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1. Introduction     

Image moments have been successfully used as images’ content descriptors for several 
decades. Their ability to fully describe an image by encoding its contents in a compact way 
makes them suitable in many disciplines of the engineering life, such as image analysis (Sim 
et al., 2004), image watermarking (Papakostas et al., 2010a) and pattern recognition 
(Papakostas et al., 2005, 2007, 2009a, 2010b). Apart from the geometric moments, which are 
firstly introduced, several moment types have been presented due time (Flusser et al., 2009). 
Orthogonal moments are the most popular moments widely used in many applications 
owing to their orthogonality property that permits the reconstruction of the image by a 
finite set of its moments with minimum reconstruction error. This orthogonality property 
comes from the nature of the polynomials used as kernel functions, which they constitute an 
orthogonal base. As a result the orthogonal moments have minimum information 
redundancy meaning that different moment orders describe different image parts of the 
image. The most well known orthogonal moment families are: Zernike, Pseudo-Zernike, 
Legendre, Fourier-Mellin, Tchebichef, Krawtchouk, dual Hahn moments, with the last three 
ones belonging to the discrete type moments since they are defined directly to the image 
coordinate space, while the first ones are defined in the continue space. 
Recently, there is an increased interest on applying image moments in biomedical imaging, 
with the reconstruction of medical images (Dai et al., 2010; Papakostas et al., 2009b; Shu et 
al., 2007; Wang & Sze, 2001) and the description of image’s parts with particular properties 
(Bharathi & Ganesan, 2008; Iscan et al., 2010; Li & Meng, 2009; Liyun et al., 2009) by 
distinguishing diseased areas from the healthy ones, being the most active research 
directions the scientists work with. 
Therefore, a method that computes fast and accurate the orthogonal moments of a 
biomedical image is of great importance. Although many algorithms and strategies 
(Papakostas et al., 2010c) have been proposed in the past, these methodologies handle the 
biomedical images as “every-day” images, meaning that they are not making use of specific 
properties of the image in process. 
The authors have made a first attempt to compute the Krawtchouk moments of biomedical 
images by taking advantage of the inherent property of the biomedical image to have 
limited number of different intensity values (Papakostas et al., 2009c). Based on this 
observation and by applying the ISR method (Papakostas et al., 2008a) an image is 
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decomposed to a set of image slices consisting of pixels with the same intensity value, an 
image representation that enables the fast computation of the image moments (Papakostas 
et al., 2009d). 
This first approach has shown very promising results, by giving more space to apply it to 
more moment families and biomedical datasets under a general framework, which is 
presented in this chapter. 

2. Image moments 

A general formulation of the (n+m)th order image moment of a NxN image with intensity 
function f(x,y) is given as follows: 

 ( )
1 1

( ) ( ) ,
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M NF Poly x Poly y f x y
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where NF is a normalization factor and Polyn(x) is the nth order polynomial value of the pixel 
point with coordinate x, used as a moment kernel. According to the type of the polynomial 
kernel used in (1), the type of the moments is determined such as Geometric, Zernike, 
Pseudo-Zernike, Fourier-Mellin, Legendre, Tchebichef, Krawtchouk and dual Hahn. 
For example, in the case of Tchebichef moments (Papakostas et al., 2009d, 2010c) the used 
polynomial has the form of the normalized Tchebichef polynomial defined as follows: 
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is the nth order Tchebichef polynomial, 3F2, the generalized hypergeometric function, n,x = 
0,1,2,…,N-1, N the image size and β(n,N) a suitable constant independent of x that serves as 
scaling factor, such as N n.  
Moreover the normalization factor NF has the following form: 
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Based on the above assumptions, the final computational form of the (n+m)th order 
Tchebichef moments of a  NxN image having f(x,y) intensity function takes the following 
form: 
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Working in the same way, the computational formulas of Geometric, Zernike, Pseudo-
Zernike, Legendre, Krawtchouk and dual Hahn moments can be derived (Papakostas et al., 
2009d, 2010c) based on the general form of (1). 

3. A general computation strategy 

Generally, there are four main computation strategies (Papakostas et al., 2010c) that have 
been applied to accelerate the moments’ computation speed: 1) the Direct Strategy (DS), 
which firstly used, since it is based on the definition formulas of each moment family, 2) the 
Recursive Strategy (RS), which is characterized by the mechanism of recursive computation 
of the kernel’s polynomials, 3) the Partitioning Strategy (PS), according to which the image is 
partitioned into several smaller sub-images in order to reduce the maximum order need to 
computed and finally 4) the Slice-Block Strategy (SBS), which decomposes a gray-scale image 
to intensity slices and rectangular blocks, developed by the authors (Papakostas et al., 2008a, 
2009d). 
Among the four above strategies the last one has the advantage to collaborate with the RS 
and PS strategies (Papakostas et al., 2010c), by resulting to more efficient computation 
schemes. Moreover, the SBS strategy can be applied to any moment family defined in the 
cartesian coordinate system (for the case of the polar coordinate system, appropriate 
transformation to the cartesian system is needed) in a common way, establishing it a general 
computation framework. 
After the presentation of the main principles of the SBS methodology, this method will be 
applied to compute the moments of several families, for the case of biomedical images, 
which they constitute a special case of images where the benefits of the SBS strategy are 
significantly increased.        
The principal mechanisms used by the SBS strategy are the ISR (Image Slice Representation) 
and IBR (Image Block Representation) methodologies, which decompose an image into 
intensity slices and a slice into rectangular blocks, respectively.  
The main idea behind the ISR method is that we can consider a gray-scale image as the 
resultant of non-overlapped image slices, whose pixels have specific intensities. Based on 
this representation, we can decompose the original image into several slices, from which we 
can then reconstruct it, by applying fundamental mathematical operations.  
Based on the above image decomposition, the following definition can be derived: 
Definition 1: Slice of a gray-scale image, of a certain intensity fi, is the image with the same 
size and the same pixels of intensity fi as in the original one, while the rest of the pixels are 
considered to be black.  
As a result of Definition 1, we derive the following Lemma 1 and 2: 
Lemma 1: Any 8-bit gray-scale image can be decomposed into a maximum of 255 slices, 
where each slice has pixels of one intensity value and black.  
Lemma 2: The binary image as a special case of a gray-scale image consists of only one slice, 
the binary slice, where only the intensities of 255 and 0 are included. 
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Based on the ISR representation, the intensity function f(x,y) of a gray-scale image can be 
defined as an expansion of the intensity functions of the slices: 

 ( ) ( )
1
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i
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=∑  (8) 

where s is the number of slices (equal to the number of different intensity values) and fi(x,y) 
is the intensity function of the ith slice. In the case of a binary image s is 1 and thus 
f(x,y)=f1(x,y). 
In the general case of gray-scale images, each of the extracted slices can be considered as a 
two-level image and thus the IBR algorithm (Papakostas et al., 2008a, 2009d) can be applied 
directly, in order to decompose each slice into a number of non-overlapped blocks. 
By using the ISR representation scheme, the computation of the (n+m)th order orthogonal 
moment (1) of a gray-scale image f(x,y), can be performed according to the equations 
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where fi and i

nmM , i=1,2,…,s are the intensity functions of the slices and the corresponding 
(n+m)th order moments of the ith binary slice, respectively. 
The corresponding moment of a binary slice i

nmM  is the moment computed by considering a 
block representation of the image (Papakostas et al., 2008a, 2009d), as follows: 
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where 1, 2,,
j jb bx x and 1, 2,,

j jb by y are the coordinates of the block bj, with respect to the 
horizontal and vertical axes, respectively. 
A result of the above analysis (10) is the following Proposition 1: 
Proposition 1: The (n+m)th order discrete orthogonal moment of a gray-scale image is equal 
to the “intensity-weighted” sum of the same order discrete orthogonal moments of a 
number of binary slices. 
The SBS strategy has been applied successfully in computing the geometric moments 
(Papakostas et al., 2008a), the orthogonal moments (Papakostas et al., 2009d) and the DCT 
(Papakostas et al., 2008b, 2009e), by converging to high computation speeds in all the cases.  
The performance of the SBS methodology is expected to be higher for the case of the 
biomedical images, since the limited number of different intensities of these images, enables 
the construction of less intensity slices and therefore bigger homogenous rectangular blocks 
are extracted.  

4. Biomedical images – A special case 

As it has already been mentioned in the previous sections, the application of the SBS 
strategy can significantly increases the moments’ computation rate for the case of 
biomedical images, as compared with the “every-day” images. This is due to the fact that 
the biomedical images are “intensity limited” since the pixels’ intensities are concentrated 
mostly in a few intensity values. For example, let see the two “every-day” images Lena and 
Barbara as illustrated in the following Fig. 1, along with their corresponding histograms. 
These images having a content of general interest, present a more normally distributed 
pixel’s intensities into the intensity range [0-255]. 
On the contrary, in the case of biomedical images the intensities are concentrated in a narrower 
region of the intensity range. Figure 2, shows four sample images from three different kinds of 
biomedical images BRAINX, KNIX (MRI images), INCISIX (CT images) retrieved from 
(DICOM) and MIAS (X-ray images) (Suckling et al., 1994). All the images have 256x256 pixels 
size, while each dataset consists of 232 (BRAINIX), 135 (KNIX), 126 (INCISIX), 322 (MIAS) 
gray-scale images.  
It is noted that in the above histograms the score of the 0 intensity is omitted for 
representation purposes, since a lot of pixels have this intensity value, causing the covering 
of all the other intensity distributions. 
A careful study of the above histograms can lead to the deduction that the most pixels’ 
intensities are limited to a small fraction of the overall intensity range [0-255]. This means 
that the images’ content is concentrated in a few intensity slices. This fact seems to be 
relative to the images’ nature and constitutes an inherent property of their morphology. 
From (10) and (11) it is obvious that the performance of the SBS method is highly dependent 
on the image’s intensity distribution, meaning that images with less intensities and big 
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blocks enable the achievement of high moments’ computation rates, conditions that are 
satisfied by the biomedical images. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 1. “Every-day” images and their histograms: (a)–(b)Lena image and its histogram, 
(c)-(d) Barbara image and its histogram. 

5. Experimental study 

In order to investigate the performance of the SBS strategy in computing the biomedical 
image moments, a set of experiments have been arranged. For this reason five representative 
moment families the Geometric Moments (GMs), Legendre Moments (LMs), Tchebichef Moments 
(TMs), Krawtchouk Moments (KMs) and dual Hahn Moments (DHMs), are computed to the 
entire four datasets of Fig.2, up to a maximum order from 0 to 50 with step 5. The variance 
(σ) and mean (μ) values of the SBS strategy results are summarized in the following Table 1.  
 

 BRAINIX KNIX INCISIX MIAS 

Block 
Extraction 

Time(msecs) 
0.0234/1.1117 0.1189/1.8363 0.0874/1.9470 0.0442/0.9915 

Num. of 
Blocks 

1.7477E+07/28325 4.6382E+07/48291 2.3089E+06/56265 3.7785E+07/22053 

Num. of 
Intensity 

Slices 
740.1785/213.7845 305.7875/231.5407 136.3860/241.7169 220.6238/237.5280 

Table 1. Performance statistics (σ/μ) of applying SBS to the datasets. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Fig. 2. Biomedical images and their histograms: (a)-(b) BRAINIX sample image and its 
histogram, (c)-(d) KNIX sample image and its histogram, (e)-(f) INCISIX sample image and 
its histogram, (g)-(h) MIAS sample image and its histogram. 

www.intechopen.com



 Biomedical Engineering Trends in Electronics, Communications and Software 

 

456 

From the above results, it can be realized that the extraction of the homogenous block does 
not add a significant overhead to the entire computation procedure (small mean values with 
low variability), since it needs a little time to be executed. On the other hand, the high 
variance on the number of blocks and intensity slices, reveal a complicated dependency of 
the computation time on these two main factors, as far as the size of the blocks and the 
distribution of the blocks on the intensity slices are concerned.    
In order to study the timing performance of the SBS strategy, a comparison of its behaviour 
with that of the DS methodology, for the case of the four biomedical datasets has been taken 
place. Since, the SBS strategy can effectively be collaborated with other fast strategies (RS 
and PS) (Papakostas et al., 2010c), only a comparison with the DS methodology is needed to 
highlight its advantages. The mean values of the computation time in each case are 
illustrated in the following Table 2, 3 and 4. From these results it is obvious that the 
proposed method needs less time to compute the moments of any order, as compared to the 
DS one. This outperformance varies by the moment family, since each family needs a 
different time to compute its moments.   
 

Order Moment Families (BRAINIX Dataset) 

 GMs LMs TMs KMs DHMs 

 DS SBS DS SBS DS SBS DS SBS DS SBS 

0 15 9 4 2 23 14 198 125 11775 7207 
5 554 349 3452 2110 2352 1455 7663 4864 713050 436919 
10 1877 1185 14611 8929 15087 9348 28091 17814 2617380 1601577 
15 3955 2493 36663 22446 47139 29211 64455 40764 5716791 3497941 
20 6808 4289 72640 44454 108589 67167 119837 75595 10037777 6142626 
25 10441 6573 125502 76874 208647 128912 196699 123978 15590386 9541093 
30 14844 9339 200755 122885 355676 219857 298193 187821 22386172 13700734 
35 19980 12567 298700 183023 556002 343423 426135 268199 30487995 18667254 
40 25843 16266 423570 259605 825554 509665 584561 367523 39895856 24423207 
45 32487 20465 577570 354053 1168458 720985 774426 486405 50549799 30948566 
50 39909 25147 767700 470815 1598002 988073 1000782 627991 62496927 38267424 

Table 2. Timing performance (msecs) for the case of BRAINIX dataset. 
 

Order Moment Families (KNIX Dataset) 

 GMs LMs TMs KMs DHMs 

 DS SBS DS SBS DS SBS DS SBS DS SBS 

0 13 11 4 3 25 21 200 171 11762 9975 

5 508 443 3261 2746 2455 2082 7820 6697 708705 601321 

10 1720 1501 14204 11950 15517 13143 28786 24624 2598280 2204667 

15 3824 3346 36354 30605 48075 40717 65699 56164 5693130 4831323 

20 6623 5799 72407 60926 110151 93218 121549 103819 9999761 8486341 

25 10108 8851 125500 105649 209637 177333 199574 170328 15565313 13211695 

30 14233 12461 200015 168363 355661 300744 302023 257620 22380144 18996004 

35 19047 16675 296031 249264 555787 469906 431928 368258 30466446 25858760 

40 24590 21519 420693 354320 823488 696162 592365 504798 39823488 33801678 

45 30806 26959 574196 483628 1170698 989141 783864 667674 50473687 42842306 

50 37735 33021 759956 640210 1605292 1355880 1012044 861656 62430595 52992467 

Table 3. Timing performance (msecs) for the case of KNIX dataset. 
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Order Moment Families (INCISIX Dataset) 

 GMs LMs TMs KMs DHMs 

 DS SBS DS SBS DS SBS DS SBS DS SBS 

0 13 12 4 4 32 30 201 188 11922 11145 

5 496 475 3578 3338 3272 3050 7783 7275 722863 675832 

10 1685 1614 15295 14254 20771 19302 28372 26505 2660991 2487824 

15 3572 3422 38163 35545 67594 62776 70776 66143 5864036 5482582 

20 6188 5929 75896 70658 153916 143171 138969 129886 10284282 9615163 

25 9475 9078 131719 122599 266591 247966 235428 220038 15971863 14932422 

30 13464 12904 208231 193770 425457 395679 359150 335315 22919177 21427273 

35 18187 17431 322708 300266 671490 624761 522587 487417 31164529 29135577 

40 23591 22614 504327 469081 983175 914848 706469 658649 40724145 38072365 

45 29692 28472 726877 675879 1346551 1252703 913268 851339 51649763 48285960 

50 36558 35077 932814 867355 1816793 1690125 1156850 1078288 63889158 59727774 

Table 4. Timing performance (msecs) for the case of INCISIX dataset. 

 
Order Moment Families (MIAS Dataset) 

 GMs LMs TMs KMs DHMs 

 DS SBS DS SBS DS SBS DS SBS DS SBS 

0 13 6 4 2 24 11 197 89 11835 4809 
5  509 240 3333 1522 2398 1099 7856 3571 710597 290989 

10 1714  809 14452 6593 15442 7091 28732 13070 2609070 1067752 
15 3623 1712 36858 16863 48365 22174 65639 29875 5710608 2337811 
20 6272 2964 73305 33510 110365 50572 121797 55539 10042048 4113727 
25 9628 4550 127805 58579 209384 96111 199562 90988 15602271 6392757 
30 13653 6456 202445 92886 355803 163355 301687 137453 22409641 9184141 
35 18387 8697 300303 137786 557843 256311 431414 196660 30481570 1249575 
40 23830 1274 425532 195223 824113 378585 590462 269338 39851184 1634314 
45 29986 4187 581006 266380 1162588 534107 783667 357651 50506603 2072049 
50 36819 7432 770337 353421 1584871 728010 1012265 461968 62485283 2564557 

Table 5. Timing performance (msecs) for the case of MIAS dataset. 

A more descriptive way to present the performance of the SBS methodology is by 
computing the Computation Time Reduction (CTR), defined in the following equation (12) and 
depicted in Fig.3 for the case of all moment families and biomedical image datasets.  

 % 100
DS SBS

DS

Time Time
CTR

Time

−
− = ×  (12) 

The above diagrams clearly show that the reduction of the computation time by using the SBS 
strategy is significant for all the cases. More precisely, this reduction varies between 37%-50%, 
12%-25%,0%-7.5% and 50%-95% for the BRAINX, KNIX, INCISIX and MIAS datasets 
respectively. This diversity of the reduction owing to the different intensity distribution each 
image dataset presents, forming different number of blocks as shown in Table 1. 
Another important outcome from the above plots is that all the moment families give near 
the same reduction for the same dataset and moreover this reduction is quite stable as the 
moment order increases (DHMs constitutes an exception for the case of MIAs dataset, where 
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the reduction is significant higher (95%), for the high moment orders, as compared with the 
rest moment families (58%)).  
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3. Computation time reduction for the case of (a) BRAINIX, (b) KNIX, (c) INCISIX and 
(d) MIAS, datasets. 

6. Conclusion 

A morphology-driven methodology that improves the computation rates of the biomedical 
image moments was presented and analyzed in the previous sections. The usage of the 
introduced methodology can reduce the computation overhead by a significant factor 
depending on the image intensity morphology. This improvement is mainly achieved due to 
the biomedical images’ nature dealing with their intensities distribution, which boosts the 
performance of the proposed computation scheme.  
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