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1. Introduction  

Biomedical data is facing an ever increasing amount of data that resist classical methods.  
Classical methods cannot be applied in the case of high dimensional datasets where the 
number of parameters greatly exceeds the number of observations, the so-called “large p 
small n” problem. Machine Learning techniques have had tremendous success in these 
realms in a wide-variety of disciplines. Often these machine learning tools are combined to 
include a variable selection step and model building step. In some cases the goal of the 
analysis may be exploratory in nature and the researcher is more interested in knowing 
which set of variables are strongly related to the output variable rather than predictive 
accuracy. For those situations, the goal of the analysis may be to provide a ranking of the 
input variables based on their relative importance in predicting the outcome. Other 
purposes for variable selection include elimination of redundant or irrelevant variables and 
to improve the performance of the predictive algorithm. 

Even if prediction is the goal of the analysis, several machine learning algorithms require 

that some dimension reduction is done prior to the model building, thus variable selection is 

an important problem. Let Y be the outcome of interest.  Y can be continuous or categorical.  

When Y is continuous we call this a regression problem and when Y is categorical we call 

this a classification problem. Let 1 pX ,...,X be a set of potential predictors (also called inputs).  

X and Y are vectors of n observations. The goal of variable selection, broadly defined, is 

finding the set of X’s that are strongly related the outcome Y.  Even for moderate values of p, 

estimating all possible linear models ( 2p ) is computationally expensive and thus there 

needs to be some dimension reduction. If p is large, and the set of all X’s contain redundant, 

irrelevant or highly correlated variables, such as the case in many biomedical applications 

including genome wide association studies and microarray studies, then the problem can be 

difficult. Further complicating matters, real-world data can have X’s that are of mixed type, 

where predictors are measured on different scales (categorical versus continuous) and the 

relationship between the outcome may be highly non-linear with high-order interactions. 

Generally, one can consider several machine learning methods for variable selection:  one is 
a greedy search algorithm that examines the conditional probability distribution of Y, the 
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response variable, for each predictor variable X.  However, this method is at a disadvantage 
when there are interactions present. Another method is best subset selection which looks at 
the change in predictive accuracy for each subset of predictors. When the number of 
parameters becomes large, examining each possible subset becomes computationally 
infeasible. Methods such as forward selection and backwards elimination are also not likely 
to yield the optimal subset in this case. The third method uses all of the X’s to generate a 
model and then use the model to examine the relative importance of each variable in the 
model. Random Forests and its derivatives are machine learning tools that were primarily 
created as a predictive model and secondly as a way to rank the variable in terms of their 
importance to the model. Random Forests are growing increasingly popular in genetics and 
bioinformatics research. They are applicable in the small n large p problems and can deal 
with high-order interactions and non-linear relationships. Although there are many machine 
learning techniques that are applicable for data of this type and can give measures of 
variable importance such as Support Vector Machines (Vapnik 1998; Rakotomamonjy 2003), 
neural networks (Bishop 1995), Bayesian variable selection (George and McCulloch 1993; 
George and McCulloch 1997; Kuo and Mallick 1999; Kitchen et al., 2007) and k-nearest 
neighbors (Dasarathy 1991), we will concentrate on Random Forests because of their relative 
ease of use, popularity and computational efficiency. 

2. Trees and Random Forests    

Classification and regression trees (Breiman et al., 1984) are flexible, nonlinear and 

nonparametric. They produce easily interpretable binary decision trees but can also overfit 

and become unstable (Breiman 1996; Breiman 2001). To overcome this problem several 

advances have been suggested.  It has been shown that for some splitting criteria, recursive 

binary partitioning can induce a selection bias towards covariates with many possible splits 

(Loh and Shih 1997; Loh 2002; Hothorn et al., 2006). The key to producing unbiasedness is to 

separate the variable selection and the splitting procedure (Loh and Shih 1997; Loh 2002; 

Hothorn et al., 2006). The conditional inference trees framework was first developed by 

Hothorn et al (Hothorn  et al., 2006). These trees select variables in an unbiased way and are 

not prone to overfitting.  Let 1= nw ( w ,...,w )  be a vector of non-negative integer valued case 

weights where the weights are non-zero when the corresponding observations are included 

in the node and 0 otherwise. The algorithm is as follows: 1) At each node test the null 

hypothesis of independence between any of the X’s and the response Y, that is test 

=jP(Y|X ) P(Y )  for all j: j=1,…,p. If the null hypothesis cannot be rejected at alpha level less 

than some pre-specified level then the algorithm terminates. If the null hypothesis of 

independence is rejected then the covariate with the strongest association to Y is selected 

(that is, the jX with the lowest p-value). 2) Split the covariate into two disjoint sets using 

permutation test to find the optimal binary split with the maximum discrepancy between 

the samples.  Note that other splitting criteria could be used. 3)  Repeat the steps recursively.  

Hothorn asserts that compared to GUIDE (Loh 2002) and QUEST (Loh and Shih 1997), other 

unbiased methods for classification trees, conditional inference trees have similar prediction 

accuracy but conditional inference trees are intuitively more appealing as alpha has the 

more familiar interpretation of type I error instead being used solely as a tuning parameter, 

although it could be used as such. Much of the recent work on extending classification and 
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regression trees have been on growing ensembles of trees.  Bagging, short for bootstrap 

aggregation, whereupon many bootstrapped samples of the data are generated from a 

dataset with a separate tree grown for each sample was proposed by Breiman in 1996. This 

technique has been shown to reduce the variance of the estimator (Breiman 1996).  The 

random split selection proposed by Dietterich 2000 also grows multiple trees but the splits 

are chosen uniformly at random from among the K best splits (Dietterich 2000). This method 

can be used either with or without pruning the trees. Random split selection has better 

predictive accuracy than bagging (Dietterich 2000). Boosting, another competitor to bagging, 

involves iteratively weighting the outputs where the weights are inversely proportional to 

their accuracy, has excellent predictive accuracy but can degenerate if there is noise in the 

labels. Ho suggested growing multiple trees where each tree is grown using a fixed subset 

of variables (Ho 1998). Predictions were made by averaging the votes across the trees. 

Predictive ability of the ensemble depends, in part, on low correlation between the trees. 

Random Forests extends the random subspace method of Ho 1998. Random Forests belong 

to a class of algorithms called weak learners and are characterized by low bias and high 

variance. They are an ensemble of simple trees that are allowed to grow unpruned and were 

introduced by Breiman (Breiman 2001). Random Forests are widely applicable, nonlinear, 

non-parametric, are able to handle mixed data types (Breiman 2001; Strobl et al., 2007; 

Nicodemus et al., 2010). They are faster than bagging and boosting and are easily 

parallelized. Further they are robust to missing values, scale invariant, resistant to over-

fitting and have high predictive accuracy (Breiman 2001). Random forests also provide a 

ranking of the predictor variables in terms of their relative importance to the model.  A 

single tree is unstable providing different trees for mild changes within the data. Together 

bagging, predictor subsampling and averaging across all trees helps to prevent over-fitting 

and increase stability. Briefly Random Forests can be described by the following algorithm:   
1. Draw a large number of bootstrapped samples from the original sample (the number of 

trees in the forest will equal the number of bootstrapped samples).  
2. Fit a classification or regression tree on each bootstrapped sample.  Each tree is 

maximally grown without any pruning where at each node a randomly selected subset 
of size mtry possible predictors from the p possible predictors are selected (where mtry 
< p) and the best split is calculated only from this subset.  If mtry=p then it is termed 
bagging and is not considered a Random Forest. Note, one could also use a random 
linear combination of the subset of inputs for splitting as well. 

3. Prediction is based on the out of bag (OOB) average across all trees.  The out-of-bag 
(OOB) samples are the data that are not used in the test set (roughly 1/3 of the 
variables) and can be used to test the tree grown. That is, for each pair ( i ix ,y ) in the 
training sample select only the trees that do not contain the pair and average across 
these trees. 

The additional randomness added by selecting a subset of parameters at random instead of 
splitting on all possible parameters releases Random Forests from the small n, large p 
problem (Strobl et al., 2007) and allows the algorithm to be adaptive to the data and reduces 
correlation among the trees in the forest (Ishwaran 2007). The accuracy of a Random Forest 
depends on the strength of the individual trees and the level of correlation between the trees 
(Breiman 2001). Averaging across all trees in the forest allows for good predictive accuracy 
and low generalization error.   
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3. Use in biomedical applications 

Random Forests are increasingly popular in the biomedical community and enjoy good 

predictive success even against other machine learning algorithms in a wide variety of 

applications (Lunetta et al., 2004; Segal et al., 2004; Bureau et al. 2005; Diaz-Uriarte and 

Alvarez de Andes 2006; Qi, Bar-Joseph and Klein-Seetharaman 2006; Xu et al., 2007; Archer 

and Kimes 2008; Pers et al. 2009; Tuv et al., 2009; Dybowski, Heider and Hoffman 2010; 

Geneur  et al., 2010). Random Forests have been used in HIV disease to examine phenotypic 

properties of the virus.  Segal et al used Random Forests to examine the role of mutations in 

polymerase in HIV-1 to viral replication capacity (Segal et al., 2004). Random Forests have 

also been used to predict HIV-1 coreceptor usage from sequence data (Xu et al., 2007; 

Dybowski et al., 2010). Qi et al found that Random Forests had excellent predictive 

capabilities in the prediction of protein interaction compared to six other machine learning 

methods (Qi et al., 2006). Random Forests have also been found to have favorable predictive 

characteristics in microarray and genomic data (Lunetta et al., 2004; Bureau et al. 2005; Lee 

et al., 2005; Diaz-Uriarte and Alvarez de Andes 2006). These applications, in particular, use 

Random Forests as a prediction method and as a filtering method (Breiman 2001; Lunetta et 

al., 2004; Bureau et al. 2005; Diaz-Uriarte and Alvarez de Andes 2006). To unbiasedly test 

between several machine learning algorithms, a game was devised where bootstrapped 

samples from a dataset were given to players who used different machine learning 

strategies specifically Support Vector Machines, LASSO, and Random Forests to predict an 

outcome. Model performance was gauged by a separate referee using a strictly proper 

scoring rule. In this setup, Pers et al found that Random Forests had the lowest bootstrap 

cross-validation error compared to the other algorithms (Pers et al. 2009).  

4. Variable importance in Random Forests 

While variable importance in a general setting has been studied (van der Laan 2006) we will 

examine it in the specific framework of Random Forests. In the original formulation of 

CART, variable importance was defined in terms of surrogate variables where the variable 

importance looks at the relative improvement summed over all of the nodes of the primary 

variable versus its surrogate. There are a number of variable importance definitions for 

Random Forests. One could simply count the number of times a variable appears in the 

forest as important variables should be in many of the trees. But this would be a naïve 

estimator because the information about the hierarchy of the tree where naturally the most 

important variables are placed higher in the tree is lost. One the other hand one could only 

look at the primary splitters of each tree in the forest and count the number of times that a 

variable is the primary splitter. A more common variable importance measure is Gini 

Variable Importance (GVI) which is the sum of the Gini impurity decrease for a particular 

variable over all trees. That is, Gini variable importance is a weighted average of a particular 

variables improvement of the tree using the Gini criterion across all trees. Let N be the 

number of observations at node j, and RN and LN be the number of observations of the right 

and left daughter nodes after splitting, and  let ijd be the decrease in impurity produced by 

variable iX at the jth node of the tth tree.  If Y is categorical, then the Gini index is given 

by 2 1= −ˆ ˆ ˆG p( p) , where p̂  is the proportion of 1’s in the sample. So in this case, 
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= − +L R
ij L R

N Nˆ ˆ ˆd G ( G G )
N N

; where LĜ and RĜ are the Gini indexes of the left and right node 

respectively. The Gini Variable importance of variable iX  is defined as 

1

1

=
= ∑ ∑

T

i ij ij
t J

ˆGVI(X ) ( d I )
T

 

where ijI is an indicator variable for whether the ith variable was used to split node j.  That 

is, it is the average of the Gini importance over all trees, T.   

Permutation variable importance (PVI) is the difference in predictive accuracy using the 

original variable and a randomly permuted version of the variable. That is, for variable iX , 

count the number of correct votes using the out-of-bag cases and then randomly permute 

the same variable and count the number of correct votes using the out of bag cases. The 

difference between the number of correct votes for the unpermuted and permuted variables 

averaged across all trees is the measure of importance.   

1
= −∑ tii ti

t

PVI(X ) ( errorOOB errorOOB )
T  

Where t is a tree in the Out of Bag sample, tierrorOOB is the misclassification rate of the 

original variable iX in tree t, and error tiOOB is the misclassification rate on the permuted 

iX variable for tree t.   

Strobl et al (Strobl et al. 2008) suggested a conditional permutation variable importance 

measure for when variables are highly correlated. Realizing that if there exists correlation 

within the X’s, the variable importance for these variables could be inflated as the 

construction of variable importance measures departures from independence of the 

variable iX  from the outcome Y and also from the remaining predictor variables −( i )X , they 

devised a new conditional permutation variable importance measure.  Here −( i )X  reflects 

the remaining covariates not including iX  in other words 1 1 1− − +=( i ) i , i pX {X ,...,X X ,...,X } . 

The new measure is obtained by conditionally permuting values of iX  within groups of 

covariates, −( i )X  which are held fixed. One could use any partition for conditioning or use 

the partition already generated by the recursive partitioning procedure. Further one could 

include all variables −( i )X  to condition on or only include those variables whose correlation 

with iX  exceeds a certain threshold. The main drawback of this variable importance scheme 

is its computational burden. Ishwaran (Ishwaran 2007) carefully studied variable 

importance with highly correlated variables with a simpler definition of variable 

importance.  Variable importance was defined as the difference in prediction error using the 

original variable and a random node assignment after the variable is encountered. Two-way 

interactions were examined via jointly permuted variable importance. This method allows 

for the explicit ranking of the interactions in relation to all other variables in terms of their 

relative importance even in the face of correlation.  However for large p, examining all two-

way variable importance measures would be computationally infeasible. Tuv et al (Tuv et 

al., 2009) takes a random permutation of each potential predictor and a Random Forest is 

generated from this and the variable importance scores are compared to the original scores 
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via the t-test.  Surrogate variables are eliminated by the generation of gradient boosted trees.  

Then by iteratively selecting the top variables on the variable importance and then re-

running Random Forests, they were able to obtain smaller and smaller numbers of 

predictors.  

5. Other issues in variable importance in Random Forests 

Because Random Forests are often used as a screening tool based on the results of the 
variable importance ranking, it is important to consider some of the properties of the 
variable importance measures especially under various assumptions. 

5.1 Different measurement scales 

In the original implementation of CART, Breiman noted that the Gini index was biased 
towards variables with more possible splits (Breiman et al., 1984). When data types are 
measured on different scales such as when some variables are continuous while others are 
categorical, it has been found that Gini importance is biased (Strobl et al., 208; Breiman et al., 
1984; White and Liu 1994; Hothorn et al., 2006; Strobl et al., 2007; Sandri and Zuvvolotto 
2008). In some cases suboptimal variables could be artificially inflated in these scenarios.  
Strobl et al found that using the permutation variable importance with subsampling without 
replacement provided unbiased variable selection (Strobl et al., 2007).  In simulation studies, 
Strobl (Strobl et al., 2007) shows that the Gini criteria is strongly biased with mixed data 
types and proposed using a conditional inference framework for constructing forests.  
Further they show that under the original implementation of random forests, permutation 
importance is also biased. This difference was diminished when using conditional inference 
forests and when subsampling was performed without replacement. Because of this bias, 
permutation importance is now the default importance measure in the random forest 
package in R (Breiman 2002).   

5.1 Correlated predictors 

Permutation variable importance rankings have been found to be unstable for when filtering 
Single Nucleotide Polymorphisms (SNP) variable importance (Nicodemus et al., 2007; Calle 
and Urrea 2010). The notion of stability, in this case, is that the genes on the “important” 
lists remain constant throughout multiple runs of the Random Forests.  Genomic data such 
as microarray data and sequence data often have high correlation among the potential 
predictor variables.  Several studies have shown that high correlation among the potential 
predictor X’s  poses problems with variable importance measures in Random Forests (Strobl 
et al. 2008; Nicodemus and Malley 2009; Nicodemus et al., 2010). Nicodemus found that 
there is a bias towards uncorrelated predictors and that there is a dependence on the size of 
the subset sample mtry (Nicodemus and Malley 2009). Computer simulations have found 
that surrogate (highly correlated variables) are often within the set of highly ranked 
important variables but that these variables are unlikely to be on the same tree.  In a sense, 
these variables compete for selection into a tree. This competition diminishes their impact on 
the variable importance scores. The ranking procedure based on Gini and permutation 
importance cannot distinguish between the correlated predictors.  In simulations when the 
correlation between variables is less that 0.4, any variable importance measure appears to 
work well with the true variables being among the top listed variables in the variable 
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importance ranking with multiple runs of the Random Forest. Using Gini variable 
importance, variables with correlations less than 0.5 appear to have minimal impact on the 
size of the variable importance ranking list that includes the variables that are truly related 
to the outcome.  The graph below shows how large the variable importance list has to be to 
recover 10 true variables among 100 total variables, 90 of which are random noise and 
independent of the outcome variables under various levels of correlation among the 
predictors using Gini variable importance (GVI) and permutation variable importance (PVI). 
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This result is similar to that found by Archer and Kimes showing that Gini variable 

importance is stable under moderate correlation in that the true predictor may not be the 

highest listed under the most important variables but will be among the set of high valued 

variables (Archer and Kimes 2008). This result is also consistent with the findings of  

Nonyane and Foulkes (Nonyane and Foulkes 2008). They found that in comparing Random 

Forests and Multivariate Adaptive Regression Splines (MARS) in simulated genetic data 

with one true effect, 1X , and seven correlated but uninformative variables and one covariate 

Z under six different model structures.  They define the true discovery rate as: if the 1X , the 

true variable, is listed first or second to Z in the variable importance ranking using the Gini 

variable importance measure. They found that for correlation less than 0.5, the true 

discovery rate is relatively stable regardless of how one handles the covariate. 

Several solutions for correlated variables have been proposed. Sandri and Zuccolotto 

proposed the use of pseudovariables as a correction for the bias in Gini importance (Sandri 

and Zuvvolotto 2008). In a study of SNPs in linkage disequilibrium, Meng et al restricted the 

tree-building algorithm to disallow correlated predictors in the same tree (Meng et al. 2009). 
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They found that the stronger the degree of association of the predictor to the response, the 

stronger the effect of the correlation has on the performance of the forest.  Strobl 2008 also 

found that with under strong correlation, conditional inference trees using permutation 

variable importance also had a bias in variable selection (Strobl et al. 2008). To overcome this 

bias they developed a conditional permutation scheme where the variable to be permuted 

was permuted conditional on the other correlated variables which are held fixed.  In this set 

up one can use any partition of the feature space such as a binary partition learned from a 

tree to condition on. Use the recursive partitioning to define the partition and then: 1) 

compute OOB prediction accuracy for each tree, 2) for all variables Z to be conditioned on, 

create a grid 3) permute within a grid of iX  and compute OOB prediction accuracy 4) 

difference the accuracy averaged across all trees.  Z could be all other variables besides iX or 

all variables correlated with iX  with a correlation coefficient higher than a set threshold. 

Similar to Nicodemus and Malley, they found that permutation variable importance was 

biased when there exists correlation among the X variables and this was especially true with 

small values of mtry (Nicodemus and Malley 2009). They also found that while bias 

decreases with larger values of mtry, variability increases.  In simulations, conditional 

permutation variable importance still had a preference for highly correlated variables but 

less so that standard permutation variable importance. The authors suggest using different 

values of mtry and a large number of trees so results with different seeds do not vary 

systematically. 
In another study Nicodemus found that permutation variable importance had preference for 
uncorrelated variables because correlated variables compete with each other (Nicodemus  et 
al., 2010). They also found that large values of mtry can inflate the importance for correlated 
predictors for permutation variable importance. They found the opposite effect for 
conditional variable importance. Further they found that conditional variable importance 
measures from Conditional Inference Forests inflated uncorrelated strongly associated 
variables relative to correlated strongly associated variables. They also found that 
conditional permuation importance was computationally intractable for large datasets. The 
authors were only able to calculate this measure for n=500 and for only 12 predictors. They 
conclude that conditional variable importance is useful for small studies where the goal is to 
identify the set of true predictors among a set of correlated predictors. In studies such as 
genetic association studies where the set of predictors is large, original permutation based 
variable importance may be better suited. 
In genomic association studies, often one wants to find the smallest set of non-related genes 
that are potentially related to the outcome for further study. One method is to select an 
arbitrary threshold and list the top h variables in the variable importance list. Another 
approach is to iteratively use Random Forests, feeding in the top variables from the variable 
importance list as potential predictors and selecting the final model as the one with the 
smallest error rate given a subset of genes (Diaz-Uriarte and Alvarez de Andes 2006).  
Geneur et al used a similar two-stage approach with highly correlated variables where one 
first eliminates lowest ranked variables ranked by importance and then  tested nested 
models in a stepwise fashion, selecting the most parsimonious model with the minimum 
OOB error rate (Geneur et al., 2010). They found that under high correlation there was high 
variance on variable importance lists. They proposed that mtry be drawn from the variable 
ranking distribution and not uniformly across all variables although this was not specifically 
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tested. Meng et al also used an iterative machine leanring  scheme where the top ranked 
important variables were assessed using Random Forests and then used as predictors in a 
separate prediction algorithm (Meng et al. 2007). Specifically, Random Forests was used to 
narrow the parameter space and then the top ranked variables were used in a Bayesian 
network for prediction. They found that using the top 50SNPs in the variable importance list 
as the predictors for a second Random Forest resulted in good variable selection in their 
simulations, although the generalizability is not known (Meng et al. 2007). 

6. Recommendations    

For all Random Forest implementations it is recommended that one: 
1. Grow a large forest with a large number of trees (ntree at least 5000). 
2. Use a large terminal node size. 

3. Try different values of mtry and seeds.  Try setting =mtry mdim as an initial starting 

value for mtry; where mdim is the number of potential predictors. 
4. Run algorithm repeatedly.  That is, create several random forests until the variable 

importance list appears stable. 
In using Random Forests for variable selection we can make several recommendations.  
These recommendations vary by the nature of the data. It is well known that the Gini 
variable importance has bias in its variable selection thus for most instances we recommend 
permutation variable importance. Indeed this is the default in the R package randomForest.  
If the predictors are all measured on the same scale and are independent then this default 
should be sufficient. If the data are of mixed type (measured on different scales), then use 
Conditional Inference Forests with permutation variable importance. Use subsampling 
without replacement instead of the default bootstrap sampling as suggested by Strobl 2007.  
All measures of variable importance have bias under strong correlation.  It is important to 
test whether the variables are correlated. If there is correlation, then one must assess the goal 
of the study. If there is high correlation  among the X’s and the p is small and the goal of the 
study is to find the set of true predictors, then using conditional inference trees and 
conditional permutation variable importance is a good solution.  However if there is a large 
p using conditional permuation importance may be computationally infeasible and either 
some parameter space reduction will be necessary. In that case, using permutation 
importance using Random Forests or iterative random Forests may be better suited for 
creating a list of important variables. 
If there are highly correlated variables and there if p or n is large thenone can  use Random 
Forests iteratively with permutation variable importance. In this case one selects the top h 
variables in the variable importance ranking list as predictors for another Random Forest.  
In this case h is selected by the user. Meng et al used the top 50 percent of the predictors. 
This scenario works best when there is a strong association of the predictors to the outcome 
(Meng et al., 2007). 
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