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Image Fusion Based Enhancement of 
Nondestructive Evaluation Systems 

 Ibrahim Elshafiey, Ayed Algarni and Majeed A. Alkanhal 
King Saud University 

Saudi Arabia 

1. Introduction 

Advantages and limitations associated with each nondestructive evaluation (NDE) modality 
raises a tradeoff in which no single modality can be identified for a particular application.  
Techniques are presented here that can be used to enhance inspection process based on 
multi-spectral, multi-temporal, and multi-resolution image fusion.  The necessary elements 
for building an intelligent NDE system based on image fusion are introduced. An 
application is presented considering the fusion of optical and eddy current images.  
Developed image evaluation measures (quality metrics) are adopted to cross the gap 
between subjective and objective evaluation, which is essential to automate NDE systems in 
industrial environments.   

2. Multimodal NDE 

NDE methods involve the application of a suitable form of energy to the specimen under 
test.  Wide variety of testing methods exists, where each method has certain properties and 
offers advantages, while having its drawbacks.  The basic categories of NDE methods are: 
visual and optical testing (VT), radiography (RT) magnetic particle testing (MT), ultrasonic 
testing (UT), penetrant testing (PT), leak testing (LT) acoustic emission testing (AE), and 
electromagnetic testing (ET). Electromagnetic testing modalities are attractive for NDE 
applications due to the maturity and robustness of use of these techniques. The adopted 
ranges of the operating frequency cover almost the entire electromagnetic spectrum.  
Techniques employing the static operation, such as the magnetic flux leakage, and the 
quasi-static frequency range such as eddy current methods are commonly used more in 
industry than higher frequency (Lord, 1983).  However, attention is being made to the 
higher end of the spectrum. Examples include application of microwave imaging 
techniques in inspecting civil structures (Cantor, 1984).  Thermal waves are being used in 
characterization coating adhesion (Jaarinen et al., 1989), and optical methods are 
implemented in evaluating concrete and composite materials (Ansari, 1992). Ionizing 
radiation frequency ranges such as x-ray techniques are famous in tomographical 
reconstruction of defects and in assessing residual stresses. Among the ET modalities, the 
EC techniques get considerable attention, since they do not require hazard precautions as 
in the case of ionization radiation, in addition to the fact that they do not lack time 
information as for the static range.   
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NDE systems that are capable of extracting and fusing complementary segments of 

information from collected NDE data offer additional insight relative to the conventional 

systems. Fusion techniques are expected to play a major role in the next-generation NDE 

systems (Algarni et al., 2009).  Fusion can make use of data collected from various NDE 

modalities, or even from the same technique operated at different points of time or using 

various parameter values (Elshafiey et al., 2008).   

3. NDE signal fusion 

NDE data fusion can be traced back to early 90s (Gros & Takahashi, 1998). Data fusion 

algorithms in NDE can be broadly classified as phenomenological or non-

phenomenological. Phenomenological algorithms utilize knowledge of the underlying 

physical processes as a basis for deriving the procedure for fusing data.  However, such 

methods are likely to be difficult to derive and cumbersome to implement (Simone & 

Morabito, 2001). Non-phenomenological approaches, in contrast, tend to ignore the physical 

process and attempt to fuse information based on the statistics associated with individual 

segments of data.  The later methods can be classified into three different categories: pixel 

level, feature level and symbol level fusion, according to the stage at which fusion takes 

place as illustrated in Fig. 1. 
Pixel based fusion requires accurate registration of the images to each other. Feature level 
fusion operate on mapped versions of original images. Decision (symbol) level fusion 
represents a method that implements value-added data obtained from processing the input 
images individually for information extraction, before applying decision rules. 
 

 

Fig. 1. NDE image fusion categories 

4. NDE fusion algorithms  

Various algorithms have been developed for NDE data fusion to improve the reliability and 
the performance of testing.  The most widely applied are summarized next. 

Pixel level

Feature level

Symbol level 

Fusion

Image(1)…Image(n)

Evaluation 

Result 

Fusion 

Image(1)…Image(n)

Evaluation 

Result 

Feature extraction

Fusion

Evaluation 

Result 

Image(1)…Image(n) 

Feature extraction 

Feature identification  
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4.1 Linear minimum mean square error (LMMSE) 

This optimal approach uses a LMMSE filter to fuse multiple images, which was proposed in 

(Yim, 1995).  The architecture of the fusion algorithm is given in Fig. 2.  From system point 

of view, s(u,v) is the input signal to the system with the degradation transfer function Hi(u,v) 

associated with ith stage, 1 ≤ i ≤ N. From NDE point of view, s(u,v) is the perfect response of 

the original signal in the inspection process. The measurement system acquires signal xi(u,v) 

with additive noise ni(u,v). Applying a controller filter Gi(u,v), the output signal ( ),s u v#  is 

controlled to have a minimum mean square error with the input signal. Gi(u,v) can be 

constructed from the spectra of the acquired images as follows: 

 ( )
( ) ( )

( )
1

, ,
,        1

,

s xj

j N

xii

S u v S u v
G u v j N

S u v
=

= ≤ ≤
∑

 (1) 

Gj(u,v) is the jth filter, Ss(u,v) is the Laplace transform of the original signal s(u,v), and Sxj(u,v) 
is the Laplace transform of the jth acquired image. 
The spectrum of the original signal is approximated as (Yim, 1995)  

 ( )
( )
( )

1

,
,        1

,

xj

j N

xii

S u v
G u v K j N

S u v
=

= ≤ ≤
∑

 (2) 

Where, K is estimated spectrum which can be estimated by using the coefficients of Fourier 
decomposition of the signal.  
 

 

Fig. 2. Model for linear signal fusion 

4.2 Neural networks (NN) fusion 
An attempt to fuse eddy current and ultrasonic images, and the other to fuse multi-
frequency eddy current images are proposed as in (Yim et al., 1996), and (Udpa, 2001). 
Networks types implemented in fusion algorithms include multilayer perceptron (MLP) as 
well as radial basis function (RBF). The MLP network consists of a set of simple nonlinear 
processing elements that are arranged in layers and connected via adjustable weights. The 
network is usually trained using an appropriate algorithm such as back-propagation 
algorithm to estimate the interconnection weights. In RBF networks, the output nodal values 
are a linear combination of the basis functions that are calculated by the hidden layer nodes. 
A variety of basis functions can be employed, and Gaussian function is the most common 
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type. The MLP-based algorithm is sensitive to the choice of data used during the training 
phase. The RBF-based system fuses the image inputs smoothly reflecting information from 
input images.   

4.3 Multi-resolution analysis (MRA) fusion 
In this approach, the input NDE image is decomposed into a set of spatial frequency band 
pass sub-images. The sub-band images are computed by convolving and sub-sampling 
operations, as presented in (Gros et al., 2000); (Liu et al., 1999) and (Matuszewski et al., 
2000). The multi-resolution analysis fusion techniques include the image pyramid 
approaches and wavelet based approaches. Different implementations of multi-resolution 
fusion are presented in Table 1, and are discussed next. 

4.3.1 Gaussian and Laplacian pyramid 
Image pyramid consists of a set of low pass (Gaussian pyramid) or band pass (Laplacian 
pyramid) copies of an image, representing pattern information of a different scale.  Burt and 
Adelson proposed Laplacian pyramid in 1983 (Gonzalez & Woods, 2007). The pyramid can 
be used for image compression and processing.  Two operation involved are the EXPAND 
and REDUCE. The relation between two sub-images at level l and l-1 is: 

 ( )1 l lG REDUCE G −=  (3) 

EXPAND is defined as the reverse of REDUCE function and its effect is to expand an (M + 1) 

by (N + 1) array into a (2M + 1) by (2N + 1) array.  

4.3.2 Ratio of low pass pyramid 
This is also based on the Gaussian pyramid, and the ratio of low pass pyramid is defined is 

introduced in (Toet, 1992) as: 

 
( )1

   0   &  l
l K K

l

G
R for l K R G

EXPAND G +

= ≤ ≤ =  (4) 

The perceptually important details are revealed by this kind of representation. 

4.3.3 Wavelet fusion 
Multi-resolution analysis using wavelet transforms allows decomposing images into a set of 

new images with coarser and coarser spatial resolution (approximation images). The 

discrete approach of the wavelet transform mainly can be performed using two algorithms: 

discrete wavelet transform (DWT) also called decimated algorithm, and shift invariant 

discrete wavelet transform (SIWT), un-decimated discrete wavelet transform: 

Decimated Algorithm: It is a fast DWT algorithm based on a multi resolution dyadic 

scheme that allows to decompose an image iA , into an approximation image 1iCA +  and 

three detail coefficient images, 1iCV + , 1iCH + , and 1iCD + , where i is the level of the 

decomposition. If the original image iA  has C columns and R rows, the approximation and 

the wavelet coefficient images obtained applying this multi-resolution decomposition have 

C/2 columns and R/2 rows. The computation of the approximation and the detail 

coefficients is accomplished with a pyramidal scheme based on convolutions along rows 
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and columns with one-dimensional filters followed by a sub-sampling or decimation 

operation. When the multi-resolution wavelet decomposition process is inverted, the 

original image iA  can be reconstructed exactly from an approximation and detailed images, 

applying an up-sampling or oversampling process followed by filtering. To get an image 

fusion, wavelet decomposition is applied for input images, followed by integration of these 

decomposition coefficients to produce a composite representation. An inverse discrete 

wavelet transform is applied to get the fused image.  The wavelet base fusion technique can 

reduce color distortion.  Furthermore, the down sampling process may cause shift variation, 

which increases the distortion in the fused images. 
Un-decimated Algorithm: This algorithm is based on the idea of no decimation. It is a 

redundant wavelet transform algorithm based on a multi-resolution dyadic scheme 

accomplished not with a pyramidal scheme but with a parallelpipedic scheme. The original 

image is decomposed as into four coefficients as in DWT but without decimation. All the 

approximation and wavelet coefficient images obtained by applying this algorithm have the 

same number of columns and rows as the original image thus such decomposition is highly 

redundant. Based on (Li et al., 2002) the performance of the SIWT based algorithm 

outperforms the DWT based fusion algorithms.  

 

MRA Method Algorithm Rule of fusion 

Gaussian and 
Laplacian Pyramid 

Sequence of images in which each 
member of the sequence is a low 
pass filtered or band pass version of 
its predecessor 

-Coefficient selection based on 
maximum absolute value. 
-Coefficient selection or average 
based on salience and match 
measure. 

Ratio of Low Pass 
Pyramid 

Every level the image is the ratio of 
two successive levels of the 
Gaussian pyramid 

Coefficient selection based on 
maximum absolute contrast. 

Discrete Wavelet 
Transform (DWT) 

Images are decomposed via wavelet 
transform, after applying the rule of 
fusion, then inverse discrete wavelet 
transform is found 

Shift Invariant 
Discrete Wavelet 
Transform 
(SIDWT) 

SIDWT is obtained using à trous 
algorithm so the process of fusion is 
independent of the location of an 
object in the image 

Selection based on choosing the 
maximum absolute values, or 
an area based maximum energy 

Table 1. MRA based image fusion algorithms 

Wavelet Image Fusion Rules 

Several rules can be used for selecting the wavelet packet coefficients for image fusion. The 

most frequently used fusion rules are: 

• Maximum frequency rule. The coefficients with the highest absolute value indicating 
salient features are selected. 
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• Weighted average rule. It generates a coefficient via a weighted average of the two 
images' coefficients, where the weighting coefficients are based on the correlation 
between the two images. 

• Standard deviation rule.  It calculates an activity or energy measure associated with a 
pixel.  A decision map is created, which indicates the source image from which the 
coefficient has to be selected. 

• Window based verification rule.  It creates a binary decision map to choose between 
each pair of coefficients using a majority filter. 

5. Implementation examples of NDE signal fusion 

Implementation examples of fusion methods in some of the NDE applications are presented 
next, along with by a brief summary of related literature listed in Table 2. 

5.1 Fusion of eddy current signals 
A fusion algorithm is proposed using the data from both real and imaginary image 
components using artificial cracks around rivet holes in an aluminum specimen in (Mina et 
al., 1997).  The operation is implemented in the transform domain with the discrete Fourier 
transform. The fusion process is based on the spectrum of the acquired signal, where the 
linear minimum mean square error (LMMSE) approach was adopted to fuse the images 
using a weighting scheme.  Multi-frequency eddy current testing (MF-ET) is implemented in 
(Mina et al., 1996) to enhance SNR. Two ET scan images obtained at 6 and 20 KHz, with 
radial basis function (RBF) neural networks.  A relatively clear display of subsurface flows is 
achieved after the fusion process.  Pixel level fusion technique using a multi-resolution 
image pyramid was proposed in (Liu et al., 1999).  Signals from two different ET systems in 
weld inspection, are fused using the Dempster-Shafer (DS) combination rule in (Gros et al., 
1995), achieving accurate estimation of crack size. 

5.2 Fusion of ultrasonic signals 
Amplitude, frequency, or time of flight of the echo signals provides information about the 
nature and position of flaws.  Ultrasonic testing produces high resolution measurements but 
the signal is affected by the surface roughness of the specimen and grain structure of metals.  
Ultrasonic image is fused with eddy current images using the AND operation in (Song & 
Udpa, 1996) in order to take advantage of both methods.  Experiments were carried out on 
an aluminum plate where a simulated defect was present.  The boundary of the defect was 
extracted from the UT image, whereas the depth information could be characterized from an 
ET image. Another way to fuse UT and ET data is the use of RBF NNs or multilayer 
perceptron (MLP).  The experiments were carried out in (Simone & Morabito, 2001) to fuse 
eddy current and ultrasonic images showed that the fusion operation improves the process 
of defect classification. 

5.3 Fusion of other NDE modalities 
Infrared (IR) thermographic testing and ET C-scan is fused using wavelet-based methods, 
where an impacted carbon fiber reinforced plastic composite panel is used in (Gros, Liu, 
Tsukada, & Hanaski, 2000) (Gros et al., 2000) and (Liu et al., 1999). Application of multiple 
inspection techniques for NDE fusion is presented in increasing (Tian et al., 2005); (Volponi 
et al., 2004) and (Kaftandjian et al., 2005). 
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6. Image visualization of NDE signals 

Data visualization is an effective and intuitive method for understanding the results of 
inspection.  An effective data visualization stage helps improve the evaluation, especially in 
quantitative evaluation of types, locations, sizes and shapes of the defects. On the other 
hand, imaging reduces the necessity for highly qualified inspector for interpretation of the 
results.  Imaging also gives the ability to use the advanced image processing techniques for 
further improvements as image. Casting NDE data on image format allows also application 
of image fusion techniques. Image registration however is essential in this process to allow 
robust fusion results. Image registration is discussed next followed by the techniques which 
are used to present eddy current data, normally presented as one-dimensional signal form 
in two-dimensional c-scan image format. 

6.1 Image registration  
Registration is the process, which determines the best match of two or more images 
acquired at the same or various times by different or identical sensors. One image is used as 
the reference image, and all the other images are matched relative to this reference data.   
Match can be performed at the one-dimensional level, the two-dimensional level and the 
three-dimensional level. The majority of the registration methods consist of the following 
four steps (Zitova & Flusser, 2003): 
Selection of feature points. Salient and distinctive objects (closed-boundary regions, edges, 
contours, line intersections, corners, etc.) are manually or, preferably, automatically 
detected.  These points are called control points. 
Feature matching. In this step, the correspondence between the features detected in the 
input image and those detected in the reference image is established.   
Transform model estimation. The type and parameters of the so-called mapping functions, 
aligning the input image with the reference image, are estimated. The parameters of the 
mapping functions are computed by means of the established feature correspondence. 
Image re-sampling and transformation. The input image is transformed by means of the 
mapping functions.  Image values in non-integer coordinates are computed by the 
appropriate interpolation technique. 

6.2 Eddy current imaging 
Various techniques have been developed to present eddy current inspection data in the form 
of C-scan images. Probe impedance values acquired in two dimensional surface scans 
provide a set of ranges (Udpa & Elshafiey, 2001). Magnetic flux maps could also be 
presented in image format using techniques such as magneto-optic eddy current technology 
(Lee & Song, 2005) or giant magneto-resistive sensors GMR field scanning (Chalastaras et 
al., 2004). 

6.3 Pulsed eddy current imaging 
Pulsed eddy current sensing is an emerging technique that has been particularly developed 
for subsurface flow.  These techniques can work at some distance below the surface (up to 
100 mm in aluminum) (Tian et al., 2005). In PEC techniques the probe's excitation coil is 
excited with a repetitive broadband pulse, usually a rectangular wave. The resulting 
transient current through the coil induces transient eddy currents in the test object, which 
are associated with highly attenuated magnetic pulses propagating through the material.   
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Reference Fusion Technique Modality 

(Tai & Pan, 2008) 
Physical interaction  / 
Human fusion 

EC / photo inductive 
imaging 

(Liu, Abbas, & Nezih, 2006) Dempester-Shafer EC / PEC 

(Kaftandjian et al., 2005) 
Evidence Theory  / Fuzzy 
logic 

X-Ray / Ultrasonic 

(Chady et al., 2005) Barkhausen noise method EC / Flux leakage 

(Djafari, July, 2002) Bayesian X-ray / Geometrical data 

(Francois & Kaftandjian, 2003) Dempester-Shafer X-ray/ Ultrasonic 

(Simone & Morabito, 2001) 
Feed-forward Neural 
Networks (NN) 

EC/Ultrasonic 

(Udpa, 2001) NN EC/Ultrasonic 

(Matuszewski et al. 2000) Wavelet 
Ultrasonic / 
radiographic 

(Brassard et al., 2000) Image subtraction Edge of light / PEC 

(Liu et al., 1999) 
Multiresolution Analysis 
(MRA ) 

Multi-frequency EC  

(Mina et al., 1996) Image Pyramid  Multi-frequency EC  

 (Mina et al., 1997) DFT/LMMSE  Real/imaginary of Z  

(Song & Udpa, 1996) Image Pyramid  Ultrasonic/EC  

(Yim et al., 1996) NN  Multi-frequency EC  

(Yim et al., 1995) NN  Ultrasonic/EC  

(Yim, 1995) LMMSE  Ultrasonic/EC  

(Liu et al., 1999) MRA  Multi-frequency EC  

Table 2. Fusion algorithms applied to NDE applications 
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The probe provides a series of voltage-time data pairs as the induced field decays, and since 

the produced pulses consist of a broad frequency spectrum, the reflected signal contains 

important depth information, physically, the field is broadened and delayed as it travels 

deeper into the highly dispersive material. Flaws or other anomalies close to the surface 

affect the eddy current response earlier than deeper flaws.  Peak values, time to maximum 

values, and time to minimum values have been used for flow detection and identification. 

Features are selected based on knowledge about the possible crack that might be most 

probably happened.  In surface cracks the amplitude feature gives better resolution, while 

the time feature gives more information about the subsurface cracks.   

7. Fusion performance evaluation 

In many applications, a human observer is the end user of the fused image. Therefore, the 

human perception and interpretation of the fused image is very important. Consequently, 

one way to assess the fused images is to use subjective tests.  Although the subjective tests 

are typically accurate whenever performed correctly, they are inconvenient, expensive, 

and time consuming. Hence, an objective performance measure that can accurately 

predict human perception would be a valuable complementary method.  However, it is 

difficult to find a good, easy to calculate, objective evaluation criterion which matches 

favorably with visual inspection and is suitable for a variety of different application 

requirements.  In the literature, there are two broad classes of objective performance 

measures.  One class requires a reference image, while the other does not (Wang et al., 

2004). 

7.1 Evaluation measures requiring a reference image 
For certain applications, it is possible to generate an ideal fused image, which is then used as 

a reference to compare with the experimental fused results. The five quality metrics used for 

these comparisons are given next, where R denotes the reference image, F denotes the fused 

image, (i, j) denotes a given pixel, L denotes the number of gray levels, and N × M is the size 

of the input image. 

denotes the reference image, F denotes the fused image, (i, j) denotes a given pixel, and N × 

M is the size of the image. 

The root mean square error (RMSE) 

 ( ) ( ) 2

1 1

1
, ,

N M

i j

RMSE R i j F i j
NM = =

= −∑∑  (5) 

The correlation (CORR) 

 ,2 R F

R F

C
CORR

C C
=

+
 (6) 

Where   ( ) ( ) ( )2 2

,
1 1 1 1 1 1

, ,,  and , ( , ).
N M N M N M

R F R F
i j i j i j

C R i j C F i j C R i j F i j
= = = = = =

= = =∑∑ ∑∑ ∑∑  
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The peak signal to noise ratio (PSNR) 

 

( ) ( )

2

10
2

1 1

10
1

, ,
N M

i j

L
PSNR log

R i j F i j
NM = =

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟−⎜ ⎟
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 (7) 

The mutual information (MI) 

 ( ) ( )
( ) ( )

1 2

, 1 2
, 1 2 2

1 1 1 2

,
,

L L
R F

R F
i i R F

h i i
MI h i i log

h i h i= =

=∑∑  (8) 

where ,R Fh  denotes the normalized joint gray level histogram of images R and F while 

, FRh h  are the normalized marginal histograms of the two images. 
Structure information, structural similarity (SSIM) 
This image quality assessment is proposed as (Wang et al., 2004) (Wang, Bovik, Sheikh, & 
Simoncelli, 2004) 

 
( )( )

( )( )
1 2

2 2 2 2
1 2

2 2
SSIM

+ +
=

+ + + +
R F RF

R F R F

μ μ C σ C

μ μ C σ σ C
 (9) 

where 1C  is a constant that is included to avoid the instability when sum of  mean of 

reference image R, and mean of fused image F is close to zero (i.e. 2 2 0R Fμ μ+ ≈ ), and 2C  is a 

constant that is included to avoid the instability when standard deviations is close to zero 

(i.e. 2 2 0R Fσ σ+ ≈ ) 
The objective image quality measures: RMSE, PSNR, CORR and MI, are widely employed 
due to their simplicity.  However, they have been found sometimes not correlate well with 
human evaluation when sensors of different types are considered (Blum & Liu, 2006) and 
the SSIM measure can be used.   

7.2 Evaluation measures not requiring a reference image 
It is generally difficult to access the ideal reference images.  Several simple quantitative 
evaluation methods which do not require a reference image are listed below. 
The standard deviation (SD) 

 ( ) ( )
2

0

L

i

i i h iσ
=

= −∑  (10) 

where h is the normalized histogram of image and 
0

( )
L

i

ih i
=
∑ . 

The entropy (H) 

 ( ) 2
0

( )
L

i

H h i log h i
=

= −∑  (11) 

Petrovic quality index (QI) 

An objective performance metric is proposed in (Petrovic, 2000), which measures the 

amount of information that is transferred from the input images into the fused image.  Their 
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approach is based on the assumption that important visual information is related with edge 

information. A Sobel edge operator is applied to yield edge strength g(i,j) and orientation 

( ) [ ],  0,i jα π∈  for each pixel of the image.  The relative strength and orientation values, 

( ),AFG i j  and ( )Φ ,AF i j , of input image A with respect to fused image F are defined as: 

 ( ) ( ) ( )
( , )

( , ) ,   ,  
,          

( , )

( , )

F

F A
AAF

A

F

g i j

g i j if g i j g i j
G i j

g i j otherwise

g i j

⎧
⎪ >⎪= ⎨
⎪
⎪⎩

 (12) 

 ( ) ( , ) ( , )
Φ , 1

/ 2

A FAF i j i j
i j

α α
π
−

= −  (13) 

The edge preservation values QAF from input image A to fused result F is formed by the 

product of a sigmoid mapping function of the relative strength and orientation factors. Some 

constants as defined in (Petrovic, 2000) ,   and  Γκ σ  determine the shape of the sigmoid 

mapping as 

 ( )
( )( ) ( )( ), Φ ,

Γ Γ
Q ,

1 1
AF AF

g g

g aAF

G i j i j
i j

exp exp
α ακ σ κ σ− −

=
⎛ ⎞⎛ ⎞+ +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (14) 

In equation (14), there are 6 parameters (    ,  ,  ,  , Γ ,and  Γg g a a g aκ σ κ σ ), where the first four 

parameters are determined via an optimization process that maximizes a correspondence 

measure between objective and subjective image fusion assessment results.  Furthermore the 

constant Γ  and Γg a are selected such that for optimal values of   ,  ,  , g g a aκ σ κ σ  and AFG , ΦAF  

equal to 1, the QAF  will also be equal to 1 (Chen & Blum, 2005).  The overall objective 

quality quantity measure /Q AB FI  is obtained by weighting the normalized edge 

preservation values of both input images A, and B as: 

 
( ) ( ) ( )

( ) ( )
1 1/

1 1

Q , , Q , ( , )
QI

( , , )

N M AF A BF B

i jAB F

N M A B

i j

i j w i j i j w i j

w i j w i j

= =

= =

+
=

+

∑ ∑
∑ ∑

 (15) 

In general the weights wA(i,j) and wB(i,j) are a function of edge strength. The range of QI is 
between 0 and 1, where 0 indicates the complete loss of source information and 1 means the 
ideal fusion. 

8. Proposed NDE fusion systems  

Three proposed fusion systems based on IHS transformation, PCA, and multi-resolution 
wavelet decomposition (MWD) are presented next. 

8.1 Intensity-hue-saturation (IHS) transform fusion 
The IHS technique is a standard procedure in image fusion, and has fast computing 
capability for fusing images (Tania, 2008). The widespread use of the IHS transform to 
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merge remote sensing images is based on the ability to separate the spectral information of 
the RGB image into its two components (H) and (S), while isolating most of the spatial 
information in the (I) component. The fusion steps can be summarized as: 
Register three input images defined as R, G, and B to the same size as the high resolution 
image defined as HR. 
Transform the R, G, and B false color image into the IHS component using one of the 
different transformations that have been developed to transfer a color image from the RGB 
space to the IHS space.  The most common RGB- IHS conversion system is based on the 
following linear transformation (Gonzalez-Audicana et al., 2006), for each pixel p. 

 1
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1 1 1

3 3 3

2 2 2  
6 6 6
1 1
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Modify the HR image to accounts for differences related to acquisition techniques, this is 
usually performed by conventional histogram matching between the HR image and the 
intensity component I of the IHS representation (Nunez, 1999), i.e. after computing the 
histogram of both HR image and the intensity component I of the IHS representation, the 
histogram of the intensity component I is used as reference to which HR image histogram 
was matched, the new HR image defined as NHR. 
Replace the intensity component I by the NHR image. 
Perform the inverse transformation to obtain the merged R'G'B' fused image using the 
relations  
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1 1
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2 2'
1 1

' 1  
2 2

'
1 2 0

p p

p p

p p

R NHR

G V

B V

−⎡ ⎤
⎢ ⎥

⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥

⎢ ⎥⎣ ⎦

 (19) 

The generated fused image provides the full details of the HR image but introduces color 

distortion. This is because of the low correlation between the HR image and the intensity 

component I.  

8.2 Principal component analysis PCA fusion 

PCA provides a powerful tool for data analysis which is often used in signal and image 

processing (Gonzalez & Woods, 2007) as a technique for data compression, data dimension 

reduction, and data fusion.  Original images constitute the input data, and the result of this 
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transformation is to obtain non-correlated new bands, called the principal components.  

PCA in signal processing can be described as a transform of a given set of n input vectors 

(variables) with the same length K formed in n-dimensional vector [ ]1 2, ,
T

nx x x= …x  into a 

vector y according to  

 ( )P= − xy x m  (20) 

The vector mx is the vector of mean values of all input variables defined by the relation 

 { }
1

1 K

k
k

E
K =

= = ∑xm x x  (21) 

Matrix P is determined by the covariance matrix Cx, where rows in P are formed from the 

eigenvectors e of Cx  ordered according to corresponding eigenvalues in descending order.  

The evaluation of the Cx matrix is possible according to relation 

 ( )( ){ }
1

1 K
T

x
k

C E
K =

= − − = −∑ T T
x x k k x xx m x m x x m m  (22) 

For n-dimensional input vector x, the size of Cx is n × n. The elements Cx(i,i) lying in its main 

diagonal are the variances of x, and the other values  Cx(i,j) determine the covariance 

between input variables xi, xj.  The rows of P are orthonormal so the inversion of PCA is 

possible.    
Both IHS and PCA mergers are based on the same principle: to separate most of the spatial 

information of multispectral image from its spectral information by means of linear 

transforms.  The IHS transform separates the spatial information of the multispectral image 

as the intensity (I) component. In the same way, PCA separates the spatial information of 

the image into the first principal component PC1. PCA allows synthesizing the original 

bands creating new bands, the principal components, which pick up and reorganize most of 

the original information. In general, the first principal component PC1 collects the 

information that is common to all the bands used as input data in the PCA, i.e., the spatial 

information, while the spectral information that is specific to each band is picked up in the 

other principal components (Kwarteng & Chavez, 1989).  

The proposed PCA method is similar to the described IHS method, with the main advantage 

that an arbitrary number of bands can be used as shown in Fig. 3. If more than three images 

to be fused using IHS, PCA is used as a first step.  PC1 is replaced by the HR image, whose 

histogram has previously been matched with that of PC1.  Finally, the inverse transformation 

is applied to the whole dataset formed by the modified HR image and the PC2, … PCn.   

8.3 Improved IHS based on multi-resolution wavelet decomposition (MWD) fusion  
The IHS fusion method usually can integrate color and spatial features smoothly.  If the 

correlation between the IHS intensity image and the HR image is high, the IHS fusion can 

well preserve the color information.  However, the color distortion can be significant for low 

correlation values, between the intensity image and the HR image, especially when the 

input images and HR images originally from different sensors.   
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Fig. 3. Arbitrary number of inputs IHS fusion system 

On the other hand, the discrete wavelet transform (DWT) image fusion can usually preserve 

color information better than other fusion methods, since the high-resolution spatial 

information from HR image is injected into all the three low-resolution multispectral bands.  

However, the spatial detail from HR image is often different from that of a multispectral 

band having the same spatial resolution. This difference may introduce some color 

distortion into the wavelet frame fusion results.  To better utilize the advantages of the IHS 

and the DWT fusion techniques, and to overcome the shortcomings of the two techniques, 

an integrated IHS and wavelet frame fusion approach is proposed here as shown in Fig. 4. 

The shift invariant wavelet transform obtained using á trous (with holes) algorithm 

overcomes image artifacts (Wang et al., 2005) and (Fowler, 2005), the un-decimated multi-

resolution wavelet decomposition (MWD) or shift invariant discrete wavelet transform 

(SIDWT) was used for the IHS fusion improvement.  
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Fig. 4.  Improved IHS fusion based on MWD 

The steps of this approach are summarized as: 
Registration. All images are first registered. 
IHS Transform.  the multispectral image is transformed into IHS components as illustrated 
before. 
Histogram match.  The histogram of the HR image and the intensity component I of the IHS 
color space are matched and a new HR image (NHR) is obtained.   
SIDWT Decomposition:  Apply the un-decimated wavelet decomposition, to the intensity 
component I and to the corresponding histogram matched NHR image using the 
Daubechies four coefficient wavelet.   
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Fuzzy selection: after the decomposition has been made a selection based on the application 

needed should be made.  For example one possible application is to fuse optical image that 

has information about the rivets and joints for example with inspection EC images, in this 

case the best selection would be to take the approximation of the optical image and the 

detail of the EC images. Another application is to replace high spatial resolution information 

with low spatial resolution of the fused images, in this case the detail of the NHR is selected. 

Inverse SIWT:  the shift invariant reconstruction transform applied to the selected wavelet 

coefficients to form the new intensity image. 

Inverse IHS transform:  The final fused image is generated by transforming the new 

intensity image together with the hue and saturation components back into RGB space. 

8.4 NDE fusion results 
The evaluation of the IHS proposed fusion with application to NDE were peformred using 

simulation as well as experimental signals. 

8.4.1 Simulation results 
Fig. 5 presents ten images generated with 128x128 resolution, representing probe resistance 

values (images R1-R5) on the top row, and probe inductance values (images L1-L5) on the 

bottom row.  Images R1 and L1 on the left side correspond to lowest frequency while R5 & L5 

on the right side correspond to the highest frequency. First some of fusion results presented, 

before the presentation of a comparison of various fusion algorithms. Fig. 6 is based on IHS 

fusion with high frequency high-resolution PEC image generated at 256x256. Fig. 7 presents 

the first four principal components images computed from R1-R5 (the first row of Fig. 5).  

Examples of image fusion with shift invariant wavelet decomposition are presented in  

Fig. 8, where Daubechies wavelets of order 4 are used.  Four images were selected to make 

the comparison of fusion algorithms that have been applied to the NDE technology with the 

proposed fusion algorithms. The selected simulation images presented in Fig. 9 were two 

frequency domain images, and two time domain images. 

 

 

Fig. 5. Ten images representing probe resistance values R1-R5 (top row, left to right) and 
inductance values L1-L5 (bottom row, left to right) corresponding to five different frequency 
values: 100 Hz, 1 kHz, 10 kHz, 100 kHz, and 1M Hz 
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Fig. 6. Fusion obtained with IHS transformation. Top-left is L3(10 kHz) image, top-right is 
R3(10 kHz) image, down-left is PEC image and down-right is fused image 

 

 

Fig. 7. The first four principal components images computed from R1-R5 

 

 

Fig. 8. Fusion obtained with wavelet decomposition, where the high spatial resolution image 
was taken as R5.  Top-left is R2(1 kHz) image, top-right is L3(10 kHz) image, down-left is 
PEC image and down-right is fused image 

The proposed IHS based fusion algorithms, and the improved IHS based on MWD fusion 
termed as IHSW were compared with three fusion algorithms mostly presented in literature 
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with application to NDE i.e. the Laplacian pyramid (LAP), the discrete wavelet transform 
(DWT), and the shift invariant discrete wavelet transform (SIDWT). The maximum 
frequency rule was used which selects the coefficients with the highest absolute value for 
LAP, DWT, and SIDWT fusion methods. 
Fig. 10 presents the fusion results of the compared fusion algorithms where the input 

images for all were shown in Fig. 9. Table 3 shows the estimated quality measure for these 

fused images.  Notice that the standard deviation (SD) and the entropy (H) illustrated that 

the IHS based methods are better in performance, while .IHS based methods are not. There 

are six parameters in the QI performance measure that are determined via optimization 

process to maximize the correspondence measure between objective and subjective image 

fusion assessment.  It is not thus a relabile performance measure for genral application.  

Investegating these quality measure revealed that, a small change in these constant highly 

affect the performance. 

 

Fusion method 
Standard 

deviation (SD)
Entropy (H) quality index (QI) 

Laplacian pyramid (LAP)  30.1900 6.8695 0.7565 

Discrete wavelet transform (DWT) 35.1318 6.8822 0.8077 

Shift invariant discrete wavelet 
transform (SIDWT) 

27.7046 6.7731 0.7588 

Intensity hue saturation (IHS) 45.8145 7.1791 0.6008 

Intensity hue saturation with 
wavelet (IHSW) 

33.3772 7.3190 0.5484 

Table 3. Comparison of the quality measures for the fused images shown in Fig. 10 

 

 
 a)  b)  c)   d) 

Fig. 9.  Images used to evaluate the fusion algorithms, (a) maximum amplitude feature PEC image, 
(b) time to maximum PEC image, (c) probe-L image at 10 kHz, (d) probe-L at 1MHz as a HR 

With the Gaussian noise added to the input images according to a predefined signal to noise 

ratio SNR, the performance of the fusion methods were compared with standard deviation 

SD, and entropy H, the results plotted in Fig. 11. It is clear from the results that the IHS 

based methods perform better.  Also it is noticed out that the SD of the IHS based methods 

increases with the increase of SNR of input images. Entropy is used to measure the amount 

of uncertainty or information of an image, but it is sensitive to noise (Naidu & Raol, 2008).  

The dynamic range of SD and H are very small when the SNR exceed 20 dB which is 

typically the acceptable image SNR.  Subjectively, IHS based fusion methods ranked higher 

than the other fusion methods. 
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 a)  b)  c)  d) e) 

Fig. 10.   Fusion results of the images shown in Fig. 7 using LAP (a), DWT (b),  SIDWT (c), 
IHS (d), IHSW (e) techniques 

8.4.2 Experimental eddy current images 
Experimental EC images produced employing EC measurement device measurement system 
(Rohmann B300) (Rohmann Documentation), connected  to a scanning system, based on six 
degree of freedom robot arm manufactured by Staubli (Staubli Documentation) which can 
gives a resolution of 0.1.  The main parts of the system are shown in Fig. 12. The output of the 
EC measurement system for both scanning systems was connected to a data acquisition 
system manufactured by National Instruments (National Instruments Documentation).  The 
data was then stored for future processing. The standard sample used for experimental 
measurements is shown in Fig. 13.  This plate was manufactured by Olympus NDT (Olympus 
NDT, Documentation), and it has been chosen because of the  artificial cracks have different 
sizes, shapes, and orientation with respect to the scanning direction.  
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Fig. 11.  Performance of fusion with standard deviation  and entropy quality metric 

Four experimental images at frequencies 10 kHz, 100 kHz, 300 kHz, and 800 kHz, respectively 
are shown in Fig. 14. These images represent the amplitude of the vertical component after 
the rotation of the axes to reduce the effect of liftoff noise. 
After the registration of EC to the optical image, three of the EC images of Fig. 14 and the 
optical image were used as input to the fusion algorithms. IHS and IHSW use three EC 
images as input to the IHS transform, and optical image as the HR image, while the other 
fusion methods LAP, DWT, and SIDWT normally accept two input images only, so a multi-
stage fusion process were conducted for the comparison. A comparison using the three 
lowest frequency value images and the three highest frequency images of Fig. 12 are shown 
in Fig. 15 and Fig. 16 respectively.  Notice that with high frequency images used, the good 
resolution of the fused images is noticeable.  
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Fig. 12. Eddy current measurement system (Rohmann B 300) (left) and  Staubli robot (right), 
which are the main parts of the scanning system 

 

 

Fig. 13. Optical photo of the plate used in experimental measurements 

 

 

Fig. 14. Measured EC images at 10 kHz, 100 kHz, 300 kHz, and 800 kHz, top to bottom, 
respectively 
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Fig. 15. Fusion results with the first three lowest frequency value images shown in Fig. 14, 
along with the optical image.  Results reveal IHS, IHSW, SIDWT, DWT, LAP fusion, top to 
bottom, respectively 

 

Fig. 16. Fusion results with the last three highest frequency value images shown in Fig. 14, 
along with the optical image.  Results reveal IHS, IHSW, SIDWT, DWT, LAP fusion, top to 
bottom, respectively 
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e) 

Fig. 17. Performance of fusion with mutual information metric (a), structure information, 
structural similarity metric (b), correlation metric (c), root mean square error metric (d), and 
peak SNR quality metric (e) 
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Gaussian noise added to the experimental images used as inputs to the fusion methods 
according to a predefined signal to noise ratio SNR, and the performance of the fusion 
methods were compared with five objective evaluation measures that require reference 
image, namely, mutual information (MI), structure information, structural similarity (SSIM), 
correlation coefficient (Corr), root mean square error (RMSE), and peak signal to noise ratio 
(PSNR). The reference image was produced depending on the standard sample used. Fig. 17 
shows the results of the five mentioned metrics and how these metrics are affected by noise.  
Results illustrate that the IHS based methods perform better than the others three fusion 
methods for all performance measures used in the range of acceptable image SNR. 

9. Conclusions and future work 

The emerging concept of data fusion, particularly in NDE image fusion is used to develop 
robust NDE systems, which can easily be adapted in industrial applications. Novel systems 
are introduced implementing image fusion in electromagnetic NDE applications. The focus 
is directed toward the emerging techniques based on eddy current (EC) inspection methods, 
which are among the most promising electromagnetic inspection modalities, due to their 
simplicity, versatility, high sensitivity, and high speeds of testing.  Results are presented for 
fusing conventional as well as pulsed eddy current images. EC scanning of sample under 
test is done based on automatic robotic system to obtain c-scan images. 
Image fusion algorithms exploit both the redundancy and complementary information to 
enhance the robustness of the resulting image.  Redundant information is used to improve 
the SNR and complementary information is used to augment the overall information 
content, which increases the accuracy and reliability of inspection systems.  The developed 
systems can be used to fuse multi-spectral, multi-temporal, and multi-spatial information in 
EC images. Results reveal that the proposed fusion system performs better than 
conventional fusion system applied to NDE, according to the performance quality measures.  
Various image metrics are used to assess the quality of resulting fusion images.  Effective 
quality metrics help automate NDE fusion systems in industrial environments. The obtained 
results of the objective evaluation metrics are found to be almost consistent with the 
subjective evaluation.   
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