
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



0

Efficient Algorithms for Finding Maximum and
Maximal Cliques: Effective Tools for Bioinformatics

Etsuji Tomita1, Tatsuya Akutsu2 and TsutomuMatsunaga3
1The University of Electro-Communications &

The Research and Development Initiative, Chuo University, Tokyo
2Kyoto University, Kyoto

3NTT DATA Corporation, Tokyo
Japan

1. Introduction

Many problems can be formulated as graphs where a graph consists of a set of vertices and a
set of edges, in which the vertices stand for objects in question and the edges stand for some
relations among the objects. A clique is a subgraph in which all pairs of vertices are mutually
adjacent. Thus, a maximum clique stands for a maximum collection of objects which are
mutually related in some specified criterion. The so called maximum clique problem is one of
the original 21 problems shown to be NP-complete by R. Karp (19). Therefore, it is strongly
believed that the maximum clique problem is not solvable easily, i.e., it is not solvable in
polynomial-time. Nevertheless, much work has been done on this problem, experimentally
and theoretically. It attracts much attention especially recently since it has found many
practical applications to bioinformatics (see, e.g., (2; 15; 27; 28; 37; 3; 9; 4; 8; 14; 55; 23; 25; 22; 13))
and many others (see, e.g., excellent surveys (34; 5), and (17; 20; 31; 49; 54; 51)).
This chapter presents efficient algorithms for finding a maximum clique and maximal cliques
as effective tools for bioinformatics, and shows our successful applications of these algorithms
to bioinformatics.

2. Preliminaries

(1) We are concerned with a simple undirected graph G = (V,E) with a finite set V of vertices
and a finite set E of unordered pairs (v,w)(= (w,v)) of distinct vertices called edges. V is
considered to be ordered, and the i-th element in V is denoted by V[i]. A pair of vertices v and
w are said to be adjacent if (v,w) ∈ E.
(2) For a vertex v ∈ V, let Γ(v) be the set of all vertices that are adjacent to v in G = (V,E), i.e.,
Γ(v) = {w ∈ V|(v,w) ∈ E}. We call |Γ(v)|, i.e., the number of vertices adjacent to a vertex v,
the degree of v. In general, for a set S, the number of elements in S is denoted by |S|.
(3) For a subset R⊆V of vertices, G(R) = (R,E∩ (R×R)) is an induced subgraph. An induced
subgraph G(Q) is said to be a clique if (v,w) ∈ E for all v,w ∈ Q⊆ V with v �= w. In this case,
we may simply state that Q is a clique. In particular, a clique which is not properly contained
in any other clique is called maximal. A maximal clique with the maximum size is called a
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Maximal Cliques
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Fig. 1. Example graph

maximum clique. The number of vertices of a maximum clique in an induced subgraph G(R)
is denoted by ω(R).
Consider an example graph G0 = (V0,E0) in Fig. 1, where V0 = {A,B,C,D,E,F} and E0 =
{(A,B), (A,F), (B,C), (B,E), (B,F), (C,D), (C,E), (C,F), (D,E), (E,F)}. All maximal cliques are
{A,B,F},{B,C,E,F} and {C,D,E}, where {B,C,E,F} is a maximum clique of size 4. Note
that {B,C,E} is a clique, but is not a maximal clique since it is contained in a larger clique
{B,C,E,F}.

3. Efficient algorithms for finding a maximum clique

3.1 A basic algorithm

One standard approach for finding a maximum clique is based on the branch-and-bound
depth-first search method.
Our algorithm begins with a small clique, and continues finding larger and larger cliques
until one is found that can be verified to have the maximum size. More precisely, we maintain
global variables Q, Qmax, where Q consists of vertices of a current clique, Qmax consists of
vertices of the largest clique found so far. Let R ⊆ V consist of candidate vertices which may
be added to Q. We begin the algorithm by letting Q := ∅, Qmax := ∅, and R :=V (the set of all
vertices). We select a certain vertex p from R and add p to Q (Q :=Q∪ {p}). Then we compute
Rp := R ∩ Γ(p) as the new set of candidate vertices. This procedure (EXPAND()) is applied
recursively while Rp �= ∅ . Note here that if |Q|+ |R| ≤ |Qmax| then Q ∪ R can contain only a
clique that is smaller than or equal to |Qmax|, hence searching for R can be pruned in this case.
This is a basic bounding condition.
When Rp = ∅ is reached, Q constitutes a maximal clique. If Q is maximal and |Q| > |Qmax|
holds, Qmax is replaced by Q. We then backtrack by removing p from Q and R. We select a
new vertex p from the resulting R and continue the same procedure until R = ∅.
This is a well known basic algorithm for finding a maximum clique (see, e.g., (12; 10)) and is
shown in detail in Fig. 2 as Algorithm BasicMC. The process can be represented by a search
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procedure BasicMC (G = (V,E))
begin

global Q := ∅;
global Qmax := ∅;
EXPAND(V);
output Qmax

end {of BasicMC}

procedure EXPAND(R)
begin

while R �= ∅ do
p := a vertex in R;
if |Q|+ |R|> |Qmax| then

Q := Q ∪ {p};
Rp := R ∩ Γ(p);
if Rp �= ∅ then EXPAND(Rp)
else (i.e., Rp = ∅) if |Q|> |Qmax| then Qmax := Q fi
fi
Q := Q− {p}
else return

fi
R := R− {p}

od
end {of EXPAND}

Fig. 2. Algorithm BasicMC

forest that is similar to Fig. 3 (b).

3.2 Algorithm MCQ

We present a very simple and efficient algorithm MCQ (46) that is a direct extension of the
previous BasicMC.

3.2.1 Pruning

One of the most important points to improve the efficiency of BasicMC is to strengthen the
bounding condition in order to prune unnecessary searching.
For a set R of vertices, let χ(R) be the chromatic number of R, i.e., the minimum number
of colors so that all pairs of adjacent vertices are colored by different colors, and χ′(R) be
an approximate chromatic number of R, i.e., a number of colors so that all pairs of adjacent
vertices are colored by different colors.
Then we have that

ω(R)≤ χ(R)≤ χ′(R) ≤ |R|.
While obtaining χ(R) is also NP-hard, an appropriate χ′(R) could be a better upper bound
of ω(R) than |R|, and might be obtained with low overhead. Here, we employ very simple
greedy or sequential approximate coloring to the vertices of R, as introduced in (42; 12; 43).
Let positive integral numbers 1, 2, 3, ... stand for colors red, green, yellow, ... Coloring is

627Efficient Algorithms for Finding Maximum and Maximal Cliques: Effective Tools for Bioinformatics
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also called Numbering. For each p ∈ R, sequentially from the first vertex to the last, we assign
a positive integral Number No[p] which is as small as possible. That is, when the vertices
in R = {p1, p2, . . . , pm} are arranged in this order, first let No[p1] = 1, and subsequently, let
No[p2] = 2 if p2 ∈ Γ(p1) else No[p1] = 1, . . ., and so on. After Numbers are assigned to all
vertices in R, we sort these vertices in ascending order with respect to their Numbers.
We select p as the last (rightmost) vertex in R (at the 4th line in procedure EXPAND(R) in Fig.
2), then No[p] =Max{No[q] | q ∈ R}, that is an approximate chromatic number of R. So, we
replace the basic bounding condition:

if |Q|+ |R| > |Qmax| then

in Fig. 2 BasicMC, by the following new bounding condition:

if |Q|+ No[p]> |Qmax| then.

Numbering is applied every time prior to application of EXPAND().
Since the greedyNumbering to R is carried out inO(|R|2)-time and is not so time-consuming,
the new bounding condition can be very effective to reduce the search space with low
overhead.

3.2.2 Initial sorting and simple numbering

We have shown in (12) that both search space and overall running time are reduced when one
sorts the vertices in an ascending order with respect to their degrees prior to the application of
a branch-and-bound depth-first search algorithm for finding a maximum clique. Carraghan
and Pardalos (10) also employ a similar technique successfully. Therefore, at the beginning of
our algorithm, we sort vertices in V in a descending order with respect to their degrees. This
means that a vertex with the minimum degree is selected at the beginning of thewhile loop in
EXPAND() in Fig. 2 since the selection of p is from the last (rightmost) to the first (leftmost).
Furthermore, we initially assign Numbers to the vertices in V simply, so that No[V[i]] = i for
i ≤ ∆(G), where ∆(G) is the maximum degree of G, and No[V[i]] = ∆(G) + 1 for ∆(G) + 1 ≤
i ≤ |V|. This initial Number has the desired property that No[p] ≥ ω(V) for any p in V while
V �= ∅. Thus, this simple initial Number suffices.
This completes our explanation of the algorithmMCQ. See (46) for further details.

3.3 Algorithm MCR

Algorithm MCR (48) is an improved version of MCQ, where improvements are mainly
for the initial sorting of the vertices. First, we alter the order of the vertices in V =
{V[1],V[2], . . . ,V[n]} so that in a subgraph of G = (V,E) induced by a set of vertices V ′ =
{V[1],V[2], . . . ,V[i]}, it holds that V[i] always has the minimum degree in {V[1],V[2], . . . ,V[i]}
for 1 ≤ i ≤ |V|. While the resulting order is identical to that of (10), it should be noted that
time-consuming computation of the degree of vertices is carried out only at the beginning of
MCR as in MCQ, and hence the overhead of the overall selection of vertices is very small, too.
Here, the degrees of adjacent vertices are also taken into consideration.
Numbering of the vertices is carried out in a similar way to MCQ, but more closely. The above
considerations lead to an improved clique finding algorithmMCR.
Example runWe show an example run of MCR to an input graph G1 given in Fig. 3 (a).
In the initial sorting, vertex G with the minimum degree is selected at first. Then, vertices F
and E follow after G. Now the remaining vertices A, B, C,D are of the same minimum degree,
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(a) An input graph G1
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(b) A search forest of G1

No: 3
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F

√
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Fig. 3. Example run of MCR

and then Numbering is applied to this set of vertices to have No[A] = 1, No[B] = 2, No[C] = 3,
No[D] = 4. The other vertices are numbered as No[E] = 4+ 1 = 5, No[F] = 6 (= ∆(G1) + 1),
No[G] = 6. In addition, we have that Qmax = {A,B,C,D} (of size 4), since every degree of the
vertices in the induced subgraph G1({A,B,C,D}) is 3= 4− 1.
The result of the initial sorting of vertices is shown at the top of Fig. 3 (b) and the
corresponding numbers are just below these vertices.
Subsequently, in EXPAND( ), the rightmost vertexG is selected to haveQ= {G}, RG = Γ(G) =
{A,E,F}. These vertices A,E,F are numbered 1,1,2 as shown in the second row of Fig. 3 (b).

629Efficient Algorithms for Finding Maximum and Maximal Cliques: Effective Tools for Bioinformatics
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Here, |Q|+ No[F] = |{G}|+ 2= 3< |Qmax|= 4, then prune (
√
: checkmark in Fig. 3 (b)). The

searching proceeds from the right to the left as shown in Fig. 3 (b). As a result, the maximum
clique in G1 is Qmax = {A,B,C,D}.

3.4 Algorithm MCS

AlgorithmMCS (39; 49; 50) is a further improved version of MCR.

3.4.1 New approximate coloring

When vertex r is selected, if No[r]≤ |Qmax| − |Q| then it is not necessary to search from vertex
r by the bounding condition, as mentioned in Sect. 3.2.1. The number of vertices to be searched
can be reduced if the Number No[p] of vertex p for which No[p]> |Qmax| − |Q| can be changed
to a value less than or equal to |Qmax| − |Q|. When we encounter such vertex p with No[p] >

|Qmax| − |Q| (de f= Noth) (Noth stands for Nothreshold), we attempt to change its Number in the
following manner (16). Let Nop denote the original value of No[p].
[Re-NUMBER p]
1) Attempt to find a vertex q in Γ(p) such that No[q] = k1 ≤ Noth, with |Ck1 | = 1.
2) If such q is found, then attempt to find Number k2 such that no vertex in Γ(q) has Number
k2.
3) If such number k2 is found, then change the Numbers of q and p so that No[q] = k2 and
No[p] = k1.
(If no vertex q with Number k2 is found, nothing is done.)
When the vertex q with Number k2 is found, No[p] is changed from Nop to k1 (≤ Noth); thus,
it is no longer necessary to search from p.

3.4.2 Adjunct ordered set of vertices for approximate coloring

The ordering of vertices plays an important role in the algorithm as demonstrated in (12; 10;
46; 48). In particular, the procedureNumbering strongly depends on the order of vertices, since
it is a sequential coloring. In our new algorithm, we sort the vertices in the same way as in
MCR (48) at the first stage. However, the vertices are disordered in the succeeding stages owing
to the application of Re-NUMBER. In order to avoid this difficulty, we employ another adjunct
ordered set Va of vertices for approximate coloring that preserves the order of vertices appropriately
sorted in the first stage. Such a technique was first introduced in (38).
We apply Numbering to vertices from the first (leftmost) to the last (rightmost) in the order
maintained in Va, while we select a vertex in the ordered set R for searching, beginning from
the last (rightmost) vertex and continuing up to the first (leftmost) vertex.
An improved MCR obtained by introducing only the technique (38) in this section is named
MCR*.

3.4.3 Reconstruction of the adjacency matrix

Each graph is stored as an adjacency matrix in the computer memory. SequentialNumbering is
carried out according to the initial order of vertices in the adjunct ordered set Va, as described
in Sect. 3.4.2. Taking this into account, we rename the vertices of the graph and reconstruct the
adjacency matrix so that the vertices are consecutively ordered in a manner identical to the initial
order of vertices obtained at the beginning of MCR. The above-mentioned reconstruction of the
adjacency matrix (41) results in a more effective use of the cache memory.
The new algorithm obtained by introducing all the techniques described in Sects. 3.4.1–3.4.3
in MCR is named MCS. Table 1 shows the running time required to solve some DIMACS
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dfmax New ILOG MCQ MCR MCS
Graph (18) (33) (35) (46) (48) (50)
brock400 1 22,051 8,401 1,783 1,771 693
block800 1 > 105 > 10,667 18,002 17,789 9,347

MANN a27 > 105 > 2,232 14 5.4 2.5 0.8
MANN a45 > 105 > 10,667 4,646 3,090 281
p hat500-2 133 96 24 4.0 3.1 0.7
p hat1000-2 > 105 12,478 2,844 2,434 221
san200 0.9 3 42,648 135 10 0.16 0.06
san400 0.7 2 > 105 113 50 1.0 0.3 0.1
san400 0.9 1 > 105 1,259 46.3 3.4 0.1
gen200 p0.9 44 48,262 5.39 0.47
gen400 p0.9 55 5,846,951 58,431
gen400 p0.9 65 > 2.5× 107 151,597
C250.9 > 105 44,214 3,257

Table 1. Comparison of the running time [sec]

benchmark graphs (18) by representative algorithms dfmax (18), New (33), ILOG (35), MCQ,
MCR, and MCS, taken from (50). (105 seconds ≃ 1.16 days).
Our user time (T1) in (50) for DIMACS benchmark instances: r100.5, r200.5, r300.5, r400.5,
and r500.5 are 1.57×10−3, 4.15×10−2, 0.359, 2.21, and 8.47 seconds, respectively. (Correction:
These values described in the Appendix of (50) should be corrected as shown above. However,
other values in (50) are computed based on the above correct values, hence other changes in
(50) are not necessary.)
While MCR* obtained by introducing the adjunct set Va of vertices for approximate coloring
in Sect. 3.4.2 is almost always more efficient than MCR (38), combination of all the techniques
in Sects. 3.4.1–3.4.3 makes it much more efficient to have MCS.
The aim of the present study is to develop a faster algorithm whose use is not confined to any
particular type of graphs. We can reduce the search space by sorting vertices in R in descending
order with respect to their degrees before every application of approximate coloring, and hence
reduce the overall running time for dense graphs (36; 21), but with the increase of the overall
running time for nondense graphs. Appropriately controlled application of repeated sorting
of vertices can make the algorithm more efficient for wider classes of graphs (21).
Parallel processing for maximum-clique-finding is very promising in practice (41; 53).
For practical applications, weighted graphs becomes more important. Algorithms for finding
maximum-weighted cliques have also been developed. For example, see (45; 32; 30) for
vertex-weighted graphs and (40) for edge-weighed graphs.

4. Efficient algorithm for generating all maximal cliques

In addition to finding only one maximum clique, generating all maximal cliques is also
important and has many diverse applications.
In this section, we present a depth-first search algorithm CLIQUES (44; 47) for generating all
maximal cliques of an undirected graph G = (V,E), in which pruning methods are employed
as in Bron and Kerbosch’s algorithm (7). All maximal cliques generated are output in a
tree-like form.

631Efficient Algorithms for Finding Maximum and Maximal Cliques: Effective Tools for Bioinformatics
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4.1 Algorithm CLIQUES

The basic framework of CLIQUES is almost the same as BasicMC without the basic bounding
condition.
Here, we describe two methods to prune unnecessary parts of the search forest, which
happened to be the same as in the Bron-Kerbosch algorithm (7). We regard the set SUBG (= V
at the beginning) as an ordered set of vertices, and we continue to generate maximal cliques
from vertices in SUBG step by step in this order
First, let FINI be a subset of vertices of SUBG that have been already processed by the
algorithm. (FINI is short for “finished”.) Then we denote by CAND the set of remaining
candidates for expansion: CAND= SUBG− FINI. So, we have

SUBG= FINI ∪ CAND (FINI ∩ CAND= ∅),

where FINI = ∅ at the beginning. Consider the subgraph G(SUBGq) with SUBGq = SUBG ∩
Γ(q), and let

SUBGq = FINIq ∪ CANDq (FINIq ∩ CANDq = ∅),

where FINIq = FINI ∩ Γ(q) and CANDq = CAND ∩ Γ(q). Then only the vertices in CANDq

can be candidates for expanding the complete subgraph Q ∪ {q} to find new larger cliques.
Secondly, given a certain vertex u ∈ SUBG, suppose that all the maximal cliques containing
Q ∪ {u} have been generated. Then every newmaximal clique containing Q, but not Q ∪ {u},
must contain at least one vertex q ∈ SUBG− Γ(u).
Taking the previously described pruning method also into consideration, the only search
subtrees to be expanded are from vertices in (SUBG− SUBG∩ Γ(u))− FINI= CAND− Γ(u).
Here, in order to minimize | CAND − Γ(u) |, we choose such vertex u ∈ SUBG to be the
one which maximizes | CAND ∩ Γ(u) |. This is essential to establish the optimality of the
worst-case time-complexity of CLIQUES.
Our algorithm CLIQUES (47) for generating all maximal cliques is shown in Fig. 4. Here, if
Q is a maximal clique that is found at statement 2, then the algorithm only prints out a string
of characters “clique, instead of Q itself at statement 3. Otherwise, it is impossible to achieve
the worst-case running time ofO(3n/3) for an n -vertex graph. Instead, in addition to printing
“clique” at statement 3, we print out q followed by a comma at statement 7 every time q is
picked out as a new element of a larger clique, and we print out a string of characters “back,”
at statement 12 after q is moved from CAND to FINI at statement 11. We can easily obtain
a tree representation of all the maximal cliques from the sequence printed by statements 3, 7,
and 12.
The output in a tree-like format is also important practically, since it saves space in the output
file.

4.2 Time-complexity of CLIQUES

We have proved that the worst-case time-complexity is O(3n/3) for an n-vertex graph (47).
This is optimal as a function of n, since there exist up to 3n/3 cliques in an n-vertex graph (29).
The algorithm is also demonstrated to run fast in practice by computational experiments.
Table 2 shows the running time required to solve some DIMACS benchmark graphs by
representative algorithms CLIQUE (11), AMC (24), AMC* (24), and CLIQUES, taken from
(47).
For practical applications, enumeration of pseudo cliques sometimes becomes more important
(52).
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procedure CLIQUES(G)
begin
1 : EXPAND(V,V)
end of CLIQUES

procedure EXPAND(SUBG, CAND)
begin

2 : if SUBG= ∅

3 : then print (“clique,”)
4 : else u := a vertex u in SUBG which maximizes | CAND ∩ Γ(u) |;
5 : while CAND− Γ(u) �= ∅

6 : do q := a vertex in (CAND− Γ(u));
7 : print (q, “,”);
8 : SUBGq := SUBG ∩ Γ(q);
9 : CANDq := CAND ∩ Γ(q);
10 : EXPAND(SUBGq,CANDq);
11 : CAND := CAND− {q};
12 : print (“back,”)

od
fi

end of EXPAND

Fig. 4. Algorithm CLIQUES

CLIQUE AMC AMC* CLIQUES
Graph (11) (24) (24) (47)
brock200 2 181.4 75.2 35.9 0.7
johnson16-2-4 908 151 153 4
keller4 3,447 1,146 491 5
p hat300-2 > 86,400 16,036 4,130 100

Table 2. Comparison of the running time [sec]

5. Applications to bioinformatics

5.1 Analysis of protein structures

In this subsection, we show applications of maximum clique algorithms to the following three
problems on protein structure analysis: (i) protein structure alignment, (ii) protein side-chain
packing, (iii) protein threading. Since there are many references on these problems, we only
cite references that present the methods shown here. Most of other relevant references can
be reached from those references. Furthermore, we present here only the definitions of the
problems and reductions to clique problems. Readers interested in details such as results of
computational experiments are referred to the original papers (1; 2; 3; 4; 8).

5.1.1 Protein structure alignment

Comparison of protein structures is very important for understanding the functions of
proteins because proteins with similar structures often have common functions. Pairwise
comparison of proteins is usually done via protein structure alignment using some scoring
scheme, where an alignment is a mapping of amino acids between two proteins. Because of

633Efficient Algorithms for Finding Maximum and Maximal Cliques: Effective Tools for Bioinformatics
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Fig. 5. Reduction from protein structure alignment to maximum clique. Maximum clique
shown by bold lines (right) corresponds to protein structure alignment shown by dotted lines
(left).

its importance, many methods have been proposed for protein structure alignment. However,
most existingmethods are heuristic ones in which optimality of the solution is not guaranteed.
Bahadur et al. developed a clique-based method for computing structure alignment under
some local similarity measure (2). Let P = (p1,p2, . . . ,pm) be a sequence of three-dimensional
positions of amino acids (precisely, positions of Cα atoms) in a protein. Let Q= (q1,q2, . . . ,qn)
be a sequence of positions of amino acids of another protein. For two points x and y, |x− y|
denotes the Euclidean distance between x and y. Let f (x) be a function from the set of
non-negative reals to the set of reals no less than 1.0. We call a sequence of pairs M =
((pi1 ,qi1), . . . , (pil ,qil)) an alignment under non-uniform distortion if the following conditions
are satisfied:

– ik < ih and jk < jh hold for all k < h,

– (∀k)(∀h �= k)

(

1

f (r)
<

|qjh − qjk |
|pjh − pjk |

< f (r)

)

,

where r = min{|qjh − qjk |, |pjh − pjk |}. Then, protein structure alignment is defined as the
problem of finding a longest alignment (i.e., l is the maximum). It is known that protein
structure alignment is NP-hard under this definition.
This protein structure alignment problem can be reduced to the maximum clique problem in
a simple way (see Fig. 5). we construct an undirected graph G(V,E) by

V = { (pi,qj) | i = 1, . . . ,m, j = 1, . . . ,n},

E = { {(pi,qj), (pk,qh)} | i < k, j < h,
1

f (r)
<

|qh − qj|
|pk − pi|

< f (r) }.

Then, it is straight-forward to see that a maximum clique corresponds to a longest alignment.

5.1.2 Protein side-chain packing

The protein side-chain packing problem is, given an amino acid sequence and spatial information
on the main chain, to find side-chain conformation with the minimum potential energy. In
most cases, it is defined as a problem of seeking a set of (χ1,χ2, . . .) angles whose potential
energy becomes the minimum, where positions of atoms in the main chain are fixed. This
problem is important for prediction of detailed structures of proteins because such prediction
methods as protein threading cannot determine positions of atoms in the side-chains. It is
known that protein side-chain packing is NP-hard and thus various heuristic methods have
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been proposed. Here, we briefly review a clique-based approach to protein side-chain packing
(2; 3; 8).
Let R = {r1, . . . ,rn} be the set of amino acid residues in a protein. Here, we only consider χ1

angles and then assume that positions of atoms in a side-chain are rotated around the χ1 axis.
Let ri,k be the ith residue whose side-chain atoms are rotated by (2πk)/K radian, where we
can modify the problem and method so that the rotation angles can take other discrete values.
We say that residue ri,k collides with the main chain if the minimum distance between the
atoms in ri,k and the atoms in the main chain is less than a threshold L1Å. We say that residue
ri,k collides with residue rj,h if the minimum distance between the atoms in ri,k and the atoms

in rj,h is less than L2Å. We define an undirected graph G(V;E) by

V = { ri,k | ri,k does not collide with the main chain },
E = { {ri,k,rj,h} | ri,k does not collide with rj,h }.

Then, it is straight-forward to see that a clique with size n corresponds to a consistent
configuration of side chains (i.e., side-chain conformation with no collisions). We can extend
this reduction so that potential energy can be taken into account by using the maximum
edge-weighted clique problem.

5.1.3 Protein threading

Protein threading is one of the predictionmethods for three-dimensional protein structures. The
purpose of protein threading is to seek for a protein structure in a database which best matches
a given protein sequence (whose structure is to be predicted) using some score function.
In order to evaluate the extent of match, it is required to compute an optimal alignment between
an amino acid sequence S = s1s2 . . . sn and a known protein structure P = (p1,p2, . . . ,pm),
where si and pj denote the ith amino acid and the jth residue position, respectively. As
in protein structure alignment, a sequence of pairs ((si1 ,pj1), (si2 ,pj2), . . . , (sil ,pjl )) is called
an alignment (or, a threading) between S and P if ik < ih and jk < jh hold for all k < h. Let
g(sik , sih ,pjk ,pjh) give a score (e.g., pseudo energy) between residue positions of pjk and pjh
when amino acids sik and sih are assigned to positions of pjk and pjh , respectively. Then,
protein threading is defined as a problem of finding an optimal alignment that minimizes the
pseudo energy:

∑
k<h

g(sik , sih ,pjk ,pjh),

where we ignore gap penalties for the simplicity.
This protein threading problem can be reduced to the maximum edge-weighted clique problem
(1; 4), which seeks for a clique that maximizes the total weight of edges in the clique. From an
instance of protein threading, we construct an undirected graph G(V,E) by

V = { (si,pj) | i = 1, . . . ,n, j = 1, . . . ,m },
E = { {(si,pj), (sk,ph)} | i < k, j < h },

where the weight of an edge is given by −g(si, sk,pj,ph). It is straight-forward to see that a
maximum edge-weight clique corresponds to an optimal alignment. Though this clique-based
approach is not necessarily the best for protein threading, the results of (1; 4) suggest that it is
useful for protein threading with certain constraints.
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5.2 Data mining for related genes in a biomedical database

In this subsection, we present an application of enumerating cliques. Readers interested in
details are referred to the original paper (25).
Progress in the life sciences cannot be made without integrating biomedical knowledge on
numerous genes in order to help formulate hypotheses on the genetic mechanisms behind
various biological phenomena, including diseases. There is thus a strong need for a way to
automatically and comprehensively search biomedical databases for related genes, such as
genes in the same families and genes encoding components of the same pathways.
We constructed a graph whose vertices (nodes) were gene or disease pages, and edges were
the hyperlink connections between those pages in the Online Mendelian Inheritance in Man
(OMIM) database (25; 26). This work was based on the assumption that the structures of
hyperlink connections correspond to the structural features of biological systems. Clique
enumeration approach has been applied to a relational graph based on the assumption
that relevant relationships are reflected in completely interconnected subgraphs (cliques) or
nearly completely interconnected subgraphs (pseudo-cliques). We address the extraction of
related genes by searching for densely connected subgraphs in a biomedical relational graph.
Sets of related genes are detected by enumerating densely-connected subgraphs modeled as
cliques (47) or pseudo-cliques (52).
We obtained over 20,000 sets of related genes (called ‘gene modules’) by enumerating cliques
computationally. Table 3 shows gene sets included in typical large gene modules. The
gene module in the first row is constituted by a family of chemokine genes, and the gene
module in the second comprises NF-κB family genes (including RelA and RelB) and genes
that form complexes with them (IκB). The gene module in the third row is made up of ‘DNA
repair’-related genes. The BRCA1-associated proteins; the BLM, MSH6, MSH2, and MLH1
proteins; and subunits of the RFC complex are involved in DNA repair. The genes in the
module in the fourth row are related to general transcription factor (GTF) protein complexes.
The gene module in the bottom row is associated with the signal transduction pathway of the
inflammatory response. TNF receptor-associated factor 2 (TRAF2) is a protein that interacts
with TNF receptors and is required for signal transduction. The MAP kinase kinase kinase 14
(MAP3K14) gene in this module encodes a protein that simulates NF-κB activity by binding
to the TRAF2 gene product. The gene modules thus comprise various types of related genes
including gene families, complexes, and pathways.
For applying gene modules to disease mechanism analysis, we assembled gene modules
associated with the metabolic syndrome as an example of a typical multifactorial disease
comprising obesity, diabetes, hyperlipidemia, and hypertension. The number of gene
modules associated with diabetes, hyperlipidemia, hypertension, and obesity were 110, 16,
34, and 28, respectively. There were no overlaps among the modules. Then a total of
188 modules and 124 genes contained were identified. The 10 most frequent genes in the
188 modules are listed in Table 4 along with the numbers of times they were found in the
modules (i.e., cliques) of various sizes. As shown in the table, INS gene and LEP gene are

Gene module Attribute

{ PPBP, SCYB6,GRO2,GRO3, IL8, SCYB10, IFNG,GRO1, PF4, SCYB5,MIG, SCYB11 } Family
{ NFKBIA,NFKB1,NFKB2,RELA,REL,CHUK,MAP3K7, IKBKB,NFKBIB,MAP3K14,RELB } Family & Complex
{ RFC4,RFC1, BRCA1,MSH2,MLH1,APC,RFC2,MSH6,MRE11A,BLM } Complex
{ POLR2A,GTF2E1,GTF2B,GTF2F1,GTF2H1, TAF1, TAF10,GTF2A2,GTF2A1 } Complex
{ TNFRSF5,NFKB1, TNF, TNFRSF1A,TNFRSF1B,CHUK,TRAF2,MAP3K14 } Pathway

Table 3. Typical large gene modules computationally extracted as pseudo-cliques.
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Size

Rank Gene Total 2 3 4 5 6 7

1 INS 29 2 6 2 18 1 0
2 LEP 27 2 6 4 12 3 0
3 POMC 16 1 0 3 10 2 0
4 PCSK1 13 0 1 2 9 1 0
5 IRS2 12 0 0 0 11 1 0
5 IGF1 12 0 1 0 10 1 0
5 INSR 12 3 4 1 4 0 0
8 IRS1 11 0 0 1 9 1 0
9 MC4R 10 0 0 1 7 2 0
10 FGF1 9 0 0 1 4 2 2

Table 4. The 10 most frequent genes in the 188 extracted modules associated with the
metabolic syndrome.

the top and the 2nd, respectively. The modules of size 6 including INS gene or LEP gene
were {Obesity,LEP,MC4R,POMC,AGRP,LEPR}, {Obesity,LEP,MC4R,POMC,AGRP,PCSK1}
and {Diabetes,LEP,IGF1,IRS1,INS,IRS2}. Each module contains biologically plausible genes
related to obesity or diabetes. By combining the 188 modules and 124 genes using the
correspondence analysis, we obtained a coherent holistic picture helpful for interpreting
relations among genes (25).
The comprehensive extraction of gene modules can be a potential aid to researchers in the
biomedical sciences by providing a systematic methodology for interpreting relationships
among genes and biological phenomena.

6. Conclusion

Wehave presented efficient algorithms for findingmaximumandmaximal cliques, and shown
our successful application to bioinformatics. It is expected that these algorithms can be
convenient and effective tools for much more problems in bioinformatics.
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[35] Régin, J.-C.: Using constraint programming to solve the maximum clique problem,
Principles and Practice of Constraint Programming, LectureNotes in Computer Science,
2833, 634-648 (2003)

[36] Shindo, M., Tomita, E., Maruyama, Y.: An efficient algorithm for finding a maximum
clique, Technical Report of IEC, CAS86-5, 33–40 (1986)

[37] Strickland, D.M., Barnes, E., Sokol, J.S.: Optimal protein structure alignment using
maximum cliques, Operations Research, 53, 389–402 (2005)

[38] Sutani, Y., Tomita, E.: Computational experiments and analyses of a more efficient

639Efficient Algorithms for Finding Maximum and Maximal Cliques: Effective Tools for Bioinformatics

www.intechopen.com



16 Biomedical Engineering, Trends, Researches and Technologies

algorithm for finding a maximum clique, Technical Report of IPSJ, 2005-MPS-57, 45–48
(2005)

[39] Sutani, Y., Higashi, T., Tomita, E. Takahashi, S., Nakatani, H.: A faster
branch-and-bound algorithm for finding a maximum clique, Technical Report of IPSJ,
2006-AL-108, 79–86 (2006)

[40] Suzuki, J., Tomita, E., Seki, T.: An algorithm for finding a maximum clique with
maximum edge-weight and computational experiments, Technical Report of IPSJ,
2002-MPS-42, 45–48 (2002)

[41] Takahashi, S., Tomita, E.: Parallel computation for finding a maximum clique on shared
memory computers, Technical Report of the University of Electro-Communications,
UEC-TR-CAS3 (2007)

[42] Tomita, E., Yamada, M.: An algorithm for finding a maximum complete subgraph,
Conference Records of the National Convention of IECE 1978, 8 (1978)

[43] Tomita, E., Kohata, Y., Takahashi, H.: A simple algorithm for finding amaximum clique,
Technical Report of the University of Electro-Communications, UEC-TR-C5(1) (1988)

[44] Tomita, E., Tanaka, A. Takahashi, H.: The worst-case time complexity for finding
all maximal cliques, Technical Report of the University of Electro-communications,
UEC-TR-C5(2) (1988)

[45] Tomita, E. Wakai, Y., Imamatsu, K.: An efficient algorithm for finding a maximum
weight clique and its experimental evaluations, Technical Report of IPSJ, 1999-MPS-27,
33–36 (1999)

[46] Tomita, E., Seki, T.: An efficient branch-and-bound algorithm for finding a maximum
clique, Discrete Math. and Theoret. Comput. Sci., Lecture Notes in Computer Science,
2731, 278–289 (2003)

[47] Tomita, E., Tanaka, A. Takahashi, H.: The worst-case time complexity for generating all
maximal cliques and computational experiments (An invited paper in the Special Issue
on COCOON 2004), Theoret. Comput. Sci., 363, 28–42 (2006) (Awarded “Theoretical
Computer Science Top Cited Article 2005-2010” by Elsevier. )

[48] Tomita, E., Kameda, T.: An efficient branch-and-bound algorithm for finding a
maximum clique with computational experiments, J. Global Optimization, 37, 95–111
(2007), J. Global Optimization, 44, 311 (2009)

[49] Tomita, E.: The maximum clique problem and its applications - Invited Lecture,
Technical Report of IPSJ, 2007-MPS-67/2007-BIO-11, 21–24 (2007)

[50] Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., Wakatsuki, M.: A simple and faster
branch-and-bound algorithm for finding a maximum clique, WALCOM: Algorithms
and Complexity, Lecture Notes in Computer Science, 5942, 191-203 (2010)

[51] Tomita, E.: Plenary Lecture: The maximum clique problem, Proc. 14th WSEAS
International Conf. on Computers (vol. I), 19, Corfu Island, Greece (2010)

[52] Uno, T.: An efficient algorithm for solving pseudo clique enumeration problem,
Algorithmica, 56, 3–16 (2010)

[53] Wakatsuki, M., Takahashi, S., Tomita, E.: A parallelization of an algorithm for finding a
maximum clique on shared memory computers, Technical Report of IPSJ, 2008-MPS-71,
17–20 (2008)

[54] Yonemori, C., Matsunaga, T., Sekine, J., Tomita, E.: A structural analysis of enterprise
relationship using cliques, DBSJ Journal, 7, 55-60 (2009)

[55] Zhang, B., Park, B.-H., Karpinets, T., Samatova, N.F.: From pull-down data to protein
interaction networks and complexes with biological relevance, Bioinformatics, 24,
979–986 (2008)

640 Biomedical Engineering Trends in Electronics, Communications and Software

www.intechopen.com



Biomedical Engineering, Trends in Electronics, Communications

and Software

Edited by Mr Anthony Laskovski

ISBN 978-953-307-475-7

Hard cover, 736 pages

Publisher InTech

Published online 08, January, 2011

Published in print edition January, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Rapid technological developments in the last century have brought the field of biomedical engineering into a

totally new realm. Breakthroughs in materials science, imaging, electronics and, more recently, the information

age have improved our understanding of the human body. As a result, the field of biomedical engineering is

thriving, with innovations that aim to improve the quality and reduce the cost of medical care. This book is the

first in a series of three that will present recent trends in biomedical engineering, with a particular focus on

applications in electronics and communications. More specifically: wireless monitoring, sensors, medical

imaging and the management of medical information are covered, among other subjects.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Etsuji Tomita, Tatsuya Akutsu and Tsutomu Matsunaga (2011). Efficient Algorithms for Finding Maximum and

Maximal Cliques: Effective Tools for Bioinformatics, Biomedical Engineering, Trends in Electronics,

Communications and Software, Mr Anthony Laskovski (Ed.), ISBN: 978-953-307-475-7, InTech, Available

from: http://www.intechopen.com/books/biomedical-engineering-trends-in-electronics-communications-and-

software/efficient-algorithms-for-finding-maximum-and-maximal-cliques-effective-tools-for-bioinformatics



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


