrast enhancement method employed in this study increases the visibility of 

irrelevant detail and clutter in the scene. Note that this result does not indicate that (local) 

contrast enhancement in general should not be applied to IR images. 

Fig. 6 shows the results of all scene recognition and target detection tasks investigated here. 
As stated before, the ultimate goal of image fusion is to produce a combined image that 
displays more information than either of the original images. Fig. 6 shows that this aim is 
only achieved for the following perceptual tasks and conditions: 
- the detection of roads, where CF1 outperforms each of the input image modalities, 
- the recognition of water, where CF1 yields the highest observer sensitivity, and  
- the detection of vehicles, where three fusion methods tested perform significantly better 

than the original imagery. 
These tasks are also the only ones in which CF1 performs better than CF2. An image fusion 

method that always performs at least as good as the best of the individual image modalities 

can be of great ergonomic value, since the observer can perform using only a single image. 

This result is obtained for the recognition of scene orientation from color fused imagery 

produced with CF2, where performance is similar to that with II  and DII imagery. For the 

detection of buildings and humans in a scene, all three fusion methods perform equally well 

and slightly less than IR. CF1 significantly outperforms grayscale fusion for the detection of 

the horizon and the recognition of roads and water. CF2 outperforms grayscale fusion for 

both global scene recognition tasks (orientation and horizon detection). However, for CF2 

observer sensitivity approaches zero for the recognition of roads and water.  
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Fig. 5. The effect of contrast enhancement on observer sensitivity d’. 

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

upright horizon building human road vehicle water

discrimination task

d
' 
(-

)

IR

II

DII

GF

CF 1

CF 2

 

Fig. 6. Observer sensitivity d’ for discrimination of global layout (orientation and horizon) 
and local detail (buildings, humans, roads, vehicles, and water), for six different image 
modalities. These modalities are (in the order in which they appear in the labeled clusters 
above): infrared (IR), single-band or grayscale (II) and double-band or color (DII) intensified 
visual, grayscale (GF) and color fused (CF1, CF2) imagery. 

Table 1 summarizes the main findings of this study. IR has the lowest overall performance 
of all modalities tested.  This results from a low performance for both large scale orientation 
tasks, and for the detection and recognition of roads, water, and vehicles. In contrast, 
intensified visual imagery performs best in both orientation tasks. The perception of the 
horizon is significantly better with II and DII imagery. IR imagery performs best for the 
perception and recognition of buildings and humans- DII has the best overall performance 
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of the individual image modalities. Thus, IR on one hand and (D)II images on the other 
hand contain complementary information, which makes each of these image modalities suited 
for performing different perception tasks. 
 

 IR II DII GF CF1 CF2 

Upright -1 2 1   2 

Horizon -1 2 1    

Building 2 -1  1 1 1 

Human 2 -1  1 1 1 

Road -1  1  2  

Vehicle -1   2 2 1 

Water -1    2  

Overall -1 2 3 4 8 5 

Table 1. The relative performance of the different image modalities for the seven perceptual 
recognition tasks. Rank orders -1,1, and 2 indicate respectively the worst, second best, and 
best performing image modality for a given task. The tasks involve the perception of the 
global layout (orientation and horizon) of a scene, and the recognition of local detail 
(buildings, humans, roads, vehicles, and water). The different image modalities are: infrared 
(IR), greyscale (II) and dual band false-color (DII) intensified visual, grayscale fused images 
(GF) and two different color fusion (CF1, CF2) schemes. The sum of the rank orders 
indicates the overall performance of the modalities. 

CF1 has the best overall performance of the image fusion schemes tested here. The 
application of an appropriate color mapping scheme in the image fusion process can indeed 
significantly improve observer performance compared to grayscale fusion. In contrast, the 
use of an inappropriate color scheme can severely degrade observer sensitivity. Although 
the performance of CF1 for specific observation tasks is below that of the optimal individual 
sensor, for a combination of observation tasks (as will often be the case in operational 
scenarios) the CF1 fused images can be of great ergonomic value, since the observer can 
perform using only a single image. 

4. Object recognition 

In this section we will show how manual segmentations of a set of corresponding input and 
fused images can be used to evaluate the perceptual quality of image fusion schemes. 
Human visual perception is mostly concerned with object detection and boundary 
discrimination. The method is therefore based on the hypothesis that fused imagery should 
provide an optimal representation of the object boundaries that can be determined from the 
individual input image modalities. To compute the quality of the different image fusion 
schemes we formulate boundary-detection as a classification problem of discriminating non-
boundary from boundary pixels, and apply the precision-recall framework, using reference 
contour images derived from the human-marked boundaries as a reference standard.  

4.1 Imagery 
Seven sets of IR and visible images, including noisy, clean, cluttered and uncluttered 
images, were used in this study (Fig. 7). These multi-sensor images are part of the Multi-
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Sensor Image Segmentation Data Set (Lewis et al., 2006), and are publicly available through 
the ImageFusion.org website (ImageFusion.Org, 2007). These images were fused with three 
different pixel-based fusion algorithms: Contrast Pyramid (PYR); Discrete Wavelet 
Transform (DWT); and the Dual-Tree Complex Wavelet Transform (CWT; see Lewis et al., 
2007).  

4.2 Experiment 
A group of 63 subjects with normal or corrected to normal vision manually segmented both 
the individual and the fused images. The average subject’s age was 21.3 years (standard 
deviation = 2.7 years). A mixture of CRT (37) and TFT (26) screens were used. The 
segmentation instructions quite general, in order not to bias the subject to produce a specific 
type of segmentation. Thus, variations in segmentations were due to differences in 
perception and not to some other aspect of the experimental set up.  

4.3 Results and discussion 
Fig. 8 shows the annotated union of the human segmentations of each of the 7 scenes used in 
this study. In general the manual segmentations represent the actual scene layout quite well. 
Typical examples of human segmentations are shown in Fig. 12.  
To compare the performance of subjects with the different individual (visual and infrared) 
and (CWT, DWT, and Pyramid) fused image modalities we adopted the following 
approach. For all features marked by the human subjects, we computed the percentage of 
subjects that completely delineated them. Then we defined the relevant features in the 
different scenes as those features that were fully segmented in either the visual or infrared 
images by more than half of the number of subjects. In previous studies we found a clear 
distinction in the performance of human observers using the different individual and fused 
image modalities for the detection of respectively terrain features, persons and man-made 
objects like buildings and cars (Toet et al., 1997b; Toet & Franken, 2003). In this study, we 
therefore classify the relevant features in three categories: terrain features, living creatures, 
and man-made objects. Typical terrain features are roads, trees, hills, and clouds. Typical 
man-made objects are houses, fences, poles, chimneys, boats, and buoys. Living creatures 
are for instance people and dogs. Then we computed the average percentage of subjects that 
fully segmented image features, for each feature category and for all image modalities.  
The results are shown in Fig. 9. It appears that terrain features are best detected in the visual 
image modality, which yields the worst performance for the detection of living creatures. 
For the set of images tested in this study, human performance for the detection of man-
made objects is quite similar for all image modalities. The CWT fusion scheme appears to 
yield the best overall performance. Each of the fused image modalities performs similar to 
the infrared image modality for the detection of living creatures, indicating that these 
schemes correctly include details from the infrared images in the resulting fused images. 
However, the performance of the fused image modalities for the detection of terrain features 
is below the performance with the visual image modality. This suggests that the 
representation of the visual details is not optimal in the fused images. Finally, for each of the 
fused image modalities we computed the mean percentage of objects that were segmented 
by a percentage of the human subjects that was larger than the percentage that segmented 
the same objects in either of the input image modalities. This number represents the 
percentage of cases in which a fused image is more than the sum of its parts: subjects can 
perceive details better in the fused image than in each of the individual input images.  
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Scene Visual Infrared Features 

UNCamp 
 

Man-made: 
fence 
poles 
roof 

chimney 
Terrain : 

road 
hill with shrubs 

trees left 
trees right 

Living creatures: 
man 

Dune_7404 

 
Terrain : 

crater 
hill 

small path 
road 

Living creatures: 
man 

Octec02 

Man-made: 
house 1-6 
Terrain : 
trees left 

trees right 
road 

Living creatures: 
man 

Octec21 

Man-made: 
house 1-6 
Terrain : 
trees left 

trees right 
smoke cloud 

Living creatures: 
man 

Trees_4906 

Terrain : 
trees left 

trees upper right 
trees lower right 

border between trees 
Living creatures: 

man 

Fig. 7. The visual (2nd column) and infrared (3rd column) images of each of the 7 different 
scenes used in this study, with a list of the characteristic man-made and terrain features, as 
well as people or animals that were used to score subject performance. 
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house 4 house 5

house 6

road

 
Octec02 

trees left trees right
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Trees_4917 

cloud left cloud right

dog
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7118a 

 

Fig. 8. Annotated union of all human segmentations of each of the 7 scenes used in this 
study. Indicated and labeled are the terrain features (green), man-made objects (gray) and 
living creatures (red) used to score the subject  performance.   
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Fig. 9. Performance of subjects with the (CWT, DWT, and Pyramid) fused image modalities, 
expressed as the mean percentage of objects segmented by a fraction of subjects that was 
equal to or larger than the fraction of subjects that segmented these objects in either the 
visual (v) or infrared (i) image modalities. 

 

 
 

Fig. 10. The mean percentage of subjects that detected relevant features, for each class of 
objects (terrain, living creatures and man-made objects) and for each of the individual 
(visual and infrared) and (CWT, DWT, and Pyramid) fused image modalities. 
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Fig. 10 shows the percentage of cases in which the performance with fused imagery was 
both equivalent to (equal or larger than) or better (larger) than the performance with each of 
the input image modalities. This figure confirms the results in Fig. 9 by showing that most 
image modalities yield a performance for the detection of living creatures that is equivalent 
to that obtained with the input image modalities. The performance for the detection of man-
made objects is below the performance with the input images. The performance for the 
detection of terrain features is considerably reduced, suggesting that the details from the 
visual images are not optimally represented in the fused images. There are only a few cases 
in which the performance with fused imagery exceeds the performance with the individual 
image modalities. This only occurs for the detection of living creatures and of terrain 
features. 
Currently no well-established methods for objective image segmentation quality evaluation 
are available (Correia & Pereira, 2002; Correia & Pereira, 2006; Correia & Pereira, 2003). We 
will therefore use the boundary precision-recall measure, which has become a standard 
evaluation procedure in the information retrieval community (van Rijsbergen, 1979), as the 
evaluation criterion in the comparison of the human segmentation boundaries for the 
different image modalities. Precision is the fraction of detections that are true positives 
rather than false positives, while recall is the fraction of true positives that are detected 
rather than missed. Precision and recall are traditionally used to measure the performance 
of information extraction and information retrieval systems (van Rijsbergen, 1979), and have 
more recently also been applied to measure the performance of edge detection and image 
segmentation schemes (Martin et al., 2004), and the efficacy of multimodal image fusion 
schemes (Davis & Sharma, 2007). In the context of boundary detection, two types of errors 
arise. Type-I errors occur if a true object boundary has not been detected by the segmenter 
(boundary deletion). Type-II errors occur if a detected object boundary does not correspond 
to a segment boundary in  
the reference (false alarm, or boundary insertion). Precision and recall can then be expressed 
by the Type-I and Type-II error rates as follows: 

 
number of correctly detected reference boundary pixels

total number of reference boundary pixels
R =  (1)  

and  

 
number of correctly detected reference boundary pixels

total number of detected boundary pixels
P =  (2) 

Thus, precision is the fraction of detected boundaries that are indeed true boundaries, while 
recall is the fraction of true boundaries in the image that are actually detected. Note that 
both precision and recall are bounded between 0 and 1. 
In the context of boundary detection, the precision and recall measures are particularly 
meaningful in applications that make use of boundary maps, such as stereo or object 
recognition. It is reasonable to characterize this type of higher level processing in terms of 
how much true signal is required to succeed (recall), and how much noise can be tolerated 
(precision). A particular application can define a relative cost α between these quantities. 
The F-measure (van Rijsbergen, 1979), defined as  

 /( (1 ) )F PR R Pα α= + −  (3) 
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captures this trade off as the weighted harmonic mean of the precision P and the recall R. 
Like R and P the F-measure is bounded between 0 and 1. In a precision-recall graph, higher 
F-measures correspond to points closer to (P,R) = (1,1), representing maximal precision and 
recall for a given α. In our present experiments we choose the neutral parameterization and 
set α equal to 0.5, so that precision and recall are weighted equally, and (3) becomes 

 2 /( )F PR R P= +  (4) 

Here we propose to use a combination of the manual segmentations of each of the 

individual image modalities to construct a reference contour image that can be used to 

evaluate the different fusion schemes. The segmentation data set provides multiple human 

segmentations for each image. Simply constructing a reference contour image by taking the 

union of individual manual boundary maps is not effective because of the localization errors 

present in the data set itself. Localization errors are inherent in a human image 

segmentation task, since human subjects are limited in the accuracy with which they can 

draw the edges they observe in the images. Evidently, some objects simply have no well 

defined boundaries (grass, trees, clouds). Moreover, for the type of imagery used in this 

study, the object representations are often not sharp. As a result, there is an inherent 

positional uncertainty in the manually drawn boundaries for the imagery used in this study. 

In the rest of this study we will use procedures to match different boundary representations. 

Simply matching corresponding coincident boundary pixels and declaring all unmatched 

pixels either false positives or misses would not tolerate any localization error. Therefore, 

we permit a controlled amount of localization error, by adopting a distance tolerance region 

with a radius of 20 pixels (this value was found to yield appreciable results throughout the 

entire procedures presented in this study). Any boundary pixel detected within this 

tolerance region around the location of a true (reference) boundary pixel is regarded as a 

correct detection.  

Now we will discuss the steps taken in the construction of a reference contour image. First, 

the individual boundary maps resulting from the human segmentations are converted into 

binary mask images. For a given object boundary, a boundary mask image represents all 

pixels that are within a given tolerance distance of this boundary. These boundary masks 

are introduced to allow for small localization errors in the human segmentation data. The 

binary boundary mask image is obtained by first computing the exact squared two-

dimensional Euclidean distance transform of the binary contour image (Figure 6a) using a 

square 3x3 structuring element (Lotufo & Zampirolli, 2001). The result of this transform is a 

graylevel image in which the value of each background pixel represents the Euclidian 

distance to the nearest boundary pixel (Fig. 11b; e.g.  

http://en.wikipedia.org/wiki/Distance_transform). Thresholding this distance image at the 

aforementioned distance threshold level of 20 pixels gives the binary mask image (Fig. 11). 

Next, for each image modality, the corresponding binary boundary mask images from all 

subjects are summed. The summed mask image represents the number of subjects that have 

marked each individual pixel as a boundary pixel. The summed mask image is then 

thresholded at a level corresponding to half the number of subjects that contributed to the 

sum. Thus we obtain a binary mask image that represents the consensus among at least half 

of the subjects about the boundary status of each pixel (i.e. a pixel has value 1 if at least half 

of the subjects have marked this pixel as a boundary pixel; Fig. 12 lower left).  
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Then, we compute the morphological skeleton (Maragos & Schafer, 1986) of the binary 
consensus mask image (Fig. 12 lower right). This is done by a morphological thinning 
operation (Serra, 1982) that successively erodes away pixels from the boundary (while 
preserving the end points of line segments) until no more thinning is possible, at which 
point what is left represents the skeleton. 
Finally, a joined binary mask for the combination of visual and infrared boundaries is 
produced as the logical union of the corresponding individual binary consensus mask 
images (Fig. 13 lower left). From the resulting binary mask image a joined skeleton image is 
then constructed (Fig. 13 lower right). In the following we will refer to the joined binary 
consensus mask and its morphological skeleton as respectively the reference mask and the 
reference contour image. Note that the reference contour image represents the combination of 
the maximal amount of object boundary information that was extracted by human visual 
inspection from each of the individual image modalities. 
For each of the fused image modalities precision and recall measures are then computed as 
follows. First, we count the number of non-zero (object) pixels in the reference contour 
image (n_ref) and those in the corresponding boundary image manually drawn by a human 
subject (n_subject). To compute the number of pixels in the boundary image drawn by the 
subject that are accounted for by the reference mask (the number of hits: na_subject) we take 
the intersection of the subject’s boundary image and the reference mask, and count the 
number of non-zero pixels. Similarly, to compute the number of pixels in the reference 
contour image that are accounted for by the subject’s boundary drawing  (na_reference) we 
 

(a) 
 

(b) 

(c) 

 
 

Fig. 11. (a)  Boundary drawn for the visual image of the UNCamp scene (see Fig. 7)  by a 
human subject. (b) Distance transform of (a).  (c)  Mask image obtained by thresholding  (b) 
at distance level 20.  
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UNCamp scene Subject 1 

Subject 2 Subject 3 

Subject 4 Subject 5 

Subject 6 Union 

Consensus mask Reference contour 

Fig. 12.  Boundaries drawn by 6 human subjects for the visual image of the UNCamp scene, 
the union of all these boundaries, the consensus mask image (lower left) representing the 
thresholded sum of all boundary masks (i.e. the dilated boundary images; not shown here), 
and the resulting reference contour (lower right). 
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Visual image 
 

Infrared image 

Visual reference contour 
 

Infrared reference contour 

Joint reference mask 
 

Joint reference contour 

Fig. 13. The visual and infrared input images of the UNCamp scene (top row), their 
reference contour representations (middle row), and the joint reference contour mask and 
contour image (lower row). 

take the intersection of the reference contour image and the subject’s boundary mask image, 

and count the number of non-zero pixels. For each individual human subject i the precision 

( iP ) and recall ( iR ) measures are then computed as the fraction of accounted pixels in both 

the subject’s drawing and the reference contour image: 

 /subject subject reference reference; /i iP na n R na n= =  (5) 

The F-measure for each human subject i is then be computed from (5) as: 

 subject reference

reference subject reference subject

2 na na
Fi n na na n

⋅⋅
= ⋅ + ⋅  (6) 
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The overall precision, recall and F-measures are then computed as the mean over all N 
subjects: 

 
1 1 1

; ;
1 1 1N N N

i i i
i i i

P P R R F F
N N N= = =

= = =∑ ∑ ∑  (7) 

Fig. 14 shows the precision and recall measures computed for each of the individual 

skeletons of the visual, infrared, CWT, DWT and Pyramid fused image modalities. This 

figure shows that the individual manual segmentations agree to a large extent with their 

overall skeleton representation (median value of F=0.72). A collection of manual image 

segmentations can therefore be represented by a single overall skeleton.  

Fig. 15 shows the precision and recall measures computed for the unified skeleton 

representation of the visual and infrared human boundary data, and the human boundary 

data for each of the (CWT, DWT and Pyramid-) fused image modalities. This result shows 

that the precision of the boundaries drawn by the subjects is actually quite high, meaning 

that the fusion schemes do not seem to introduce any spurious details. However, the 

fraction of recalled details is around 0.5, which is rather low. This reflects the effect that 

terrain details are not well perceived by the subjects in the fused images.  

Summarizing, we conclude that reference contour images are a useful tool to evaluate the 

performance of image fusion schemes. 
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Fig. 14. Consistency between the skeleton representation of each of the individual (visual, 
infrared) and each of the fused (CWT, DWT, PYR) image modalities and the subject data. 
This figure shows that the skeleton is a  reliable representation of the data. 
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Fig. 15. Consistency between the unified skeleton representation of the visual and infrared 
human boundary data, and the human boundary data for each of the (CWT, DWT and 
Pyramid-) fused image modalities. 

5. Camouflage detection 

Although natural color mapping schemes provide many perceptual benefits, they are not 

suitable for all purposes. A typical example is the task of detecting soldiers wearing 

camouflage suits in a rural setting, using a two-band nightvision system sensitive to the 

visual and thermal part of the electromagnetic spectrum. When the false color 

representation of the fused nightvision image optimally agrees with the daytime appearance 

of the scene, the soldiers will blend in with their environment (will be camouflaged), which 

makes it nearly impossible to perform the task. In such cases a color mapping scheme 

should be used which displays the objects of interest with higher color contrast while 

retaining an intuitive (natural) color setting for the rest of the scene.  

As an example we present the results of a color mapping which optimizes the detection of 
man-made camouflaged targets in a rural setting, while retaining a natural color 
representation of the environment. 

5.1 Imagery 
We registered optically aligned visual (wavelengths shorter than 700 nm) and near-infrared 

(NIR; wavelengths longer than 700 nm) nighttime images of a rural scene containing grass 

and trees, with and without targets in the scene. The targets were blue and green foam tubes 

(Fig. 16). For comparison we also created a standard intensified image of each scene 

containing both bands, since this is the type of image typically provided by standard night 

vision goggles. First, a red-green false color representation of the fused dual-band sensor 

image was obtained by mapping the visual band to the Red channel and the NIR band to the 

Green channel of an RGB-image (Fig. 17d). Next, for each combination of sensor outputs  
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(a) 
 

(b) 

Fig. 16. Images showing the two target types, the green target (a) and the blue target (b). 

 

(a) (b) 
 

(c) 

(d) (e) 

 

Fig. 17. Lookup table based color remapping applied to a dual-band visual (a) and NIR (b) 
image.  (c) A regular intensified image representation for comparison (e.g. a standard night 
vision goggle image). (d) A red-green false color representation of the dual-band image with 
the visual band assigned to the Red and NIR band assigned to the Green channel of an RGB 
display. The inset in (d) shows all possible dual-band outputs as shades of red (large 
response in band 1, small in band 2), green (small response in band 1, large in band 2) and 
yellow (large responses in both bands). (e) The result of the color transformation. The inset 
shows how the colors in the inset of (d) are transformed.  
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(represented by a shade of red, green, yellow; see inset of Fig. 17d) a color was selected to 
display this sensor output. This process was implemented by transforming the red-green 
image (Fig. 17d) into an indexed image in which each pixel value refers to the entry of a color 
lookup table. When a different color lookup table is used, the colors in the indexed image are 
automatically transformed, such that all pixels with the same index are displayed in the same 
color. The method is described in detail elsewhere (Hogervorst & Toet, 2008a; Hogervorst & 
Toet, 2010).  We found that the color transformation which maximizes the visibility of the 
targets while preserving the natural appearance of the scene is quite similar to the red-green 
representation, with a few modifications that specifically address the target colors.  
The inset of Fig. 17e shows the colors assigned to all dual-band outputs (the inset of Fig. 

17d) by the chosen color scheme. This color scheme emphasizes the distinction between 

objects containing chlorophyll (the background plants) and objects containing no 

chlorophyll (e.g. the foam tube targets; notable from the sharp transition between green and 

red at the diagonal). The dual band sensor system separates the incoming light in a part 

with wavelengths below 700nm and one with wavelengths above 700 nm. Since chlorophyll 

shows a steep rise around 700nm, this dual-band system is especially suited for 

discriminating materials containing chlorophyll from materials containing no chlorophyll. 

Elements containing chlorophyll (e.g. plants) are displayed in green (i.e. in their natural 

color), while objects without chlorophyll are displayed in the perceptually opposite color 

red. To further increase the naturalness, elements with high output in both channels are 

displayed in white (bottom right corner of the inset of Fig. 17e). The result of our color 

mapping is shown in Fig. 17e. 

5.2 Experiment 
We evaluated the abovementioned color mapping in a target detection paradigm. We 

registered both nighttime dual-band (visual and NIR) images and daytime full color digital 

photographs of a scene containing grass and trees, with and without targets present. 

Performance for detecting targets was established for imagery of the dual-band fusion 

system, each of the individual sensor bands (visual and NIR), standard NVG, and daytime 

images (taken with a regular digital photo camera). The visual angle and display area of the 

daytime images were matched to those of the nighttime images.  

The targets were green (Fig. 18a) and blue (Fig. 18b) foam insulation tubes. The reflectance 
of the tubes was such the green tubes were mostly undetectable in a standard intensified  
 

(a) (b) 

Fig. 18. The green target (a) and the blue target (b) situated in a background with grass and trees. 
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image representation and in the NIR band (see Fig. 17), but quite distinct (as bright objects) 
in the visible band (see Fig. 17). In contrast, the blue tubes were mostly undetectable in the 
visual band, but clearly visible (as dark objects) in the NIR band and in regular intensified 
images (Fig. 19). 
 

(a) (b) (c) 

Fig. 19. Visual (a), NIR (b) and the color fused dual-band image (c) for a scene including a 
blue target. The target is visible in the NIR band as a dark tube. The dual-band image shows 
the target as a reddish object. 

We recorded whether subjects detected the targets when present (Hits and Misses), and 
whether they judged there to be a target when no target was present (False Alarms and 
Correct Rejections). We also recorded the response times. Since no False Alarms occurred in 
this experiment (i.e. the False-Alarm rate was zero), observer performance is fully 
characterized by the Hit-rate, i.e. the fraction of targets that was detected (ph = #Hits / 
(#Hits + #Misses)). Observer performance was measured for 5 different image modalities:  
1. Daytime: full color daylight images (taken with a standard digital daytime camera), 
2. II: grayscale intensified images, combining both visual and NIR part of the spectrum, 
3. VIS: grayscale intensified images representing only the visual part of the spectrum, 
4. NIR: grayscale intensified images representing only the NIR part of the spectrum, 
5. FC: false color images resulting from the natural color remapping method. 
Seven subjects participated in the experiment. The images were shown on a CRT. The 
subjects indicated as quickly as possible whether a target was present or not, by clicking the 
appropriate mouse button. Next, the image disappeared and was replaced by a low 
resolution equivalent of the image, consisting of 20x15 uniformly colored squares (to 
prevent subjects from continuing their search after responding). We registered the time 
between onset of the stimulus and detection (the response time). The subject then indicated 
the perceived target location or clicked on an area outside the image labeled “no target 
found”. Responses outside an ellipse with horizontal diameter of 162 and vertical diameter 
of 386 pixels centered on the vertically elongated target were considered as incorrect. 

5.3 Results and discussion 
Fig. 20 shows the fraction of hits (hit-rate) for the various sensor conditions and target 
colors. Shown are the average hit-rates over subjects. Not surprisingly, performance is 
highest in the Daytime condition. As expected (see Fig. 17 and Fig. 19), performance for 
detecting the green targets is high in the visual (VIS) condition and low in the image 
intensified (II) and NIR sensor conditions. Performance for detecting the blue targets is 

www.intechopen.com



 Image Fusion 

 

330 

somewhat poorer in the single-band conditions. These targets can be detected in the NIR 
condition (reasonably well) and in the II condition (poorly), while they are hardly detected 
in the VIS condition. Detection performance for both targets is high with the false-color 
dual-band sensor. Optimal fusion results in performance that equals maximum performance 
in the individual bands. The hit-rate for the green targets is somewhat lower for the dual-
band than for the visual condition. But the hit-rate for the blue targets is somewhat higher 
for dual-band than for NIR condition. The average hit-rate of the false color dual band 
sensor (0.75) is not significantly different from the average of the hit-rate for green in VIS 
and the hit-rate for blue in NIR (0.78). This means that this fusion scheme is near optimal. 
The results also show that the performance with the standard intensified imagery is clearly 
much worse than with the false-color dual-band NVG system. 
 

 

Fig. 20. Average (over all subjects) hit-rate (fraction of hits) for each of the 5 different image 
modalities and the 2 target colors, including the overall hit-rate (“all”). The error bars 
represent standard errors in the mean derived from the variance between subjects. 

Fig. 21 shows the response times of the trials containing a target (shown are the geometric 

means over the response times, i.e. the exponent of the average log response times) for all 

conditions for the hits and misses. Note that the hits for the NIR and II modalities 

correspond primarily to the trials containing blue targets; the hits for the Visual modality 

correspond primarily to the trials containing green targets. The response times for the false 

color dual-band condition are comparable, but slightly larger than in the single-band Visual 

and NIR conditions. This may be due to the fact that in this condition subjects had to attend 

to two types of targets, while in the single band conditions only one of the target colors was 

apparent.  

It turns out that the response times for missed targets are comparable to the response times 

for stimuli in which no target is present. The average response times for missed targets do 

not correlate with the hit-rates (see Fig. 21b). In contrast, the average response times for hits 

is highly correlated with the hit-rate (r = -0.90, p < 0.01, see Fig. 21b). This indicates that 

when targets are more easily detected, the hit-rate goes up and the response time goes 

down. 
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Fig. 21. (a) The geometric mean (i.e. averaged in log) response times for the various image 
modalities, separated for hits and misses. (b) Relationship between the hit-rate for each 
image modality and the (geometric) mean response times for hits and misses for the two 
target colors. 

The results show that performance of the false color dual-band system is just as good as the 
maximum performance that can be attained using either of its individual bands (visual and 
NIR). While the green targets can be detected with the visual band of the system alone, the 
blue targets are mostly missed when subjects have to rely on this band alone. In contrast, the 
blue targets can be detected with the NIR band, but the green targets are then largely missed 
in this modality. With the false color dual-band image modality both targets can be 
detected. The total number of targets detected in the dual band image modality is the same 
as the total number of targets detected in the visual and modality plus the number of targets 
detected in the NIR image modality. This indicates that the fused color representation of the 
two bands is (nearly) optimal from a perceptual standpoint. 
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6. Conclusions 

We find that observers can localize persons in a scene more accurately using fused 
intensified visual and thermal imagery, than with each of the individual image modalities. 
The addition of color does not improve this accuracy. A spatial localization task is useful 
tool to assess the information content of fused imagery intended for surveillance and 
navigation tasks. 
IR and intensified visual imagery contain complementary information. IR imagery mainly 
contributes to the recognition of buildings and living creatures, whereas intensified visual 
imagery predominantly shows natural terrain features and efficiently provides the gist of 
the scene. Experiments testing scene recognition and situational awareness can be used to 
investigate the perceptual quality of images fusion and color mapping schemes. 
The fusion methods used in this study degrade the perception of terrain features. Our 
finding that the fraction of recalled boundary contours is rather low suggests that details 
from the visual images are not fully transferred to the fused images. The detection of living 
creatures is similar in all fused images, indicating that these high-contrast details from the 
IR images are correctly represented in the fused images. Reference contour images obtained 
from human segmentations are a useful tool to systematically evaluate the quality of the 
representation of object boundaries in fused imagery. 
The application of appropriate color mapping schemes in the image fusion process can 
significantly improve observer performance compared to grayscale fusion. In contrast, the 
use of inappropriate color schemes can severely degrade observer sensitivity. However, 
color mappings which are perceptually suboptimal may still have ergonomic value and lead 
to an overall improvement of observer performance, because they eliminate the need to 
switch attention between different image modalities, thereby reducing the user’s cognitive 
workload.  Color mapping schemes can also be tuned to optimize the visibility of 
camouflaged targets in fused imagery, thus providing larger hit rates and faster detection 
times. Detection and recognition experiments can be used to asses and optimize the 
perceptual quality of color mapping schemes. 

7. References 

Aguilar, M.; Fay, D.A.; Ireland, D.B.; Racamoto, J.P.; Ross, W.D. & Waxman, A.M. (1999). 
Field evaluations of dual-band fusion for color night vision, In: Enhanced and 

Synthetic Vision 1999, Verly, J.G. (Eds.),Vol. SPIE-3691, pp. 168-175,  The 
International Society for Optical Engineering, Bellingham, WA. 

Aguilar, M.; Fay, D.A.; Ross, W.D.; Waxman, A.M.; Ireland, D.B. & Racamoto, J.P. (1998). 
Real-time fusion of low-light CCD and uncooled IR imagery for color night vision, 
In: Enhanced and Synthetic Vision 1998, Verly, J.G. (Eds.),Vol. SPIE-3364, pp. 124-135,  
The International Society for Optical Engineering, Bellingham, WA. 

Angell, C. (2005). Fusion performance using a validation approach, In: Information Fusion 

2005. 
Ansorge, U., Horstmann, G. & Carbone, E. (2005). Top-down contingent capture by color: 

evidence from RT distribution analyses in a manual choice reaction task. Acta 

Psychologica, Vol.120, No.3, 243-266. 
Blum, R.S. (2006). On multisensor image fusion performance limits from an estimation 

theory perspective. Information Fusion, Vol.7, No.3, 250-263. 

www.intechopen.com



Cognitive Image Fusion and Assessment   

 

333 

Blum, R.S. & Liu, Z.  (2006). Multi-sensor image fusion and its applications. CRC Press, Taylor & 
Francis Group, ISBN , Boca Raton, Florida, USA. 

Burt, P.J. & Adelson, E.H. (1985). Merging images through pattern decomposition, In: 
Applications of Digital Image Processing VIII, Tescher, A.G. (Eds.),Vol. SPIE-575, pp. 
173-181,  The International Society for Optical Engineering, Bellingham, WA. 

Cavanillas, J.A. (1999). The role of color and false color in object recognition with degraded and non-

degraded images. (Master's thesis) Monterey, CA: Naval Postgraduate School. 
Chari, S.K.; Fanning, J.D.; Salem, S.M.; Robinson, A.L. & Haford, C.E. (2005). LWIR and 

MWIR fusion algorithm comparison using image metrics, In: Infrared Imaging 

Systems: Design, Analysis, Modeling, and Testing XVI, Holst, G.C. (Eds.),Vol. SPIE-
5784, pp. 16-26,  The International Society for Optical Engineering, Bellingham, 
WA. 

Chen, H. & Varshney, P.K. (2005). A Perceptual Quality Metric For Image Fusion Based on 
Regional Information, In: Vol. SPIE-,  The International Society for Optical 
Engineering, Bellingham, WA. 

Chen, H. & Varshney, P.K. (2007). A human perception inspired quality metric for image 
fusion based on regional information. Information Fusion, Vol.8, No.2, 193-207. 

Chiarella, M.; Fay, D.A.; Ivey, R.T.; Bomberger, N.A. & Waxman, A.M. (2004). Multisensor 
image fusion, mining and reasoning: rule sets for higher-level AFE in a COTS 
environment, In: Proceedings of the Seventh International Conference on Information 

Fusion, Svenson, P. & Schubert, J. (Eds.), pp. 983-990,  International Society of 
Information Fusion, Mountain View, CA. 

Correia, P. & Pereira, F. (2002). Standalone objective segmentation quality evaluation. 
EURASIP Journal on Applied Signal Processing, Vol.4, No., 389-400. 

Correia, P. & Pereira, F. (2006). Video object relevance metrics for overall segmentation 
quality evaluation. EURASIP Journal on Applied Signal Processing, Vol.Article ID 
82195, No., 1-11. 

Correia, P.L. & Pereira, F.M. (2003). Methodologies for objective evaluation of video 
segmentation quality, In: Visual Communications and Image Processing 2003, 
Ebrahimi, T. & Sikora, T. (Eds.),Vol. SPIE-5150, pp. 1594-1600,  The International 
Society for Optical Engineering, Bellingham, WA., USA. 

Corsini, G.; Diani, M.; Masini, A. & Cavallini, M. (2006). Enhancement of Sight Effectiveness 
by Dual Infrared System: Evaluation of Image Fusion Strategies, In: Proceedings of 

the 5th International Conference on Technology and Automation (ICTA'05),  pp. 376-381. 
Cvejic, N., Loza, A., Bull, D. & Canagarajah, N. (2005a). A novel metric for performance 

evaluation of image fusion algorithms. Transactions on Engineering, Computing and 

Technology, Vol.V7, No., 80-85. 
Cvejic, N., Loza, A., Bull, D. & Canagarajah, N. (2005b). A similarity metric for assessment of 

image fusion algorithms. International Journal of Signal Processing, Vol.2, No.2, 178-
182. 

Davis, J.W. & Sharma, V. (2007). Background-subtraction using contour-based fusion of 
thermal and visible imagery. Computer Vision and Image Understanding, Vol.106, 
No.2-3, 162-182. 

Dixon, T.D., Canga, E.F., Troscianko, T., Noyes, J.M., Nikolov, S.G., Bull, D.R. & 
Canagarajah, C.N. (2006a). Assessment of images fused using false colouring. 
Journal of Vision, Vol.6, No.6, 459-a. 

www.intechopen.com



 Image Fusion 

 

334 

Dixon, T.D.; Li, J.; Noyes, J.M.; Troscianko, T.; Nikolov, S.G.; Lewis, J.; Canga, E.F.; Bull, D.R. 
& Canagarajah, C.N. (2006b). Scanpath analysis of fused multi-sensor images with 
luminance change: a pilot study, In: Special Session on Image Fusion Assessment. 

Proceedings of the 9th International Conference on Information Fusion, Nikolov, S. & 
Toet, A. (Eds.),  International Society of Information Fusion, Mountain View, CA. 

Dixon, T.D.; Noyes, J.; Troscianko, T.; Canga, E.F.; Bull, D. & Canagarajah, N. (2005). 
Psychophysical and metric assessment of fused images, In: Proceedings of the 2nd 

symposium on Appied perception in graphics and visualization, Bülthoff, H.B. & 
Troscianko, T. (Eds.),Vol. ACM International Conference Proceeding Series; Vol. 95, 
pp. 43-50,  ACM Press, New York, USA. 

Driggers, R.G.; Krapels, K.A.; Vollmerhausen, R.H.; Warren, P.R.; Scribner, D.A.; Howard, 
J.G.; Tsou, B.H. & Krebs, W.K. (2001). Target detection threshold in noisy color 
imagery, In: Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XII, 
Holst, G.C. (Eds.),Vol. SPIE-4372, pp. 162-169,  The International Society for Optical 
Engineering, Bellingham, WA. 

Essock, E.A., Sinai, M.J., DeFord, J.K., Hansen, B.C. & Srinivasan, N. (2005). Human 
perceptual performance with nonliteral imagery: region recognition and texture-
based segmentation. Journal of Experimental Psychology: Applied, Vol.10, No.2, 97-110. 

Essock, E.A., Sinai, M.J., McCarley, J.S., Krebs, W.K. & DeFord, J.K. (1999). Perceptual ability 
with real-world nighttime scenes: image-intensified, infrared, and fused-color 
imagery. Human Factors, Vol.41, No.3, 438-452. 

Fay, D.A.; Waxman, A.M.; Aguilar, M.; Ireland, D.B.; Racamato, J.P.; Ross, W.D.; Streilein, 
W. & Braun, M.I. (2000a). Fusion of 2- /3- /4-sensor imagery for visualization, 
target learning, and search, In: Enhanced and Synthetic Vision 2000, Verly, J.G. 
(Eds.),Vol. SPIE-4023, pp. 106-115,  SPIE -The International Society for Optical 
Engineering, Bellingham, WA, USA. 

Fay, D.A.; Waxman, A.M.; Aguilar, M.; Ireland, D.B.; Racamato, J.P.; Ross, W.D.; Streilein, 
W. & Braun, M.I. (2000b). Fusion of multi-sensor imagery for night vision: color 
visualization, target learning and search, In: Proceedings of the 3rd International 

Conference on Information Fusion, Vol. I, pp. TuD3-3-TuD3-10,  ONERA, Paris, 
France. 

Fay, D.A.; Waxman, A.M.; Ivey, R.T.; Bomberger, N.A. & Chiarella, M. (2004). Multisensor 
image fusion and mining: learning targets across extended operating conditions, In: 
Enhanced and Synthetic Vision 2004, Verly, J.G. (Eds.),Vol. SPIE-5424, pp. 148-162,  
The International Society for Optical Engineering, Bellingham, WA., USA. 

Folk, C.L. & Remington, R. (1998). Selectivity in distraction by irrelevant featural singletons: 
evidence for two forms of attentional capture. Journal of Experimental Psychology: 

Human Perception and Performance, Vol.24, No.3, 847-858. 
Fredembach, C. & Süsstrunk, S. (2008). Colouring the near-infrared, In: Proceedings of the 

IS&T/SID 16th Color Imaging Conference,  pp. 176-182. 
Gegenfurtner, K.R. & Rieger, J. (2000). Sensory and cognitive contributions of color to the 

recognition of natural scenes. Current Biology, Vol.10, No.13, 805-808. 
Goffaux, V., Jacques, C., Mouraux, A., Oliva, A., Schyns, P. & Rossion, B. (2005). Diagnostic 

colours contribute to the early stages of scene categorization: Behavioural and 
neurophysiological evidence. Visual Cognition, Vol.12, No.6, 878-892. 

www.intechopen.com



Cognitive Image Fusion and Assessment   

 

335 

Green, B.F. & Anderson, L.K. (1956). Colour coding in a visual search task. Journal of 

Experimental Psychology, Vol.51, No., 19-24. 
Grossberg, S.  (1988). Neural networks and natural intelligence. MIT Press, ISBN , Cambridge, 

MA. 
Hogervorst, M.A. & Toet, A. (2008a). Method for applying daytime colors to nighttime 

imagery in realtime, In: Multisensor, Multisource Information Fusion: Architectures, 

Algorithms, and Applications 2008, Dasarathy, B.V. (Eds.),Vol. SPIE-6974 , pp. 
697403-1-697403-9,  The International Society for Optical Engineering, Bellingham, 
WA, USA. 

Hogervorst, M.A. & Toet, A. (2008b). Presenting nighttime imagery in daytime colours, In: 
Proceedings of the 11th International Conference on Information Fusion,  pp. 706-713,  
International Society of Information Fusion, Cologne, Germany. 

Hogervorst, M.A. & Toet, A. (2010). Fast natural color mapping for night-time imagery. 
Information Fusion, Vol.11, No.2, 69-77. 

Howard, J.G.; Warren, P.; Klien, R.; Schuler, J.; Satyshur, M.; Scribner, D. & Kruer, M.R. 
(2000). Real-time color fusion of E/O sensors with PC-based COTS hardware, In: 
Targets and Backgrounds VI: Characterization, Visualization, and the Detection Process, 
Watkins, W.R. et al. (Eds.),Vol. SPIE-4029, pp. 41-48,  The International Society for 
Optical Engineering, Bellingham, WA. 

Huang, G., Ni, G. & Zhang, B. (2007). Visual and infrared dual-band false color image fusion 
method motivated by Land's experiment. Optical Engineering, Vol.46, No.2, 027001-
1-027001-10. 

ImageFusion.Org (2007). The Online Resource for Research in Image Fusion, In:  
http://www.imagefusion.org/,   Last viewed March 2007. 

Jacobson, N.P. & Gupta, M.R. (2005). Design goals and solutions for display of hyperspectral 
images. IEEE Transactions on Geoscience and Remote Sensing, Vol.43, No.11, 2684-
2692. 

Jacobson, N.P., Gupta, M.R. & Cole, J.B. (2007). Linear fusion of image sets for display. IEEE 

Transactions on Geoscience and Remote Sensing, Vol.45, No.10, 3277-3288. 
Jakobson, G.; Lewis, L. & Buford, J. (2004). An approach to integrated cognitive fusion, In: 

Proceedings of the Seventh International Conference on Information Fusion, Svenson, P. & 
Schubert, J. (Eds.), pp. 1210-1217,  International Society of Information Fusion, 
Chatillon, France. 

Joseph, J.E. & Proffitt, D.R. (1996). Semantic versus perceptual influences of color in object 
recognition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 
Vol.22, No.2, 407-429. 

Kong, S.G., Heo, J., Boughorbel, F., Zheng, Y., Abidi, B.R., Koschan, A., Yi, M. & Abidi, M.A. 
(2007). Multiscale Fusion of Visible and Thermal IR Images for Illumination-
Invariant Face Recognition. International Journal of Computer Vision, Vol.71, No.2, 
215-233. 

Krebs, W.K. & Ahumada, A.J. (2002). Using an image discrimination model to predict the 
detectability of targets in color scenes, In: Proceedings of the Combating Uncertainty 

with Fusion - An Office of Naval Research and NASA conference , April 22-24, 2002.,   
Office of Naval Research and NASA, Woods Hole, MA. 

Krebs, W.K.; Scribner, D.A.; Miller, G.M.; Ogawa, J.S. & Schuler, J. (1998). Beyond third 
generation: a sensor-fusion targeting FLIR pod for the F/A-18, In: Sensor Fusion: 

www.intechopen.com



 Image Fusion 

 

336 

Architectures, Algorithms, and Applications II, Dasarathy, B.V. (Eds.),Vol. SPIE-3376, 
pp. 129-140,  International Society for Optical Engineering, Bellingham, WA, USA. 

Krebs, W.K. & Sinai, M.J. (2002). Psychophysical assessments of image-sensor fused 
imagery. Human Factors, Vol.44, No.2, 257-271. 

Lewis, J.J.; Nikolov, S.G.; Canagarajah, C.N.; Bull, D.R. & Toet, A. (2006). Uni-Modal versus 
Joint Segmentation for Region-Based Image Fusion, In: Proceedings of the 9th 

International Conference on Information Fusion,   International Society of Information 
Fusion, Mountain View, CA. 

Lewis, J.J., O'Callaghan, R.J., Nikolov, S.G., Bull, D.R. & Canagarajah, N. (2007). Pixel- and 
region-based image fusion with complex wavelets. Information Fusion, Vol.8, No.2, 
119-130. 

Li, G. & Wang, K. (2007). Applying daytime colors to nighttime imagery with an efficient 
color transfer method, In: Enhanced and Synthetic Vision 2007, Verly, J.G. & Guell, J.J. 
(Eds.),Vol. SPIE-6559, pp. 65590L-1-65590L-12,  The International Society for Optical 
Engineering, Bellingham, MA. 

Li, J.; Pan, Q.; Yang, T. & Cheng, Y. (2004). Color based grayscale-fused image enhancement 
algorithm for video surveillance, In: Proceedings of the Third International Conference 

on Image and Graphics (ICIG'04),  pp. 47-50,  IEEE Press, Washington, USA. 
Lotufo, R. & Zampirolli, F. (2001). Fast multidimensional parallel euclidean distance 

transform based on mathematical morphology, In: Proceedings of the XIVth Brazilian 

Symposium on Computer Graphics and Image Processing (SIBGRAPI 2001), Wu, T. & 
Borges, D. (Eds.), pp. 100-105,  IEEE Computer Society, Washington, USA. 

Macmillan, N.A. & Creelman, C.D.  (1991). Detection theory: a user's guide. Cambridge 
University Press, ISBN , Cambridge, MA. 

Maragos, P. & Schafer, R. (1986). Morphological skeleton representation and coding of 
binary images. IEEE Transactions on Acoustics, Speech and Signal Processing, Vol.34, 
No.5, 1228-1244. 

Martin, D.R., Fowlkes, C.C. & Malik, J. (2004). Learning to Detect Natural Image Boundaries 

Using Local Brightness, Color, and Texture Cues. IEEE Transactions on Pattern Analysis 

and Machine Intelligence PAMI, Vol.26, No.1, 1-20. 
Muller, A.C. & Narayanan, S. (2009). Cognitively-engineered multisensor image fusion for 

military applications. Information Fusion, Vol.10, No.2, 137-149. 
O'Brien, M.A. & Irvine, J.M. (2004). Information fusion for feature extraction and the 

development of geospatial information, In: Proceedings of the 7th International 

Conference on Information Fusion (FUSION 2004),  pp. 976-982,  International Society 
of Information Fusion, Mountain View, CA. 

Oliva, A. (2005). Gist of a scene, In: Neurobiology of Attention, Itti, L. et al. (Eds.), pp. 251-256,  
Academic Press. 

Oliva, A. & Schyns, P.G. (2000). Diagnostic colors mediate scene recognition. Cognitive 

Psychology, Vol.41, No., 176-210. 
Onyango, C.M. & Marchant, J.A. (2001). Physics-based colour image segmentation for scenes 

containing vegetation and soil. Image and Vision Computing, Vol.19, No.8, 523-538. 
Piella, G. & Heijmans, H.J.A.M. (2003). A new quality metric for image fusion, In: Proceedings 

of the IEEE International Conference on Image Processing, Vol. III, pp. III-209-III-212,  
IEEE Press, Washington, USA. 

www.intechopen.com



Cognitive Image Fusion and Assessment   

 

337 

Riley, P. & Smith, M. (2006). Image fusion technology for security and surveillance 
applications, In: Optics and Photonics for Counterterrorism and Crime Fighting II, 
Lewis, C. & Owen, G.P. (Eds.),Vol. SPIE-6402, pp. 640204-640204,  The International 
Society for Optical Engineering, Bellingham, WA. 

Rousselet, G.A., Joubert, O.R. & Fabre-Thorpe, M. (2005). How long to get the "gist" of real-
world natural scenes? Visual Cognition, Vol.12, No.6, 852-877. 

Sampson, M.T. (1996). An assessment of the impact of fused monochrome and fused color night 

vision displays on reaction time and accuracy in target detection (Report AD-A321226).  
Monterey, CA:  Naval Postgraduate School. 

Schuler, J.; Howard, J.G.; Warren, P.; Scribner, D.A.; Klien, R.; Satyshur, M. & Kruer, M.R. 
(2000). Multiband E/O color fusion with consideration of noise and registration, In: 
Targets and Backgrounds VI: Characterization, Visualization, and the Detection Process, 
Watkins, W.R. et al. (Eds.),Vol. SPIE-4029, pp. 32-40,  The International Society for 
Optical Engineering, Bellingham, WA, USA. 

Scribner, D.; Schuler, J.M.; Warren, P.; Klein, R. & Howard, J.G. (2003). Sensor and image 
fusion, In: Encyclopedia of optical engineering, Driggers, R.G. (Eds.), pp. 2577-2582,  
Marcel Dekker Inc., New York, USA. 

Scribner, D.; Warren, P. & Schuler, J. (1999). Extending color vision methods to bands 
beyond the visible, In: Proceedings of the IEEE Workshop on Computer Vision Beyond 

the Visible Spectrum: Methods and Applications,  pp. 33-40,  Institute of Electrical and 
Electronics Engineers. 

Serra, J.  (1982). Image analysis and mathematical morphology. Academic Press, ISBN , London, 
UK. 

Shi, J.; Jin, W.; Wang, L. & Chen, H. (2005a). Objective evaluation of color fusion of visual 
and IR imagery by measuring image contrast, In: Infrared Components and Their 

Applications, Gong, H. et al. (Eds.),Vol. SPIE-5640, pp. 594-601,  The International 
Society for Optical Engineering, Bellingham, MA. 

Shi, J.-S., Jin, W.-Q. & Wang, L.-X. (2005b). Study on perceptual evaluation of fused image 
quality for color night vision. Journal of Infrared and Millimeter Waves, Vol.24, No.3, 
236-240. 

Sinai, M.J.; McCarley, J.S. & Krebs, W.K. (1999a). Scene recognition with infra-red, low-light, 
and sensor fused imagery, In: Proceedings of the IRIS Specialty Groups on Passive 

Sensors,  pp. 1-9,  IRIS, Monterey, CA. 
Sinai, M.J.; McCarley, J.S.; Krebs, W.K. & Essock, E.A. (1999b). Psychophysical comparisons 

of single- and dual-band fused imagery, In: Enhanced and Synthetic Vision 1999, 
Verly, J.G. (Eds.),Vol. SPIE-3691, pp. 176-183,  The International Society for Optical 
Engineering, Bellingham, WA. 

Smith, M.I.; Ball, A.N. & Hooper, D. (2002). Real-time image fusion: a vision aid for 
helicopter pilotage, In: Real-Time Imaging VI, Kehtarnavaz, N. (Eds.),Vol. SPIE-4666, 
pp. 83-94,  The International Society for Optical Engineering, Bellingham, WA., 
USA. 

Smith, M.I. & Heather, J.P. (2005). Review of image fusion technology in 2005, In: 
Thermosense XXVII, Peacock, G.R. et al. (Eds.),Vol. SPIE-5782, pp. 6-1-6-17,  The 
International Society for Optical Engineering, Bellingham, WA. 

Spence, I., Wong, P., Rusan, M. & Rastegar, N. (2006). How color enhances visual memory 
for natural scenes. Psychological Science, Vol.17, No.1, 1-6. 

www.intechopen.com



 Image Fusion 

 

338 

Sun, S., Jing, Z., Li, Z. & Liu, G. (2005). Color fusion of SAR and FLIR images using a natural 
color transfer technique. Chinese Optics Letters, Vol.3, No.4, 202-204. 

Toet, A. (1990a). Adaptive multi-scale contrast enhancement through non-linear pyramid 
recombination. Pattern Recognition Letters, Vol.11, No.11, 735-742. 

Toet, A. (1990b). Hierarchical image fusion. Machine Vision and Applications, Vol.3, No.1, 1-
11. 

Toet, A. (1992). Multi-scale contrast enhancement with applications to image fusion. Optical 

Engineering, Vol.31, No.5, 1026-1031. 
Toet, A. (2003). Natural colour mapping for multiband nightvision imagery. Information 

Fusion, Vol.4, No.3, 155-166. 
Toet, A. & Franken, E.M. (2003). Perceptual evaluation of different image fusion schemes. 

Displays, Vol.24, No.1, 25-37. 
Toet, A. & Hogervorst, M.A. (2003). Performance comparison of different graylevel image 

fusion schemes through a universal image quality index, In: Signal Processing, 

Sensor Fusion, and Target Recognition XII, Kadar, I. (Eds.),Vol. SPIE-5096, pp. 552-561,  
The International Society for Optical Engineering, Bellingham, WA., USA. 

Toet, A. & IJspeert, J.K. (2001). Perceptual evaluation of different image fusion schemes, In: 
Signal Processing, Sensor Fusion, and Target Recognition X, Kadar, I. (Eds.),Vol. SPIE-
4380, pp. 436-441,  The International Society for Optical Engineering, Bellingham, 
WA. 

Toet, A., IJspeert, J.K., Waxman, A.M. & Aguilar, M. (1997b). Fusion of visible and thermal 
imagery improves situational awareness. Displays, Vol.18, No.2, 85-95. 

Toet, A.; IJspeert, J.K.; Waxman, A.M. & Aguilar, M. (1997a). Fusion of visible and thermal 
imagery improves situational awareness, In: Enhanced and Synthetic Vision 1997, 
Verly, J.G. (Eds.),Vol. SPIE-3088, pp. 177-188,  International Society for Optical 
Engineering, Bellingham, WA, USA. 

Toet, A., van Ruyven, J.J. & Valeton, J.M. (1989). Merging thermal and visual images by a 
contrast pyramid. Optical Engineering, Vol.28, No.7, 789-792. 

Tsagiris, V. & Anastassopoulos, V. (2004). Information measure for assessing pixel-level 
fusion methods, In: Image and Signal Processing for Remote Sensing X, Bruzzone, L. 
(Eds.),Vol. SPIE-5573, pp. 64-71,  The International Society for Optical Engineering, 
Bellingham, WA. 

Tsagiris, V. & Anastassopoulos, V. (2005). Fusion of visible and infrared imagery for night 
color vision. Displays, Vol.26, No.4-5, 191-196. 

Ullman, S. (2007). Object recognition and segmentation by a fragment-based hierarchy. 
Trends in Cognitive Sciences, Vol.11, No.2, 58-64. 

Ulug, M.E. & Claire, L. (2000). A quantitative metric for comparison of night vision fusion 
algorithms, In: Sensor Fusion: Architectures, Algorithms, and Applications IV, 
Dasarathy, B.V. (Eds.),Vol. SPIE-4051, pp. 80-88,  The International Society for 
Optical Engineering, Bellingham, WA. 

van Rijsbergen, C.J.  (1979). Information retrieval. 2nd Edition. Butterworth-Heinemann, ISBN , 
Newton, MA, USA. 

Vargo, J.T. (1999). Evaluation of operator performance using true color and artificial color in natural 

scene perception (Report AD-A363036).  Monterey, CA:  Naval Postgraduate School. 
Vogel, J. & Schiele, B. (2007). Semantic modeling of natural scenes for content-based image 

retrieval. International Journal of Computer Vision, Vol.72, No.2, 133-157. 

www.intechopen.com



Cognitive Image Fusion and Assessment   

 

339 

Walls, G.L.  (2006). The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science, 
ISBN , Bloomfield Hills, Michigan. 

Wang, L.; Jin, W.; Gao, Z. & Liu, G. (2002). Color fusion schemes for low-light CCD and 
infrared images of different properties, In: Electronic Imaging and Multimedia 

Technology III, Zhou, L. et al. (Eds.),Vol. SPIE-4925, pp. 459-466,  The International 
Society for Optical Engineering, Bellingham, WA. 

Wang, Q. & Shen, Y. (2006). Performance assessment of image fusion, In: Advances in Image 

and Video Technology, Vol. Lecture Notes in Computer Science Volume 4319, pp. 
373-382,  Springer Verlag, Heidelberg/Berlin, Germany. 

Warren, P., Howard, J.G., Waterman, J., Scribner, D.A. & Schuler, J. (1999). Real-time, PC-

based color fusion displays (Report A073093).  Washington, DC:  Naval Research Lab. 
Waxman, A.M.; Aguilar, M.; Baxter, R.A.; Fay, D.A.; Ireland, D.B.; Racamoto, J.P. & Ross, 

W.D. (1998). Opponent-color fusion of multi-sensor imagery: visible, IR and SAR, 
In: Proceedings of the 1998 Conference of the IRIS Specialty Group on Passive Sensors, 
Vol. I, pp. 43-61. 

Waxman, A.M., et al. (1999). Solid-state color night vision: fusion of low-light visible and 
thermal infrared imagery. MIT Lincoln Laboratory Journal, Vol.11, No., 41-60. 

Waxman, A.M.; Carrick, J.E.; Fay, D.A.; Racamato, J.P.; Augilar, M. & Savoye, E.D. (1996a). 
Electronic imaging aids for night driving: low-light CCD, thermal IR, and color 
fused visible/IR, In: Proceedings of the SPIE Conference on Transportation Sensors and 

Controls, Vol. SPIE-2902,  The International Society for Optical Engineering, 
Bellingham, WA. 

Waxman, A.M.; Fay, D.A.; Gove, A.N.; Seibert, M.C.; Racamato, J.P.; Carrick, J.E. & Savoye, 
E.D. (1995). Color night vision: fusion of intensified visible and thermal IR imagery, 
In: Synthetic Vision for Vehicle Guidance and Control, Verly, J.G. (Eds.),Vol. SPIE-2463, 
pp. 58-68,  The International Society for Optical Engineering, Bellingham, WA. 

Waxman, A.M.; Fay, D.A.; Hardi, P.; Savoye, D.; Biehl, R. & Grau, D. (2006). Sensor Fused 
Night Vision : Assessing Image Quality in the Lab and in the Field, In: Special 

Session on Image Fusion Assessment. Proceedings of the 9th International Conference on 

Information Fusion, Nikolov, S. & Toet, A. (Eds.),  International Society of 
Information Fusion, Mountain View, CA. 

Waxman, A.M.; Fay, D.A.; Ivey, R.T. & Bomberger, N. (2003). Multisensor image fusion & 
mining: from neural systems to COTS software, In: Proceedings of the International 

Conference on Integration of Knowledge Intensive Multi-Agent Systems 2003,  pp. 355-
362,  IEEE Press, Washington, MA. 

Waxman, A.M.; Gove, A.N. & Cunningham, R.K. (1996b). Opponent-color visual processing 
applied to multispectral infrared imagery, In: Proceedings of 1996 Meeting of the IRIS 

Specialty Group on Passive Sensors, Vol. II, pp. 247-262,  Infrared Information 
Analysis Center, ERIM, Ann Arbor, US. 

Waxman, A.M., Gove, A.N., Fay, D.A., Racamoto, J.P., Carrick, J.E., Seibert, M.C. & Savoye, 
E.D. (1997). Color night vision: opponent processing in the fusion of visible and IR 
imagery. Neural Networks, Vol.10, No.1, 1-6. 

Waxman, A.M.; Gove, A.N.; Seibert, M.C.; Fay, D.A.; Carrick, J.E.; Racamato, J.P.; Savoye, 
E.D.; Burke, B.E.; Reich, R.K. et al. (1996c). Progress on color night vision: visible/IR 
fusion, perception and search, and low-light CCD imaging, In: Enhanced and 

www.intechopen.com



 Image Fusion 

 

340 

Synthetic Vision 1996, Verly, J.G. (Eds.),Vol. SPIE-2736, pp. 96-107,  The International 
Society for Optical Engineering, Bellingham, WA. 

White, B.L. (1998). Evaluation of the impact of multispectral image fusion on human performance in 

global scene processing. (M.Sc.) Monterey, CA: Naval Postgraduate School. 
Wichmann, F.A., Sharpe, L.T. & Gegenfurtner, K.R. (2002). The contributions of color to 

recognition memory for natural scenes. Journal of Experimental Psychology: Learning, 

Memory, and Cognition, Vol.28, No.3, 509-520. 
Xydeas, C.S. & Petrovic, V.S. (2000). Objective pixel-level image fusion performance 

measure, In: Sensor Fusion: Architectures, Algorithms, and Applications IV, Dasarathy, 
B.V. (Eds.),Vol. SPIE-4051, pp. 89-98,  The International Society for Optical 
Engineering, Bellingham, WA. 

Yang, C., Zhang, J., Wang, X. & Liu, X. (2007). A novel similarity based quality metric for 
image fusion. Information Fusion, Vol.9, No.2, 156-160. 

Zheng, Y., Essock, E.A., Hansen, B.C. & Haun, A.M. (2007). A new metric based on extended 
spatial frequency and its application to DWT based fusion algorithms. Information 

Fusion, Vol.8, No.2, 177-192. 
Zheng, Y.; Hansen, B.C.; Haun, A.M. & Essock, E.A. (2005). Coloring night-vision imagery 

with statistical properties of natural colors by using image segmentation and 
histogram matching, In: Color imaging X: processing, hardcopy and applications, 
Eschbach, R. & Marcu, G.G. (Eds.),Vol. SPIE-5667, pp. 107-117,  The International 
Society for Optical Engineering, Bellingham, WA. 

Zhu, X. & Jia, Y. (2005). A method based on IHS cylindrical transform model for quality 
assessment of image fusion, In: MIPPR 2005: Image Analysis Techniques, Li, D. & Ma, 
H. (Eds.),Vol. SPIE-6044, pp. 607-615,  The International Society for Optical 
Engineering, Bellingham, MA. 

Zou, X. & Bhanu, B. (2005). Tracking humans using multi-modal fusion, In: 2nd Joint IEEE 

International Workshop on Object Tracking and Classification in and Beyond the Visible 

Spectrum (OTCBVS'05),  pp. W01-30-1-W01-30-8,  IEEE Press, Washington, USA. 
 

 

www.intechopen.com



Image Fusion

Edited by Osamu Ukimura

ISBN 978-953-307-679-9

Hard cover, 428 pages

Publisher InTech

Published online 12, January, 2011

Published in print edition January, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Image fusion technology has successfully contributed to various fields such as medical diagnosis and

navigation, surveillance systems, remote sensing, digital cameras, military applications, computer vision, etc.

Image fusion aims to generate a fused single image which contains more precise reliable visualization of the

objects than any source image of them. This book presents various recent advances in research and

development in the field of image fusion. It has been created through the diligence and creativity of some of

the most accomplished experts in various fields.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Alexander Toet (2011). Cognitive Image Fusion and Assessment, Image Fusion, Osamu Ukimura (Ed.), ISBN:

978-953-307-679-9, InTech, Available from: http://www.intechopen.com/books/image-fusion/cognitive-image-

fusion-and-assessment



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


