
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



0

Impact of Wavelets and Multiwavelets Bases on
Stereo Correspondence Estimation Problem
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1. Introduction

Finding correct corresponding points from more than one perspective views in stereo vision is
subject to number of potential problems, such as occlusion, ambiguity, illuminative variations
and radial distortions. A number of algorithms has been proposed to address the problems as
well as the solutions, in the context of stereo correspondence estimation. The majority of them
can be categorized into three broad classes i.e. local search algorithms (LA) L. Di Stefano
(2004); T. S. Huang (1994); Wang et al. (2006), global search algorithms (GA) Y. Boykov &
Zabih (2001); Scharstein & Szeliski (1998) and hierarchical iterative search algorithms (HA)
A. Bhatti (2008); C. L. Zitnick (2000). The algorithms belonging to the LA class try to establish
correspondences over locally defined regions within the image space. Correlations techniques
are commonly employed to estimate the similarities between the stereo image pair using
pixel intensities, sensitive to illuminative variations. LA perform well in the presence of rich
textured areas but have tendency of relatively lower performance in the featureless regions.
Furthermore, local search using correlation windows usually lead to poor performance across
the boundaries of image regions. On the other hand, algorithms belonging to GA group deals
with the stereo correspondence estimation as a global cost-function optimization problem.
These algorithms usually do not perform local search but rather try to find a correspondence
assignment that minimizes a global objective function. GA group algorithms are generally
considered to possess better performance over the rest of the algorithms. Despite of the fact
of their overall better performance, these algorithms are not free of shortcomings and are
dependent on how well the cost function represents the relationship between the disparity
and some of its properties like smoothness, regularity. Moreover, how close that cost function
representation is to the real world scenarios. Furthermore, the smoothness parameters
makes disparity map smooth everywhere which may lead to poor performance at image
discontinuities. Another disadvantage of these algorithms is their computational complexity,
which makes them unsuitable for real-time and close-to-realtime applications. Third group
of algorithms uses the concept of multi-resolution analysis Mallat (1999) in addressing the
problem of stereo correspondence. In multi-resolution analysis, as is obvious from the name,
the input signal (image) is divided into different resolutions, i.e. scales and spaces Mallat (1999);
A. Witkin & Kass (1987), before estimation of the correspondence. This group of algorithms
do not explicitly state a global function that is to be minimized, but rather try to establishes
correspondences in a hierarchical manner J. R. Bergen & Hingorani (1992); Q‘ingxiong Yang &
Nister (2006), similar to iterative optimization algorithms Daubechies (1992). Generally, stereo
correspondences established in lower resolutions are propagated to higher resolutions in an
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2 Stereo Vision

iterative manner with mechanisms to estimate and correct errors along the way. This iterative
error correction minimizes the requirements for explicit post processing of the estimated
outcomes. In this work, the goal is to provide a brief overview of the techniques reported
within the context of stereo correspondence estimation and wavelets/multiwavelets theory
and highlight the deficiencies inherited in those techniques. Using this knowledge of inherited
shortcomings, we propose a comprehensive algorithm addressing the aforementioned issues
in detailed manner. The presented work also focuses on the use of multiwavelets basis that
simultaneously posses properties of orthogonality, symmetry, high approximation order and
short support, which is not possible in the wavelets case A. Bhatti (2002); Ozkaramanli et al.
(2002). The presentation of this work is organized by providing some background knowledge
and techniques using multiresolution analysis enforced by wavelets and multiwavelets
theories. Introduction of wavelets/ multiwavelets transformation modulus maxima will be
presented in section 3. A simple, however, comprehensive algorithm is presented next,
followed by the presentation of some results using different wavelets and multiwavelets
bases.

2. Wavelets / multiwavelets analysis in stereo vision: background

The multi-resolution analysis is generally performed by either Wavelets or Fourier analysis
Mallat (1999; 1989; 1991). Wavelets analysis is relatively newer way of scale space
representation of the signals and considered to be as fundamental as Fourier and a better
alternative A. Mehmood (2001). One of the reasons that makes wavelet analysis more
attractive to researchers is the availability and simultaneous involvement of a number of
compactly supported bases for scale-space representation of signals, rather than infinitely
long sine and cosine bases as in Fourier analysis David Capel (2003). Approximation order of
the scaling and wavelet filters provide better approximation capabilities and can be adjusted
according to input signal and image by selecting the appropriate bases. Other features of
wavelet bases that play an important role in signal/ image processing application are their
shape parameters, such as symmetric and asymmetric, and orthogonality (i.e. 〈 fi, f j〉 = 0 if
i �= j) and orthonormality (i.e. 〈 fi, f j〉 = 1 if i = j). All these parameters can be enforced at
the same time in multiwavelets bases however is not possible in scaler wavelets case A. Bhatti
(2002). Wavelet theory has been explored very little up to now in the context of stereo vision.
To the best of author’s knowledge, Mallat Mallat (1991); S. Mallat & Zhang (1993) was the
first who used wavelet theory concept for image matching by using the zero-crossings of
the wavelet transform coefficients to seek correspondence in image pairs. In S. Mallat &
Zhang (1993) he also explored the the signal decomposition into linear waveforms and signal
energy distribution in time-frequency plane. Afterwards, Unser M. Unser & Aldroubi (1993)
used the concept of multi-resolution (coarse to fine) for image pattern registration using
orthogonal wavelet pyramids with spline bases. Olive-Deubler-Boulin J. C. Olive & Boulin
(1994) introduced a block matching method using orthogonal wavelet transform coefficients
whereas X. Zhou & Dorrer (1994) performed image matching using orthogonal Haar wavelet
bases. Haar wavelet bases are one of the first and simplest wavelet basis and posses very
basic properties in terms of smoothness, approximation order Haar (1910), therefore are
not well adapted for correspondence problem. In aforementioned algorithms, the common
methodology adopted for stereo correspondence cost aggregation was based on the difference
between the wavelet coefficients in the perspective views. This correspondence estimation
suffers due to inherent problem of translation variance with the discrete wavelet transform.
This means that wavelet transform coefficients of two shifted versions of the same image

18 Advances in Theory and Applications of Stereo Vision
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Impact of Wavelets and Multiwavelets Bases on Stereo Correspondence Estimation Problem 3

may not exhibit exactly similar pattern Cohen et al. (1998); Coifman & Donoho (1995). A more
comprehensive use of wavelet theory based multi-resolution analysis for image matching was
done by He-Pan in 1996 Pan (1996a;b). He took the application of wavelet theory bit further by
introducing a complete stereo image matching algorithm using complex wavelet basis. In Pan
(1996a) He-Pan explored many different properties of wavelet basis that can be well suited and
adaptive to the stereo matching problem. One of the major weaknesses of his approach was
the use of point to point similarity distance as a measure of stereo correspondences between
wavelet coefficients as

SBj((x,y), (x́, ý)) = |Bj(x,y)− B́j(x́, ý)| (1)

Similarity measure using point to point difference is very sensitive to noise that could be
introduced due to many factors such as difference in gain, illumination, lens distortion,
etc. A number of real and complex wavelet bases were used in both Pan (1996a;b) and
transformation is performed using wavelet pyramid, commonly known by the name Mallat’s
dyadic wavelet filter tree (DWFT) Mallat (1999). Common problem with DWFT is the lack of
translation and rotation invariance Cohen et al. (1998); Coifman & Donoho (1995) inherited
due to the involvement of factor 2 down-sampling as is obvious from expressions 2 and 3.

SA[n] =
∞

∑
−∞

x[k]L[2n − k] (2)

SW [n] =
∞

∑
−∞

x[k]H[2n + 1 − k] (3)

Where L and H represent filters based on scaling function and wavelet coefficients Mallat
(1999); Bhatti (2009). Furthermore similarity measures were applied on individual wavelet
coefficients which is very sensitive to noise. In Esteban (2004), conjugate pairs of complex
wavelet basis were used to address the issue of translation variance. Conjugate pairs of
complex wavelet coefficients are claimed to provide translation invariant outcome, however
increases the search space by twofold. Similarly, Magarey J. Magarey & Kingsbury (1998);
J. Margary & dick (1998) introduced algorithms for motion estimation and image matching,
respectively, using complex discrete Gabor-like quadrature mirror filters. Afterwards, Shi
J. Margary & dick (1998) applied sum of squared difference technique on wavelet coefficients
to estimate stereo correspondences. Shi uses translation invariant wavelet transformation for
matching purposes, which is a step forward in the context of stereo vision and applications
of wavelet. More to the wavelet theory, multi-wavelet theory evolved Shi et al. (2001) in early
1990s from wavelet theory and enhanced for more than a decade. Success of multiwavelets
bases over scalar ones, stems from the fact that they can simultaneously posses the good
properties of orthogonality, symmetry, high approximation order and short support, which is
not possible in the scalar case Mallat (1999); A. Bhatti (2002); Ozkaramanli et al. (2002). Being
a new theoretical evolution, multi-wavelets are still new and are not yet applied in many
applications. In this work we will devise a new and generalized correspondence estimation
technique based wavelets and multiwavelets analysis to provide a framework for further
research in this particular context.

3. Wavelet and multiwavelets fundamentals

Classical wavelet theory is based on the dilation equations as given below

φ(t) = ∑
h

chφ(Mt − h) (4)

19Impact of Wavelets and Multiwavelets Bases on Stereo Correspondence Estimation Problem

www.intechopen.com



4 Stereo Vision

Fig. 1. wavelet theory based Multiresolution analysis

Fig. 2. Mallat’s dyadic wavelet filter bank

ψ(t) = ∑
h

whφ(Mt − h) (5)

Expressions (4) and (5) define that scaling and wavelet functions can be represented by the
combination of scaled and translated version of the scaling function. Where ch and wh

represents the scaling and wavelet coefficients which are used to perform discrete wavelet
transforms using wavelet filter banks. Similar to scalar wavelet, multi-scaling functions satisfy
the matrix dilation equation as

Φ(t) = ∑
h

ChΦ(Mt − h) (6)

Similarly, for the multi-wavelets the matrix dilation equation can be expressed as

Ψ(t) = ∑
h

WhΦ(Mt − h) (7)

In equations 6 and 7, Ch and Wh are real and matrices of multi-filter coefficients. Generally
only two band multiwavelets, i.e. M = 2, defining equal number of multi-wavelets as
multi-scaling functions are used for simplicity. For more information, about the generation
and applications of multi-wavelets with, desired approximation order and orthogonality,
interested readers are referred to Mallat (1999); A. Bhatti (2002).

3.1 Multiresolution analysis

Wavelet transformation produces scale-space representation of the input signal by generating
scaled version of the approximation space and the detail space possessing the properties as

· · ·A−1 ⊃ A0 ⊃ A1 · · · (8)

20 Advances in Theory and Applications of Stereo Vision
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Impact of Wavelets and Multiwavelets Bases on Stereo Correspondence Estimation Problem 5

∞
⋃

−∞

As = L2(R) (9)

∞
⋂

−∞

As = 0 (10)

A0 = A1

⊕

D1 (11)

In expression (8) subspaces As are generated by the dilates of φ(Mt− h), whereas translates of
φ(t− h) produces basis of the subspace A0 that are linearly independent. As and Ds represents
approximation and detail subspaces at lower scales and by direct sum constitutes the higher
scale space As−1. In other words As and Ds are the sub-spaces of As−1. Expression (11) can
be better visualize by the Figure 1. Multi-resolution can be generated not just in the scalar
context, i.e. with just one scaling function and one wavelet, but also in the vector case where
there is more than one scaling functions and wavelets are involved. A multi-wavelet basis
is characterized by r scaling and r wavelet functions. Here r denotes the multiplicity of the
scaling functions and wavelets in the vector setting with r > 1. In case of multiwavelets, the
notion of multiresolution changes as the basis for A0 is now generated by the translates of r
scaling functions as

Φ(t) =

⎡

⎢

⎢

⎢

⎣

φ0(t)
φ1(t)

...
φr−1(t)

⎤

⎥

⎥

⎥

⎦

(12)

and

Ψ(t) =

⎡

⎢

⎢

⎢

⎣

ψ0(t)
ψ1(t)

...
ψr−1(t)

⎤

⎥

⎥

⎥

⎦

(13)

The use of Mallat’s dyadic filter-bank Abhir Bhalerao & Wilson (2001) results in three different
detail space components, which are the horizontal, vertical and diagonal. Figure 2 can best
visualize the graphical representation of the used filter-bank, where C and W represents the
coefficients of the scaling functions and wavelets, respectively, as in 6 and 7. Figure 3 shows
transformation of Lena image using filter bank of Figure 2 and Daubechies-4 B. Chebaro &
Castan (1993) wavelet coefficients.

3.2 Translation invariance

Discrete wavelets and multiwavelets transformations inherently suffer from lack of translation
invariance. In the context of stereo vision, translation invariant representation of the signal
is of extreme importance. The translation of the signal should only translates the numerical
descriptors of the signal but should not modify it, otherwise recognition of the similar features
within the translated representation of the signal could be extremely difficult. The problem
of translation variance arises, in discrete dyadic wavelet transform, due to the factor−2
decimation which stands for the disposal of every other coefficient without considering
its significance. To address this inherent shortcoming of translation invariance we have
adopted the approach of utilizing wavelet transformation modulus maxima coefficients
instead of simple transformation coefficients. The filter bank proposed by Mallat Mallat
(1999) is modified in this work by removing the decimation of factor 2, which discards every

21Impact of Wavelets and Multiwavelets Bases on Stereo Correspondence Estimation Problem
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6 Stereo Vision

Fig. 3. 1-level discrete wavelet transform of Lena image using figure 2 filter bank

second coefficient, consequently creating an over complete representation of coefficients at
subspaces (Dj). Instead, zero padding is performed for coefficients that are not transform
modulus maxima. For correspondence estimation between stereo pair of images wavelet
transform modulus maxima coefficients are employed to provide translation invariance
representation. The proposed approach in achieving translation invariance is motivated by
Mallat’s approach of introducing critical down sampling Mallat (1999; 1991) into the filter
bank instead of factor-2. Before proceeding to translation invariant representation of wavelets
and multiwavelets transformation, concept of scale normalization is adopted (Figure 2) as

ζs =

∣

∣

∣

∣

CDs,j

CAs

∣

∣

∣

∣

∀ s and j ∈ {h,v,d} (14)

|.| defines the absolute values of the coefficients’ magnitudes at scale s. The benefit of wavelets
and multiwavelets scale normalization is two fold. Firstly, it normalizes the variations in
coefficients, at each transformation level, either introduced due to illuminative variations or
by filters gain. Secondly, if the wavelets and multiwavelets filters are perfectly orthogonal, the
features in the detail space become more prominent. Let wavelet transform modulus (WTM)
coefficients in polar representation be expressed as

Ξs = ζs∠Θζs
(15)

Where ζs defines the magnitude of (WTM) coefficients and can be further expanded by
referring to (2) as

ζs =
1

3

(√

C2
Dsh

+ C2
Dsv

+ C2
Dsd

)

(16)

Where Djh, Djv and Djd represents D1 subspace coefficients, which in visual terms represent
discontinuities of the input image I along horizontal, vertical and diagonal dimensions. The
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Impact of Wavelets and Multiwavelets Bases on Stereo Correspondence Estimation Problem 7

Fig. 4. Top Left: Original image, Top Right: Wavelet Transform Modulus, Bottom Left:
wavelet transform modulus phase, Bottom Right: Wavelet Transform Modulus Maxima with
Phase vectors

phase of (WTM) coefficients (Θζs
), which in fact is the phase of the discontinuities (edges)

pointing to the normal of the plan that edge lies in, can be expressed as

Θζs
=

{

α if CDsh
> 0

π − α if CDsh
< 0

(17)

where

α = tan−1

(

CDjv

CDjh

)

(18)

These discontinuities are referred by Mallat as multi-scale edges Mallat (1999) (section 6.3,
page 189).The vector �n(k) points to the direction, normal to the plan where the discontinuity
lies in, as

n(k) = [cos(Θζs
), sin(Θζs

)] (19)

A discontinuity is the point p at scale s such that Ξs is locally maximum at k = p and k =
p+ εn(k) for |ε| small enough. These points are known as wavelet transform modulus maxima
Ξn, and are translation invariant through the wavelet transformation and can be expressed by
reorganizing expression 15 as

Ξns = ζns∠Θζns
(20)

Through out the rest of presentation, coefficients term will be used for wavelet transform
modulus maxima coefficients instead of wavelets and multiwavelets coefficients, as in 20. An
example of wavelet transform modulus maxima coefficients can be visualized by Figure 4. For
further details in reference to wavelet modulus maxima and its translation invariance, reader
is kindly referred to Abhir Bhalerao & Wilson (2001) (section 6).

23Impact of Wavelets and Multiwavelets Bases on Stereo Correspondence Estimation Problem
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Fig. 5. A simple block representation of the proposed algorithm

4. Correspondence estimation

In the light of multiresolution techniques, presented in section 2 and their inherited
shortcomings, we propose a novel wavelets and multiwavelets analysis based stereo
correspondence estimation algorithm. The algorithm is developed to serve two distinct
purposes; 1) to exploit the potential of wavelet and multiwavelets scale-space representation
in solving correspondence estimation problem; and 2) providing a test-bed to explore
the correlations of embedded properties of wavelets and multiwavelets basis, such as
approximation order, shape and orthogonality/orthonormality with the quality of stereo
correspondence estimation. The correspondence estimation process of the proposed
algorithm is categorized into two distinct steps. First part of the algorithm defines the
correspondence estimation at the coarsest transformation level, i.e. at signal decomposition
level N. Figure 2 can facilitate visualization of signal decomposition considering the presented
filter bank decomposes the signal up to level 1. Second phase of the algorithm defines
the iterative matching process from finer (N − 1) to finest (0) transformation level, which
according to Figure 1 refers to subspace A0. Correspondence estimation at the coarsest

24 Advances in Theory and Applications of Stereo Vision
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Impact of Wavelets and Multiwavelets Bases on Stereo Correspondence Estimation Problem 9

level is the most important part of the proposed algorithm due to its hierarchical nature
and dependance of finer correspondences on the outcomes of coarser level establishments.
Estimation of correspondences at finer levels use local search methodology searching only at
locations where correspondences have already been established in the coarser level search. A
block diagram representing the process of the proposed algorithm is shown in Figure 5.

4.1 Similarity measure

To establish initial correspondences, similarity measure is performed on modulus maxima
coefficients (Ξs) using correlation measure Medioni & Nevatia (1985) enforced by
multi-window approach Alejandro Gallegos-Hernandez (2002) (Figure 6) as

CΞ = CΞ,W0
+

nW /2

∑
i=1

CΞ,Wi
(21)

Where CΞ represents the correlation score of wavelets transform modulus maxima, under
investigation and nW represents the number of surrounding windows, usually taken as 9,
without considering W0. The second summation term in (21) represent the summation of best
nW /2 windows out of nW . An average of the correlation scores from these windows is taken
to keep the score normalized i.e. within the range of [0 1].

Fig. 6. Multi-window approach for correlation estimation

4.2 Probabilistic weighting

Wavelets and multiwavelets transformations, using filter-bank (Figure 2), produce r2

sub-spaces for each bank at each scale. r defines the multiplicity of scaling functions and
wavelets, which is one (i.e. r = 1) for wavelets, whereas r > 1 in case of multiwavelets,
as illustrated in (12 and 13). Figure 7 represents one level multiwavelets transformation
using GHM basis C. Baillard & Fitzgibbon (1999) with r = 2, therefore each subspace
(CA1

,CDsh
,CDsv

,CDsd
) has produced 4 subspaces in contrast to one subspace as shown in

Figure 3. Consequently, multiwavelets transform modulus maxima representation will
consists of r2 subspaces (16) for correspondence estimation process at each scale s. To ensure

25Impact of Wavelets and Multiwavelets Bases on Stereo Correspondence Estimation Problem
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10 Stereo Vision

the contribution of all coefficients from r2 subspaces, probabilistic weighting is introduced to
strengthen correlation measure of (21). In case of wavelets with r = 1, this step is bypassed.
Probabilistic weighting defines the probability of optimality for any corresponding pair of
coefficients. To define this probability; let Ξc1 be the reference coefficient that belongs to one
image of the stereo pair and Ξc2j

be the corresponding coefficients from the other image. The

term j in Ξc2j
is due to the fact that sometimes different coefficients from r2 subspace of the

other image appear to be the potential correspondences for Ξc1 coefficient. This phenomena
is generally referred to as ambiguity Baker & Binford (1981).

Fig. 7. 1-level discrete multiwavelets transform of Lena image using figure 2 filter bank and
GHM multiwavelets C. Baillard & Fitzgibbon (1999)

The probability expression for corresponding pair (Ξc1,Ξc2j
) is defined as

PΞc2j
= nΞc2j

/r2 where 1 ≤ nΞc2j
≤ r2, ∀j (22)

where nΞc2j
is the number of times coefficient Ξc2j

is appeared as potential correspondence for

Ξc1. In case of no ambiguity, Ξc2 will appear as corresponding coefficient for Ξc1 throughout

r2 subspaces, producing the PΞc2
= r2

r2 = 1. It is obvious from expression (22) that the PΞc
lies

between the range of [1/r2 1]. The correlation score in expression (21) is then weighted with
PΞc

as

ℵΞc2j
=

PΞc2j

r2 ∑
nΞc2j

CΞc2j
(23)

r2 term in expression (23) is for normalization of the correlation scores which will be
accumulated over r2 subspaces. In case of no ambiguity between the correspondence of Ξc1

26 Advances in Theory and Applications of Stereo Vision
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Impact of Wavelets and Multiwavelets Bases on Stereo Correspondence Estimation Problem 11

Fig. 8. Geometric refinement procedure

and Ξc2 throughout r2 subspaces, expression 23 will be simplified to CΞ as in expression 21 as

ℵΞc2
=

1

r2
(r2 × CΞc2

) = CΞc2
(24)

Simplification of expressions from 23 to 24 is of course under the assumption that CΞ is
constant for the corresponding pair trough out the r2 subspace, which is found to be true
majority of the times. Corresponding pairs with PΞ = 1 and CΞ above predefined threshold,
usually within the range of [0.6 0.7], are used as references in addressing the ambiguity
problem for rest of the correspondences. These reference coefficients provide a test ground
to measure the credibility of rest of the correspondences by employing geometric refinement
technique, presented in the following section.

4.3 Geometric refinement

Geometric refinement is employed to filter credible coefficients’ correspondences, out of
the ambiguous ones, using established reference correspondences from previous section-4.2.
Three geometric features, relative distance difference (RDD), absolute distance difference
(ADD) and relative slope difference (RSD), are employed to perform geometric refinement.
The selection of these geometric features is influenced by their invariant nature through
geometric transformations, such as Projective, Affine, Matric and Euclidean Siebert (1998).
Geometric refinement procedure can be best visualized by Figure 8 where red circles
represent candidate coefficient correspondences and squares represent reference coefficients.
In Figure 8, C1 represents the coefficients from first image with potential corresponding
coefficients C2 i from second image. Similarly, R1 and R2 represents reference corresponding
coefficients with respect to first and second images, respectively. Small number of
randomly chosen reference correspondences are employed in this phase to keep the process
computationally less expansive. Let nr be the number of randomly chosen reference
correspondences out of Nr total reference correspondences and nc be the number of candidate
corresponding coefficients represented by C2j in Figure 8. With trial and error it has been

found that nr within the range [3 5] produces desired outcome. Let Ξnr and Ξ́nr be
the reference corresponding coefficients and Ξnc and Ξ́nc be the corresponding candidate

27Impact of Wavelets and Multiwavelets Bases on Stereo Correspondence Estimation Problem
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12 Stereo Vision

coefficients for left and right images, respectively. According to Figure 8 aforementioned
coefficients can be mapped as (Ξnr : R1), (Ξ́nr : R2), (Ξnc : C1) and (Ξ́nc : C2). To calculate
ADD, we can define the expression as

DAΞcj
=

[∣

∣

∣

∣

dΞcj
− dΞr

dΞcj
+ dΞr

∣

∣

∣

∣

]

m

(25)

Where |.| represents the absolute values and DAΞcj
defines ADD for jth candidate coefficient

of second image corresponding to dΞr
from first image. Process of 25 is averaged over m times

repetitions to minimize any bias introduced by the coefficients belonging to any particular
area of image as well as involvement of any wrong candidate pair that could have been
assigned the tag of reference coefficients as Ξnrj

and Ξ́nrj
. Similarly, RDD can be defined by

the following expression

DRΞcj
=

[
∣

∣

∣

∣

dΞcr − dΞ́crj

dΞcrj
+ dΞ́crj

∣

∣

∣

∣

]

n

(26)

Similar to ADD (25), (26) is repeated n times. Finally, RSD is calculated by defining relative
slopes between candidate and reference coefficients as

SΞcj
=

[
∣

∣

∣

∣

sΞcr − sΞ́crj

sΞcr + sΞ́crj

∣

∣

∣

∣

]

n

(27)

The term (.)n defines the average over n repetitions for each jth candidate coefficient.
Employing expressions (25), (26) and (27), a generalized expression of geometric refinement is
defined for each jth candidate correspondence by weighting the established correlation score
from (23) as

̥Ξcj
=

ℵΞcj

3

(

e
−DAΞcj + e

−DRΞcj + e
−SΞcj

)

(28)

It is obvious from expression (28), Ξ́ncj
with highest score will be the one having closest

geometrical topology with respect to the reference coefficients Ξnr and Ξ́nr . For instance, for
an optimal correspondence between Ξnc and Ξ́nc , expression (̥Ξcj

) will boil down to simple

correlation score ℵΞcj
from (23) as the term

[

1
3

(

e
−DAΞcj + e

−DRΞcj + e
−SΞcj

)]

will become 1.

5. Finer levels correspondence estimation

Correspondence estimation process (section-4) at coarsest wavelet transformation level, i.e.
level N, produces set of optimal correspondences between coefficients belonging to first
and second images. These correspondences are then projected to finer level, i.e. level
N − 1, where a local search is performed to authenticate correspondences, established at
coarsest level N, as well as to estimate new ones. Referring back to section (3.1) and
(3.2), transform modulus maxima that belongs to lower frequency components disappear
at higher transformation levels. Authentication of correspondences at N − 1 level, using
the information of N level correspondences, provides a structured ground to constraint
the search of new coefficient correspondences to local search regions. This local search
eliminates the need of computationally expansive geometric refinements leaving the processes

28 Advances in Theory and Applications of Stereo Vision
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Impact of Wavelets and Multiwavelets Bases on Stereo Correspondence Estimation Problem 13

Basis r [Cs,Cw] Ap Orth Shape

Haar Haar (1910) 1 [2 , 2] 1 o s

D-4 Daubechies (1988) 1 [4 , 4] 2 o as

D-8 I. Daubechies & Lagarias (1992) 1 [8 , 8] 4 o as

BI9 Strela (1998) 1 [9 , 7] 4 bo s

BI7 Strela (1998) 1 [7 , 9] 4 bo s

BI5 Strela (1998) 1 [5 , 3] 2 bo s

BI3 Strela (1998) 1 [3 , 5] 2 bo s

GHM Gernimo et al. (1994) 2 [4 , 4] 2 o s

CL Chui & Lian (1996); Chui (1992) 2 [3 , 3] 2 o s

SA4 Strela (1996) 2 [4 , 4] 1 o s

BIH52S Strela (1998) 2 [5 , 3] 2 bo s

BIH32S Strela (1998) 2 [3 , 5] 4 bo s

BIH54N Strela (1998) 2 [5 , 3] 4 bo s

MW1 A. Bhatti (2002); Ozkaramanli et al. (2002) 3 [6 , 6] 2 o s

MW2 A. Bhatti (2002); Ozkaramanli et al. (2002) 3 [6 , 6] 3 o as

MW3 A. Bhatti (2002); Ozkaramanli et al. (2002) 3 [8 , 8] 4 o s

Table 1. Employed wavelets and multiwavelets bases with embedded attributes

of sections (4.1) and (4.2) necessary and sufficient to achieve desired quality of correspondence
estimation. This procedure can be considered as iterative optimization process Daubechies
(1992).

6. Analysis of the effect of different wavelet and multi-wavelet bases

To address the influence of wavelets and multiwavelets bases on the quality of correspondence
estimation, 16 wavelets and multiwavelets bases are employed. These bases are carefully
chosen to cover range of properties such as orthogonality, bi-orthogonality, symmetry,
asymmetry, multiplicity and approximation order Asim Bhatti & Zheng (2003) as presented
in Table 1.
Referring to Table 1, parameters o and bo, in the Orth column represents orthogonality and
bi-orthogonality ,respectively, of the bases. s and as are the shape parameters, representing
symmetric and asymmetric, whereas r defines the multiplicity. It is obvious from the Table 1
that scalar wavelets possess unit multiplicity, i.e. one scaling function and one wavelet. The
coefficients related to wavelets and multiwavelets bases presented, in Table 1, can be found
in Bhatti (2009). Statistical analysis is performed using root mean squared error (RMS) and
percentage of bad discrete pixel disparities (BPD), employed from D. Scharstein & Szeliski (n.d.),
for qualitative measure of the correspondences estimation. Disparity maps generated using
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Basis r [Cs,Cw] Ap Orth Shape

CL Chui & Lian (1996); Chui (1992) 2 [3 , 3] 2 o s

MW2 A. Bhatti (2002); Ozkaramanli et al. (2002) 3 [6 , 6] 3 o as

MW3 A. Bhatti (2002); Ozkaramanli et al. (2002) 3 [8 , 8] 4 o s

Table 2. Selected multiwavelets basis

estimated correspondences are compared with the ground truth disparity maps.

RMS =

√

1

N ∑
x, y

|dE(x,y)− dG(x,y)|2 (29)

and

PBD =
1

N ∑
(x,y)

|dE(x,y) − dG(x,y)| > ξ (30)

where dE and dG are the estimated and ground truth disparity maps, N is the total number
of discrete disparity values in the disparity map whereas ξ represents the disparity error
tolerance, taken as 1. In other words any difference greater than 1 between ground truth
disparity maps and the estimated disparity is considered as bad discrete disparity. These
statistics are related to the images Map, Bull, Teddy, Cones and Venus, taken from D. Scharstein
& Szeliski (n.d.). Referring to visual representation in Figures 9 and 10, a distinguished higher
performance of multi-wavelets bases can be observed throughout the set of employed images.
This statistical behavior of the estimated data strengthens earlier established understanding
about the superior performance of multiwavelets bases over the scalar ones Strela (1996).
Their success stems from the fact that they can simultaneously posses the good properties
of orthogonality, symmetry, high approximation order and short support G. Strang & Strela
(1995; 1994), which is not possible in the scalar wavelets case G. Strang & Strela (1994);
Daubechies (1992). Out of 9 multiwavelets bases, CL, MW2 and MW3 has outperformed
rest of the bases with major contribution from MW2. Analyzing embedded attributes of
these multiwavelets bases, separated in Table 2, we see a clear pattern of commonality in
terms of multiplicity and orthogonality contributing into the higher performance of these
multiwavelets bases. Although it is hard to visualize a clear correlation pattern, explicitly,
between the attributes of presented wavelets and multiwavelets bases and the quality of
correspondences, however we would initiate a short discussion to address some possible
effects of these attributes to correspondence estimation problem as:

Orthogonality dictates that coefficients in subspaces of Dsj and As and linearly independent,
as in Figures 1 and 2, and their direct sum produces the subspace As−1 (11). In
classical signal processing terms, subspace As contains lower frequency components
of the input signal whereas Dsj contains higher frequency components depending
on the approximation order of the scaling functions. Perfect separation, due to
orthogonality, between lower and higher frequency components and into scales and
subspaces provides a sparse representation of high value features that are easier to
track.

Multiplicity influences the size of search space by producing r2 subspaces of coefficients
(sections (3.1) and (4.2)). Consequently producing expanded search space to establish
and authenticate coefficient correspondences. In general, multiplicity and orthogonality
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together, influences the separation of signal components into distinct subspaces making
it easier to establish robust correspondences. This leads to the notion of scale-space
representation Chui & Lian (1996). In this particular study employing wavelet
transform modulus maxima coefficients with higher multiplicity and orthogonality
ensured the involvement of high profile features at different scales and spaces making
the algorithm robust and resistant to errors.

Approximation order defines the approximation capabilities of the scaling functions.
Multiwavelets bases are set to have approximation order p if a linear combination of
the scaling functions can produce polynomials up to degree p − 1. In other words,
polynomials up degree p − 1 are in linear span of scaling space spanned by the shifts
of scaling functions φ0(t),φ1(t), · · ·φr−1(t). This means polynomials up to degree 1, i.e.
f = t are in the linear span of multiscaling functions of D4, BI5, BI3, GHM, BIH52S
and MW1 (Table 1). Similarly, f = t2 and f = t3 polynomials are in the linear span of
MW2 and MW3 bases, respectively. In the context of image processing, polynomials
can be represented by the gradient intensity change. Single color without any intensity
variations can be represented as polynomial of degree zero ( f = t0 = 1), that is a constant
function. A constant intensity variation would refer to polynomial of degree 1, i.e. f = t.
Based on this understanding of approximation order, we can say, higher approximation
order leads to higher order modulus maxima coefficients in Ds j subspaces (Figure 1
and 2). In other words higher approximation order ensures the separation of higher
order features or modulus maxima coefficients from lower order features, consequently
allowing the algorithm to focus on global aspects rather than getting stuck into local
minima introduced by low value coefficients. Considering, very high approximation
order could also result in filtering the important coefficients into the approximation
space rather than detail space, which is used for correspondence estimation, it can be
argued; what is the optimal approximation order? It is very hard to conclude at this
stage however our future work involves the extension of statistical analysis utilizing
bigger data base of images and multiwavelets bases.

7. Conclusion

In this presentation we have tried to initiate a discussion about the potential of multiwavelets
bases into the domain of robust correspondence estimation. We have addressed some
embedded attributes of wavelets and multiwavelets bases that could play a key role in
establishing highly robust correspondences between two and more views. Seven wavelets and
nine multiwavelets bases were employed covering a range of well known attributes including
orthogonality, approximations order, support and shape. For statistical performance analysis,
five well known images with diverse range of intensity complexities were employed. In
addition, a novel and robust correspondence estimation algorithm is presented to provide a
test bed to exploit the potential of wavelets and multiwavelets bases. The proposed algorithm
uses multi-resolution analysis to estimate correspondences. The translation invariant
multiwavelets transform modulus maxima (WTMM) are used as matching features. To keep
the whole matching process consistent and resistant to errors an optimized selection criterion
is introduced involving the contribution of probabilistic weighted normalized correlation and
geometric refinement. Probabilistic weighting involves the contribution of more than one
search spaces, whereas geometric refinement addresses the problem of geometric distortion
between the perspective views. Moreover, beside that comprehensive selection criterion
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Fig. 9. Root Mean Square Error (RMS) for number of images

Fig. 10. Percentage of Bad Pixel Disparity (BPD) for number of images

the whole matching process is constrained to uniqueness, continuity and smoothness. We
are currently in the process of expanding the experimental envelope and would hope to
present clearer picture of correlations between the embedded attributes of the bases and
correspondence problem in future presentations.
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