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1. Introduction

In this chapter, we present the power control techniques used in ad hoc networks.

Traditionally, the power control has been implemented and used effectively in cellular

networks. While the use of transmission power control in infrastructure based networks has

proven to work well and improve performance, the application of power control techniques

to ad hoc networks has many challenges and implementation complexities (Chauh & Zhang,

2006) (Basagni et al., 2004). The power control is of great significance in ad hoc networks

because of their organizational structure and lack of central management. With the

implementation of effective power control techniques, the ad hoc network can improve their

vital parameters, such as power consumption, interference distribution, throughput, routing,

connectivity, clustering, backbone management, and organization (Basagni et al., 2004).

We discuss several power control algorithms commonly used in ad hoc networks to get insight

of power control techniques and their effectiveness. Most of the algorithms are adapted from

cellular networks, modified accordingly, and proposed for ad hoc networks. Moreover, we

argue the enhancement in performance of ad hoc networks with the use of these power control

algorithms.

The power control requirements vary depending on the physical and network layer

implementation of ad hoc networks (Stüber, 2002). We show the application of the

prevailing power control algorithms to different physical layer models and discuss their

performance. The application to CDMA based networks is emphasized as these types of

networks have strict power control requirements and the performance is severely degraded

without appropriate power control. In cellular networks, the power control requirements are

stringent, especially in multiple access technologies. The appropriate allocation of power to

the transmitters facilitates interference control and saves energy.

The near-far effect starts to dominate as the transmission power levels are not properly

managed. The advantage of cellular networks over ad hoc networks is the presence of central

management, and as a consequence, the uplink power control can be achieved. This is in

contrast to ad hoc networks, which lack central management and most of the nodes are in

peer to peer configuration (Blogh & Hanzo, 2002).

In addition, transmit power control is a cross layer design problem affecting all layers of

the OSI model from physical layer to transport layer (Jia et al., 2005). In general, power

conservative protocols are divided into two main categories: transmitter power control

protocols and power management algorithms. Second class can be further divided into MAC

layer protocols and network layer protocols (Ilyas, 2003).
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2 Theory and Applications of Ad Hoc Networks

At the end of the chapter, we discuss the concept of joint power control and routing

in ad hoc networks. Power can be controlled in ad hoc networks by choosing optimal

routes. The existing routing protocols may be classified as, uniform, non-uniform, proactive,

reactive, hybrid, source, and non-source routing protocols (?Chaudhuri & Johnson, 2002). To

further explain joint power control and routing techniques, we discuss a Minimum Average

Transmission Power Routing (MATPR) technique (Cai et al., 2002), which implements a

power control routing protocol using the concept of blind multi-user detection to achieve

the task of minimum power consumption. The Power Aware Routing Optimization (PARO)

technique (Gomez et al., 2003), a protocol for the minimization of transmission power in ad

hoc networks, is based on the concept of node to node power conservation using intermediate

nodes, usually called redirectors. PARO is efficient in both static and dynamic environments

and is based on three main operations: overhearing, redirecting, and route maintenance.

2. Cellular networks

The wireless cellular networks require a fixed and well defined infrastructure. This type of

network infrastructure is suitable to efficiently manage the network operations. Generally

the network can be managed and operated by a central operations point. In the field, the

the physical parameters, such as transmission frequency, resource allocation, and power

control parameters are monitored and controlled by base station which have fixed location.

We focus on power control for these types of configurations in order to study and analyze

implementation to ad hoc networks.

Power control is a necessary feature in cellular communication networks with multiple access

technologies. Power control has many management features such as interference control,

energy saving, and connectivity (Almgren et al., 2009). In power control mechanism each

user transmits and receives at an appropriate energy level, i.e., the transmission powers are

controlled in such a way that the interference is minimized, while achieving sufficient quality

of service (Lee, 1991).

In the absence of power control, the near-far effect is introduced as all the mobile users

transmit at same power level or at a level which is not suitable at receivers in the network.

In other words, the transmitters close to the base station create interference to neighboring

users which are in the vicinity. In the absence of power control, the system capacity degrades

as compared to other wireless systems (Hanly & Tse, 1999). The power control also increases

the battery life by using a minimum required transmission power and is equally important in

both uplink and downlink transmissions. In uplink transmission, the near-far effect problem

is created as the signals of mobile propagate through different channels before reaching their

corresponding base station (Moradi et al., 2006). The purpose of power control is to allow all

mobile signals to be received with same power at the base station. Uplink power control

enhances capacity of networks (Gilhousen et al., 1991). On the other hand, in downlink

transmission, the near-far effect problem is not as important, because signals from the base

station reach the mobile station while propagating through same channel (Lee et al., 1995).

Uplink power control algorithms achieve their functions through open loop and closed loop

power control, which can be further divided into closed outer loop power control and closed

inner loop power control. In open loop power control, the mobile user adjusts its transmission

power based on the received signaling power from the base station (Chockalingam &Milstein,

1998). In closed-loop power control, based on the measurement of the link quality, the base
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Power Control in Ad Hoc Networks 3

station sends a power control command instructing the mobile to increase or decrease its

transmission power level and sets the target signal-to-interference ratio (SIR) to such a level

that sufficient quality of service is guaranteed (Rintamäki, 2002).

Power can be controlled in a centralized or distributed fashion. In centralized form a controller

manages the information of all the established connections and channel gains, and controls

the transmission power level (Grandh et al., 1993). While in the distributed form a controller

controls only one transmitter of a single connection. It controls transmission power based

on local information such as the signal to interference ratio and channel gains of the specific

connection. Distributed form of power control is easy to use in common practice because it

does not require extensive computational work (Zender, 1993).

Although we aim to discuss power control techniques for wireless ad hoc networks, it

is important to get insight for the similar techniques used in cellular networks. These

techniques were initially applied to cellular networks, and with the advent of ad hoc network

were adapted and modified to meet new requirements. Some of the basic power control

algorithms are presented below which are related to wireless cellular networks and their

implementations.

2.1 Power control as eigen value problem

In the era of 1980s the concept of Signal to Interference Ratio (SIR) balancing in power

control algorithms for cellular networks based on Code Division Multiple Access (CDMA)

and other technologies were used by researchers (Nettleton, 1980) (Nettleton & Alavi, 1983)

(Alavi & Nettleton, 1982). Initially, the power control problem was focused and treated as an

eigen value problem with a non negative matrix G and corresponding balance power vectors

pu and pd which satisfy the eigen value problem as

Gpu = [(1+ γu)/γu]pu (1)

and

GTpd = [(1+ γd)/γd]pd (2)

where γu and γd are desired uplink and downlink SIRs. By taking λ(G) as eigen value of G a

solution to the above problem is given as

[(1+ γu)/γu] = [(1+ γd)/γd]∈ λ(G) (3)

Another solution to SIR balancing problem is given as

γu = γd = 1/(ρ − 1) (4)

where spectral radius ρ is such that ρ > 1.

Iterative methods are very effective in solving these type of problems. One approach

(Foschini & Miljanic, 1993) to solve the above eigen value problem iteratively is by solving

liner algebraic equations, represented as AP = b, where P = [p1, p2, ....pN ]
T, and

P(k+ 1) = (1− A)P(k) + b (5)

This algorithm converges and the method use derivative named as surrogate derivative and

concludes that their algorithm is converging synchronously.
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4 Theory and Applications of Ad Hoc Networks

A generalized frame work for convergence is given in (Yates, 1995). By using proper power

control, the interference is eliminated and we get iteration as

pi(k+ 1) = γtar
i (k)pi(k)/γi(k) (6)

where pi is the power of ith user and γtar
i is the target SIR

2.2 Distributed power control techniques

The Distributed Power Control (DPC) algorithm is applied at individual nodes in the network

and the objective is to converge system power allocations to a suitable level (Grandhi et al.,

1994). This can be accomplished by using feedback power control (Ariyavisitakul, 1994). In

this method the power is adjusted in steps which may have fixed or variable size. It is seen

that the performance of a power control algorithm with fixed step size and variable step size

is almost the same. In addition, the higher power control rate can accommodate the effect of

fast fading.

With the implementation of distributed power control, the SIR of the system can be controlled

and managed to some extent. As a result, the outage probability of an individual link or a set

of links can be reduced or entirely eliminated. The implementation of this type of method

requires a distributed power control algorithm which reduces the outage probability to zero

by keeping SIR above threshold value (Zander, 1992).

In another approach, a smaller balancing systems can be constructed by turning the

transmitter of cells off so the outage probability is minimized. In some scenarios, if the value

of SIR for a mobile is less than threshold value then outage probability is reduced and mobile

is dropped from network (Wu, 1999). This improves the remaining network SIR.

An optimal SIR based distributed power control technique can be used by unconstrained and

constrained optimization (Qian & Gajic, 2003). The theme of this algorithm is to establish a

proportionality between transmission power and the error between the actual SIR and the

desired SIR. Difference of transmission power from time step k to k+ 1 is given as

∆Pi(k+ 1) = Pi(k+ 1)− Pi(k) (7)

The error between desired SIR and actual SIR is given as

ei(k) = γdes
i − γi (8)

Then the proposed algorithm is described as

∆Pi(k+ 1) = αi(k)ei(k) (9)

where αi(k) is the gain. Thus power allocation is given as

Pi(k+ 1) = Pi(k) + αi(k)(γ
des
i − γi) (10)

2.3 Discrete time dynamic optimal power control

In this method, the reverse link system information is used for power control. A cost function,

consisting of weighted sum of powers and some additional parameters is defined. An optimal

power control law is presented based on a cost function comprising ofweighted sum of power,

power update information, and SIR error. It is also assumed that there is no significant change
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Power Control in Ad Hoc Networks 5

in SIR fromone step to the next. For this purpose, a technique named as discrete time dynamic

optical control is implemented (Koskie & Gajic, 2003). The general cost function and sufficient

conditions for optimality are defined as

J[N] = g(x[N]) +
N−1

∑
K=0

L(x[k],u[k],k) (11)

and

(

Hxx Hxu

HT
xu Huu

)

> 0,Huu > 0 (12)

where J is the controller, L is the cost function and H is the hamiltonian. Some of the different

optimal controllers for three cost functions are

JI = (1/2)
K

∑
k=0

(qe2[k] + su2[k]) for cheap power cost (13)

JI I = (1/2)
K

∑
k=0

(qe2[k] + 2rp[k] + su2[k]) for linear power cost (14)

JI I I = (1/2)
K

∑
k=0

(qe2[k] + rp2[k] + su2[k]) for quadratic power cost (15)

This method considerably saves power and improve quality of service.

2.4 Linear and bilinear power control techniques

The optimization of power conservation results in improved SIR distribution for the entire

network. Although these optimizations are based on some estimates, as a consequence, errors

are introduced in the actual results (Gajic et al., 2004).

The power control techniques named as linear and additive power updates algorithm and

bilinear control algorithm are based on optimization of SIR error. It can be seen that mobile

power is updated by using a distributive linear control law, given as

Pi(k+ 1) = Pi(k) +Ui(k) (16)

where i= 1,2, ......n. Byminimizing SIR error and after other calculations the optimized power

updates can be obtained as

P∗
i (k+ 1) = P∗

i (k) +U∗
i (k) (17)

P∗
i (k) = γtar

i Ii[P−i
∗(k)]/gii (18)

Where P∗
i is the optimized power. In the second algorithm, bilinear control law is used for

update of power as

Pi(k+ 1) = Pi(k)Ui(k) (19)

where i = 1,2, .....n, and corresponding optimized power is same as in above case.
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6 Theory and Applications of Ad Hoc Networks

2.5 Power control technique based on relaxation method

This method is particularly useful in networks with multiple access technology, such as

CDMA. A relaxation method can be used in solving iterative power control techniques. Two

common techniques for iterative solution of power control problems can be used effectively

with relaxation method. Application to Jacobi iteration method and Gauss Siddel iteration

method for solution of power control problem, by introducing a relaxation parameter in these

techniques, is presented as a modified Jacobi iteration

Pi(k+ 1) = [1− β + β
γtar
i

γi(k)
]Pi(k) (20)

and modified Gauss Siddle iteration

Pi(k+ 1) = [1− β + β
γtar
i

γi(k,k+ 1)
]Pi(k) (21)

The Gauss Siddle iteration with relaxation parameter β is more efficient than Jacobi iteration

technique for solution of power control problem. The algorithms implemented by relaxation

method converge faster than simple distributed power control algorithm (Siddiqua et al.,

2007).

2.6 Distance based power control technique

The distance between transmitters and receivers can be estimated in a wireless networks. The

attenuation of the signals is proportional to the distance which they travel. Therefore, if the

information about the distances is know in real time or a prior, the power can be adjusted

efficiently (Nuaymi et al., 2001). If a base station is present, the transmit power of each mobile

station can be controlled by using distance information between base station and mobile

stations. This algorithm computes the transmitted power Pm of a mobile node m as

Pm = kxnamm (22)

where

xamm =

(

damm

rR , if damm > dmin
dmin
R , if damm ≤ dmin

)

(23)

where R is the base to mobile maximum distance and damm is the distance between mobile and

assigned base station.

2.7 Kalman filter based power control technique

In an uplink closed loop power control algorithm based on Kalman filter technique, the

controller or a base station estimates SIR in a closed loop system (Rohi et al., 2007). The SIR

can be estimated by any suitable method. The outage probability calculated by this method

is smaller as compared to others. According to algorithm details, the base station estimates

the SIR for a user and provide as input to Kalman predictor. Its output is compared with the

desired SIR and the difference is quantized by a PCM. The transmitted power of user is then

updated and SIR estimation is given as

SIR∗
n+1 = SIR∗

n + α∆SIR∗
n + ωn (24)
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Power Control in Ad Hoc Networks 7

and

∆SIR∗
n = SIR∗

n − SIR∗
n−1 (25)

The outage probability is given as P0 = Pr(SIRr < SIR0). Where SIRr is measured at base

station and SIR0 is the minimum value of SIR for achieving desired BER.

2.8 Power control technique based on linear quadratic control theory

The state-space formulation and linear quadratic control technique can be used to solve the

problem of power control by considering each mobile to base station link as an independent

subsystem described as

Si(n+ 1) = Si(n) +Vi(n) (26)

where

Si(n) = Pi(n)/Ii(n) (27)

and

Vi(n) = Ui(n)/Ii(n) (28)

and

Ii(n) =
Q

∑
j �=i

PiWij + ni/Gki (29)

The input to each subsystemUi(n) depends on the total interference produced by other users

plus the noise in the system and each Si(n) track is made equal to the threshold value of SIR

(Osery & Abdallah, 2000). For the discrete case the new state is given by

ς i(n+ 1) = ς i(n) + ei(n) (30)

where error ei(n) = Si(n)− γ∗. Each subsystem can now be expressed as a second-order linear

state-space system as

Xi(n+ 1) =

(

ei(n+ 1)
si(n+ 1)

)

=

(

1 1

0 1

)

Xi(n) +

(

0

1

)

Vi(n) (31)

The feedback controller Vi(n) = −[kςks]xi(n) + ksγ
∗, where [kςks] is the gain matrix which

are found by solving the Riccati equation. If the right feedback gains [kςks] is chosen, the

steady-state Si(n) will go to the threshold SIR. To find the optimum feedback control for the

state-space representation given above, the Linear Quadratic Control theory is used. After the

gain matrix [kςks] is found, the power control can be expressed as

Pi(n+ 1) = min[Pi,Si(n+ 1)Ii(n)] (32)

The method assures that the maximum transmission power of the mobile i will not be

exceeded. This method reaches a zero outage probability with less iterations than other

distributed power control methods. This approach was also found to be more effective in

handling a large number of mobile stations in the system.
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8 Theory and Applications of Ad Hoc Networks

2.9 Power control technique based on utility and pricing

The power control algorithm can be implemented in a distributed fashion based on utility

and pricing concepts (Shah et al., 1998). The efficiency of this protocol can be improved in low

BER and high SIR conditions. The formula of SIR of user j at base station k is given as

γ =
W

R

hjkpj

∑∀i �=j hikpi + σ2
k

(33)

In this method, by introducing a pricing factor the utility is maximized and as a result helps

in power control problem. A general utility function which is a monotonically increasing

function of SIR is given as

uj =
E

pj
R f (γ) (34)

Where f (γ) is a measure of efficiency of protocol. The power control problem is considered

as a cooperative power control game. The user maximizes its utility at equilibrium point

with maximum SIR value as Max ui(p1, p2, ......pN),∀i = 1,2, .....N, and f (γ∗) = γ∗ f ′(γ∗).
We can also consider a monotonically increasing pricing function, F = βpj , which is assumed

to depend upon a cost function, given as,

cij = −
∂ui
∂pj

pj (35)

and some inequalities,

p∗1 < p∗2 < .........< p∗N (36)

u∗1 > u∗2 > .........> u∗N (37)

c∗1 < c∗2 < .........< c∗N (38)

A distributed power control algorithm for a wireless cellular system based on sigmoid like

utility function can also be implemented (Xiao et al., 2003). In this algorithm, the power

control problem is considered as a multi player non-cooperative game. This algorithm is valid

for both voice and data users. The value of SIR for user i with transmission power P can be

written as

SIRi =
GiiPi

∑j �=iGijPj + σi
(39)

The main goal of this algorithm is to maximize the net utility by transmission power

adjustment and softening the hard SIR requirements as

NUi(SIRi,Pi) = Ui(SIRi)− Ci(Pi) (40)

where Ci(Pi) = αiPi is assumed cost function of power for the user i. The power control

problem is then defined as maxP≥iNUi. By solving above equation the optimal power for

user i is
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Power Control in Ad Hoc Networks 9

P̂i =
Ri

Gii
f−1
i (α

Ri

Gii
) =

Ri

Gii
ŜIRi (41)

After introducing the iteration factor the above equation can be written as

P̂i(K + 1) =
Ri(K)

Gii(K)
ŜIRi(K) = Pi(K)

ŜIRi(K)

SIRi(K)
(42)

Thus, by using utility based power control protocol, a user can control its power by decreasing

its SIR and even turn off transmission during heavily loaded network.

2.10 Opportunistic power control technique

In this distributed opportunistic power control algorithm, the transmission power depends

on channel gain by observing feedback from the receiver. The transmission rate is managed

by SIR at the receiver (Leung & Sung, 2006). The SIR of a terminal i in a cellular system

comprising of N mobile terminals can be written as γi =
Pi
Ri
, where Ri is the effective

interference to terminal i, and is given as

Ri =
∑j �=iGij + σi

Gii
(43)

and the power of the terminal i is upgraded as

Pn+1
i = Ii(R

n
i ,P

n
i ) (44)

The proposed opportunistic power control algorithm is given as

I
opp
i (Rn

i ) =
ς i
Rn
i

(45)

This algorithm converges and equation Pn
i R

n
i = ς i is satisfied. The transmission power of

terminal i varies directly with ς i.

2.11 Power control technique based on simple prediction Method

A simple prediction is sometimes useful for power control in wireless networks (Neto et al.,

2004). This approach can be used to implement a distributed power control algorithm, based

on simple prediction method, and by considering both path gain and SIR as time varying

functions using Taylor series. Discrete-time SINR is given as

γi(k) =
gi(k)pi(k)

Ii(k)
(46)

where pi(k) =
Ii(k)γi(k)

gi(k)
is known as necessary transmission power. The transmission power at

instant k+ 1 is given by using Taylor series as

pi(k+ 1) = γt
Îi(k+ 1)

ĝi(k+ 1)
= γt

2Ii(k)− Ii(k− 1)

2gi(k)− gi(k− 1)
(47)

497Power Control in Ad Hoc Networks

www.intechopen.com



10 Theory and Applications of Ad Hoc Networks

3. Ad hoc networks

Wireless networks without any fixed infrastructure are called ad hoc networks, also often

called as infrastructure less networks. Generally, ad hoc wireless networks are self-creating,

self-organizing, and self-administrating networks (Cayirci & Rong, 2009). Ad hoc network

consists of mobile nodes which communicate with each other through wireless medium

without any fixed infrastructure. Nodes in mobile ad-hoc network are free to move and

organize themselves in an arbitrary fashion. The nodes in a mobile ad hoc network (MANET)

must collaborate amongst themselves and each node may acts as a relay when required.

Mobile ad hoc networks have a fully decentralized topology and they are dynamically

changing (Jindal et al., 2004). Ad hoc networks are very popular in military applications for

many years. The concept of ad hoc networks was first used in commercial area in 1990s, at

the same time, the idea of a collection of mobile nodes was originated. In the mid of 1990s

some routing protocols were standardized by a commission known as Internet Engineering

Task Force (IETF). First standard IEEE802.11 for wireless network was introduced in 1997. The

latest standard is faster and applied for longer communication. Today, ad hoc networks are

attractive and challenging topic of research due to its tremendous applications (Perkins, 2001).

The most popular applications of ad hoc networks are temporary communication networks,

relief operations, operations in congested and small areas (Ramanathan & Redi, 2002).

Ad hoc networks havemany challenges which includes high error probability of transmission,

limited capacity, hidden and exposed terminals problem, interference, mobility, node failures,

topologymaintenance, self healing, node search, synchronization, transmission reliability, and

congestion control etc. (Goldsmith & Wicker, 2002).

3.1 Importance of power control in ad hoc networks

Unlike cellular networks, in ad hoc networks the power control is not trivial and is usually

managed in a distributed fashion. The nodes in the ad hoc network communicate with all

other nodes by sending packets to the neighboring nodes. The choice of an appropriate power

level for packets at a particular node is very crucial matter, as it indirectly effects the physical

layer, network layer, and transport layer of the system by determining the quality of received

signal, range of transmission and magnitude of interference respectively (Kawadia & Kumar,

2005). The nodes in ad hoc networks use different modes of operation such as transmit mode,

receive mode, idle mode and sleep mode. As a result, these different types of nodes have

different power consumption requirements (?).

Power consumption of ad hoc networks can be controlled either by controlling transmission

power or by choosing optimal routs for transmission. Transmit power control is a cross

layer design problem affecting all layers of the OSI model from physical layer to transport

layer (Jia et al., 2005). In general power conservative protocols can be divided into two main

categories as transmitter power control protocols and power management algorithms. Second

class can be further divided into MAC layer protocols and Network layer protocols (Ilyas,

2003). In the subsequent sections, we present the details of some of these protocols.

4. Power control techniques in ad hoc networks

The power control issue is one of the major challenges prevailing in ad hoc networks. There

are many power control algorithms presented by various authors and researchers. Some of
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Power Control in Ad Hoc Networks 11

these algorithms are discussed in this chapter. We begin by presenting algorithms which are

based on 802.11 medium access layer, then discuss some of the challenges faced by CDMA

networks as in these types of networks, power control is an essential component. In addition,

power control techniques at network layer are also presented. These power control methods

are jointly implemented with routing protocols and clustering configurations.

4.1 Simple modifications to 802.11

The 802.11 MAC standard is slightly modified and adapted in order to obtain a distributed

power control loop based algorithm which results in lower energy consumption and higher

throughput. In this algorithm, in contrast to the original IEEE 802.11 MAC protocol,

the transmissions occur at different power levels which are chosen by the algorithm

(Agarwal et al., 2001). The main purpose of the algorithm is to calculate a minimum transmit

power level for each node to successfully transmit to neighboring nodes. During transmission,

a ratio of the signal strength of the last received message to the minimum acceptable signal

strength at the node currently transmitting the message is included in the CTS and DATA

message headers. The receiver encodes the ratio of received signal strength of RTS message to

minimum acceptable signal strength in the header of CTS reply message.

The transmitter will also encode into it the ratio with respect to CTS upon transmitting the

DATA message. In this way RTS-CTS-DATA-ACK exchange provides an opportunity to both

receiver and transmitter to inform each other not only about their signals strength but also

about their transmit power levels. Each node maintains a small table with fields cf-pwr,

dr-pwr and a count down timer field. The field cf-pwr maintains an exponential weighted

average history of the received signal strength ratio received from each neighbor and the

dr-pwr field maintains an exponential weighted average (EWA) history of the cf-pwr field

at instances when packet loss occurred. Upon receiving a CTS or DATA message from a node

its cf-pwr field in the table is updated by decreasing the transmit power level by one, unless

the countdown timer shows zero value. The dr-pwr field in the table is updated by increasing

transmit power level by one for the timeout during wait for CTS, DATA or ACK message.

A power control scheme based on modifications to BASIC power control scheme (CTS-RTS

hand shake), can be implemented which saves power without degrading throughput

(Jung & Vaidya, 2002). In this algorithm just like BASIC power control scheme RTS and

CTS, messages are sent at maximum power level Pmax while DATA and ACK messages are

sent with minimum power level. The novelty of this protocol is that ACK-DATA collision

avoidance can bemade possible by transmitting DATAwith maximumpower level for a short

period so that nodes in CS zone can sense it. Pmax is achieved periodically during transmission

of DATA. The nodes which may interfere with ACK reception stops their transmission by

observing that system is busy and power is saved.

In another modification (Lin & Lau, 2003), a protocol for power control named as PCMAC is

implemented. This protocol overcomes the problems created by asymmetrical links efficiently.

The IEEE 802.11 standard protocol is modified by introducing an extra channel for power

control. In contrast to the BASIC scheme for power control, in PCMAC protocol RTS, CTS,

DATA, and ACK transmission occur at minimal necessary power level while the broadcast

packets at maximal power level. During reception of DATA, the receiver calculates the noise

power level by estimating the noise and signal strength. It then informs the neighboring

terminals with this information by using power control channel. Keeping in view this
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information the neighboring terminals take any suitable action. This algorithm replaces the

four way handshake by three way hand shake. Also, each terminal manages the three tables

named as sent table, receive table for data packet transmission, and a power history table

maintaining the record of necessary power level to reach other terminals. This necessary

power level is calculated as Pnec = RxthPT/E, Where E is the received signal strength, PT,

the power level at which a packet is transmitted, included in the RTS, CTS and broadcast

packet head.

4.2 Link collision avoidance technique

In Asymmetric Link Collision Avoidance (ALCA) based power control protocol the power

levels are managed by the announcement of the Current Transmission Duration Information

(CTDI) through N different carrier durations (CD) (Pires et al., 2005). This protocol overcomes

the problem of DATA, ACK frames collision in BASIC power control scheme due to

asymmetric links. ALCA is based on two major steps. Firstly the transmitting node computes

the CTDI and then allows the nodes in CS-Zone (CSZ) to recover required CTDI by choosing

an appropriate CD from N different CDs. Secondly, the terminal in the CSZ finds a suitable

extended inter frame space (EIFS) value based on CD extracted by the DATA carrier. This

protocol saves power considerably.

4.3 Power control dual channel protocol

The power control dual channel (PCDC) protocol permits simultaneous interference limited

transmissions in the neighboring area of receiver by modifying typical RTS-CTS handshake

process in mobile ad hoc networks (Muqattash & Krunz, 2004). This protocol gives much

importance to the network layer and MAC layer interaction as power control issue is

considered a joint MAC and network layer problem. TheMAC layer controls the transmission

power of route request (RREQ) packets and affects the network layer. As it is evident from the

name, there are two main channels in protocol - data and control channel. The control channel

has further two sub channels named as RTS-CTS channel and ACK channel. This protocol is

based on the following assumptions:

i. Channel gain remains stationary during transmission of DATA packets.

ii. The gain between two nodes remain same in both sides.

iii. Data and control packets observe same gain between a pair of nodes.

This protocol is distributed in nature and has advantages over other protocols because of

the availability of reserved channels. Although functioning of the protocol has relatively

stringent assumptions, a relatively smooth and better performance can be achieved under

normal channel conditions.

4.4 Power control MAC protocol

This protocol uses an access window and improves the network throughput at low

energy consumption by allowing multiple transmissions (Muqattash & Krunz, 2005). It is a

distributed, asynchronous and adaptive power control protocol and is named as POWMAC

which is based on single channel and single transceiver design. The novel features of

POWMAC are described as:
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i. Collision avoidance information (CAI) is included in control packets instead of simple

RTS/CTS control packets.

ii. Required transmission power is calculated at the intended receiver.

iii. Some CTS and Decide-to-Send (DTS) packets are transmitted towards the potentially

interfering terminals.

iv. An access window (AW) is introduced which stops the transmission of DATA packets for

a short period and reduces the collisions between control and data packets by informing

the transmitters about ensuing transmission.

4.5 Distributed correlative power control technique

The correlative power control can be described as a transmitting node that predicts the

interference by using a prediction filter after observing the interference around it. It also

includes this information with RTS message. The receiving node assigns a power to CTS

by observing this included predicted interference. The receiver repeats the whole procedure

and then sends CTS message along with predicted interference to transmitter. The transmitter

then assigns power to DATA by observing this predicted value of interference included in

CTS message. The same procedure is adopted before sending DATA and ACK messages

by transmitter and receiver (Alawieh et al., 2007). The minimum transmission power can be

calculated as Pmin = k/Gain, where the channel loss Gain can be measured as a ratio of the

received and transmitted powers Pr and Pt. The received signal power can be given as

Pr = Ptr
−4G2h210ℑ/10 (48)

Where r is the distance between two nodes, h is the height of the antenna, G is the antenna

gain and ℑ is shadowing component. The transmission power of CTS is given as

PCTS = max(Pmin,ζ × I/Gain) (49)

The transmission power of DATA is given as

PDATA = max(Pmin,ζ × I+/Gain) (50)

The transmission power of ACK is given as

PACK = max(Pmin,ζ × I++/Gain) (51)

Where I is the predicted interference plus noise power.

4.6 Adaptive power control techniques

The adaptive power control technique uses a two ray ground propagationmodel (Zhang et al.,

2005a). This adaptive power control algorithm is based on the relationship between

transmission powers of RTS-CTS, CTS-DATA, and DATA-ACK pairs using single channel

setup. The relationship between transmit power Pt and receive power Pr can be written as

Pr = Pt ∗ Gt ∗ Gr ∗ h
2
t ∗ h

2
r/d

4 (52)

where ht and hr are the heights, and Gt and Gr are the gains of transmitter and reviver’s

antenna respectively. The relationship between the transmissions powers of RTS/CTS/DATA

can be given as
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PRTS,r = PRTS,t ∗ Gt ∗ Gr ∗ h
4/d4 (53)

PDATA,r = PDATA,t ∗ Gt ∗ Gr ∗ h
4/d4 (54)

PCTS,r = PCTS,t ∗ Gt ∗ Gr ∗ h
4/d4 (55)

where d is the distance between two nodes, h is the antenna height and P is the power. A

successful transmission between receiver and transmitter can take place by satisfying the

following necessary conditions:

Pi,t ∗ Pj,t ≥ Pw(i, j) (56)

and

Pi,t ≥ k/g(t,r) (57)

where g(t,r) is the ratio of attenuation gains between transmitter Pi,t and receiver Pi,r, Pw is the

cross coefficient of i and j.

In a similar type of protocol the delivery of packets is based on a delivery curve function,

which shows a relationship between successfully delivered packet and total transmitted

packets (Zhang et al., 2005b). This is also an adaptive power control protocol assuming the

successive correlations between the transmission powers of four way hand shake frame for

improvement of system throughput and energy saving. It helps the protocol to choose the

best working profile and packet correlations are considered in protocol operation. In this

protocol transmission power of RTS and CTS are considered same while those of DATA and

ACK are similar. The main goal of this protocol is to find minimum powers PRTS and PDATA

for successive communication.

4.7 Neighbor detection power control technique

According to this protocol a node initially increases its transmission power until it detects

some neighbors around it and again adjusts its power according to the node degree

(Abasgholi et al., 2008). After this step, any increase in transmission power decreases the

number of one hop neighbors. The umber of neighbors increases with the decrease in

transmission power which ultimately enhance the network throughput. The transmission

power is varied between a minimum and a maximum value. The change in power can be

calculated as

Pt = Pc − 5 log(dt/dc) (58)

where Pt and Pc are the targeted and current transmission powers. dt and dc are targeted and

current node degrees which can be calculate as dc = D.π.r2c and dt = D.π.r2t

4.8 Decoupled adaptive power control technique

The objective of these class of protocols is to strictly prohibit the hidden terminals creation

(Ho & Liew, 2006). The two protocols named as Decoupled Adaptive Power Control (DAPC)

and Progressive Uniformly Scaled Power Control (PUSPC), focus on the hidden terminal

avoidance and minimizing mutual interference for enhancing overall network capacity. In the

502 Mobile Ad-Hoc Networks: Applications

www.intechopen.com



Power Control in Ad Hoc Networks 15

first DAPC protocol each node continuously monitors its surrounding, adjust their powers

in a disturbed manner through various iterations by collecting information from neighboring

nodes and create hindrance to new hidden terminals and interfering links. The second PUSPC

protocol overcomes the deficiencies in DAPC. This protocol deals with two sets named as

power control set and finished set. In the beginning of operations all nodes lie in the power

control set with same power and they start reducing power through each iteration and after

some time few nodes shift to finished set with different powers.

4.9 Autonomous power control technique

This protocol allows nodes to send DATA/ACK packets with power level calculated by

keeping in view the distance between transmitter and receiver and RTS/CTS packets with

an adjustable power (Chen et al., 2006). This protocol is based on autonomous power control

MAC protocol (APCMP). A dynamic network structure is proposed where the main goal

of protocol is to reduce energy consumption and improve network efficiency. The protocol

describes the initial adjustment of a power level for DATA/ACK messages transmission

depending upon the average distance between a transmitter and its neighbors at that time.

The power level for RTS/CTS messages is adjusted in proportionality to the above adjusted

power for DATA/ACK messages. Usually transmission power level for RTS/CTS is taken a

little grater than transmission power for DATA/ACK. The distance between a transmitter and

receiver can be estimated as

d= k

√

p∗RTS/CTSα

prec
(59)

where k is the coefficient, pRTS/CTS is the transmitting power level for the RTS/CTS packet,

prec is the received signal power level, and α is a constant which depends on the antenna

gain, system loss, and wavelength. The average estimated distance from transmitter to n

neighboring nodes is calculated as

d̄ = 1/n
n

∑
i=1

di (60)

where di is the estimated distance from the transmitter to the ith neighbor. The transmission

power level for DATA/ACK can be calculated as

pDATA/ACK = d̄k × Rxthresh (61)

where Rxthresh is the minimum necessary received signal strength. The transmission power

level for RTS/CTS can be calculated as

pRTS/CTS = pDATA/ACK × α (62)

Where α is a proportionality parameter such that α > 1.

4.10 Load sensitive power control technique

In these family of protocols, the power is optimized by keeping in view the load, number

of stations and grid area of the network (Park & Sivakumar, 2002). The algorithm denies the

concept that throughput can always be maximized with minimum transmission power. We
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present two of these types of transmission control protocols, namely - the Common Power

Control (CPC) and Independent Power Control (IPC).

In CPC all nodes prefer to use the same transmission power while in IPC the nodes are

independent to use different transmission powers. The operation of CPC and IPC is initially

based on the continuous monitoring of contention time (CT). Each node in the network

maintains two threshold values for CT, upper threshold and lower threshold by observing

its CT values continuously. A node increase its transmission power if its measured CT lies

above the upper bound and decrease its transmission power if its measured CT lies below

the lower bound, while it maintains transmission power if its measured CT lies between two

bounds. In all cases the main purpose of protocol is to maximize throughput per low energy

consumption.

5. Power control for CDMA networks

The ad hoc networks which employ CDMA technology benefit the most from power control.

While the use of transmission power control in these types of networks benefit in saving

overall consumption for the entire network, the power control algorithms substantially

increase the throughput of CDMA networks. In the presence of uncontrolled interference, the

performance of CDMA networks degrades considerably. The peer to peer nature of ad hoc

networks prohibits the nodes to achieve perfect power control, therefore, CDMA networks

with all their benefits fail to performwell. In this section we discuss power control algorithms

used in CDMA based ad hoc networks.

5.1 Single busy tone power control technique

This protocol utilizes three channels named as Data Channel (DCH), Control Channel (CCH),

and a Busy Tone (BT) separated by use of frequency (Zhou et al., 2005). This protocol, known

as single busy Tone CDMA (SBTCDMA), is based on the combined action of RTS/CTS hand

shake, single busy tone, and power control utilization. This protocol achieves better channel

gain at the cost of less energy consumption after successful solution of hidden node problem.

All RTS/CTS packets are transmitted through CCH with common code for all nodes and

DATA packets are transmitted in DCH with separate code for each node.

In this protocol initially each nodemaintains network allocation vector (NAV) and a CTS table.

The neighbors of a transmitter update their NAV regularly. Initially if CCH is idle for a short

period, a node i check its NAV and finding it zero starts operation by a sending an RTS packet

to another node j. After receiving RTS successfully the receiver j waits for a short period and

then sends the CTS packet to transmitter.

After sending RTS, it immediately turn on busy tone signal and wait for DATA packet. The

data packet will be sent by node i after successful completion of RTS/CTS packets exchange

using DCH and in the mean time it also updates its NAV also. All other neighbors of node i

except j remain silent by updating their NAV only and save power.

5.2 Dual reservation power control technique

The dual reservation power control technique a CDMA based multi channel MAC protocol

which utilizes three common code channels (Min et al., 2007). The system configuration

consists of a broadcast channel and data channel which considerably improves the network
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throughput and reduces near far interference. The main features of the protocol are described

as,

i. Code synchronization is done through RTS/CTS handshake by using common code

channel.

ii. Dual reservation scheme is presented through ACK piggybacking using data channel.

iii. Near-Far interference is reduced dynamically.

iv. Broadcast messages are supported with busy tone.

According to the protocol each node in the network maintains three lists regularly, available

code list (ACL), occupied code list (OCL) and forbidden code list (FCL). Initially a node j

transmit RTS message along with ACL on common code channel with Pmax to node j. Upon

receiving RTS the node i, after comparing node its ACL, and calculating Pmin sends a CTS

message on common code channel including selected data channel and Pmin. Then node i

sends data on Pmin and after receiving data successfully the receiving node sends an ACK

message on data channel otherwise a piggybacking ACK is used. When a node is busy

in transmission it broadcast a message as a busy tone on channel by just switching on its

transceiver. This process decreases the collision probability and data is transmitted with less

power.

A similar protocol (Muqattash & Krunz, 2003), also based on CDMA, efficiently solves the

near-far effect problem and allow simultaneous transmission in the vicinity of receiver. This

Protocol operates at two frequency channels namely Data and Control channels. Available

bandwidth, split into two frequency bands, is for simultaneous transmission to take place.

All the nodes on control channel use the common code while all nodes on data channel

use different codes. The RTS/CTS hand shake takes place through control channel and

all interfering nodes are allowed to transmit concurrently. In addition, the transmitter and

receiver must agree on spreading code and transmission power. The minimum required

transmit power can be given as

PCDMA =
ξmaxµ∗Pthermald

n

k
(63)

where Pthermal is the thermal noise power, ξmax is maximum planned noise rise, and µ∗ is the

ratio needed to achieve the target bit error rate at that receiver. The minimum transmission

power at which the data is transmitted and decoded correctly, is given as

Pmin =
µ∗(Pthermal + PMAI)

G
(64)

where G is the channel gain.

5.3 Power control technique using channel access method

In this algorithm a distributed power control algorithm along with channel access protocol

for CDMA based ad hoc networks to maintain the quality of service is used (Sun et al., 2003).

Dynamic range of power for all terminals is considered as the ratio of maximum transmission

power and minimum transmission power. The ith link’s transmission power in a distributed

power control algorithm proposed with adaptive protection margin can be calculated as
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Pi(k+ 1) =
δγi

SIRi(k)
× Pi(k) = δ × [γi × (∑

j �=i

GijPj(k) + ηi)/Gii] (65)

Where protection factor δ, that provides a protectionmargin for active links, should be greater

than one as δ > 1. This increases overall network performance.

5.4 Joint distributed power control and routing protocol

In joint distributed power control and routing protocol, a joint distributed power control

and routing protocol for CDMA based ad hoc networks keeping in view the quality

of service aspect obtained under low energy and acceptable BER constraints is used

(Comaniciu & Poor, 2003). All retransmission are statistically independent of one another and

a packet transmission from a node wait for the successful reception from previous transmitter.

Probability of correct packet reception depends on SIR, described as

P(γ) = (1− BER)M (66)

where M is the packet length. A link can operate on minimum power if received SIR is equal

to the optimal SIR γ∗, that can be achieved by the solution of following equation

γ
dP̃c(γ)

dγ
− P̃c(γ) = 0 (67)

As minimum SIR= γ∗, this gives for a link (i, j) the value of Pi as

min

r(i, j)

hijPi
1
L ∑

N
k �=i,k �=jh(k,j)Pk + σ2

= γ∗ (68)

The solution is possible by using iterative power control algorithm as

Pi(n+ 1) = T(P(n)) (69)

If SIR< γ∗, then the system consumemore energy as many retransmission occur and if SIR>

γ∗, then the energy is consumed to overcome the surplus gain. Therefore, a better quality of

service the necessary condition achieved by power control is given as

SIR(i,j) ≥ γ∗,∀(i, j) (70)

where (i, j) = 1,2, .....N. All new entries will follow the above necessary condition for active

transmission and the power vectors converge to minimum power solution. The algorithm

operation stops if further decrease in transmission power is not possible.

6. Joint power control, routing, and clustering

In joint power control, routing, and clustering, the algorithm is implemented at network layer.

The routes are carefully chosen such that the impact of interference or power consumption

is minimum. The information at the network layer is accessed from the physical layer

parameters, thus making it a cross layer system. Information exchange between layers

contribute in making routing decisions.

We present some protocols used for power control with joint power control and routing or

joint power control and clustering techniques.
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6.1 Dynamic forwarding nodes

We can jointly address the transmission power assignment problem by using the concept

of power control, routing and clustering. In this protocol we propose a mechanism which

is based on careful selection of dynamic forwarding nodes for the enhancement of system

throughput while keeping the energy consumption low (Yener & Kishore, 2004). A node i

with an intended receiver j update its transmission power with the knowledge of received

SIR and channel gain as

Pi(n+ 1) =
γ∗

hij
(γj(n)−

Pi(n)hij
N

) (71)

where γj is the received interference, and γ∗ is the target SIR. Now two clusters of nodes are

considered say C1 has at least L + 2 nodes and C2 having at least one node. If a node in C1,

say A wants to communicate with a node in C2 say X and in the mean time a node B in C1

also wants to communicate with another node D in the same cluster C1, then there are two

possibilities. In the first option node A transmit to node X directly and transmission between

other two nodes of C1 can also take place while in the second option the node A transmit to X

by using L− 1 hops in C1 to another node E in C1 and then E will transmit to X. During the

transmission of nodes E and X the transmission between B and D nodes can also take place.

Here node E is considered as forwarding node. The necessary transmission powers levels for

node A and node B in the first option are calculated as

PAX =
Nσ2(d4AX(K− 1) + d4BD)

K− 2
(72)

PBD =
Nσ2(d4BD(K− 1) + d4AX)

K− 2
(73)

where dAX is the distance between node A and X, dBD is the distance between node B and D,

and K = N/γ∗ + 1.

The total transmission power for first option is therefore calculated as

P1 = PAX + PBD =
Nσ2

K − 2
(d4AX + d4BD) (74)

Similarly the total power for second option is calculated as

P2 =
Nσ2

K − 2
(d4EX + d4BD +

K− 2

K− 1 ∑
i=E1,E2,....EL−1

d4i,i+1) (75)

6.2 Power control by clustering in CDMA ad hoc networks

While clustering in ad hoc networks has many benefits, this approach can significantly

improve power consumption and performance (Hasan et al., 2003). A clustered system for ad

hoc networks based on combination of a broadcast channel CSMA and two CDMAuplink and

downlink channels using the joint concept of successive interference cancellation (SIC), user

ordering, and open loop power control can improve network throughput. CSMA also helps in

the cluster management, routing and mobility control. All nodes in the network communicate

through cluster heads using above described three channels. The received power Pr at the

cluster head can be written as
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Pr = ρ2 ∗ 10−ζ/10P̄
Pt
γα

(76)

where P̄ is the constant revived power at a distance of one meter, ζ is the shadowing factor, α

is the path loss exponent, and ρ is the fading amplitude.

The system describes two types of communications, intra cluster and inter cluster. In first

type, all communication is done through cluster heads which are usually one hop or two hops

away from its member nodes and maintain three tables namely routing table, membership

table and a forwarding table. The communications from nodes to cluster head take place by

RTS/CTS/ACK handshake on CSMA channel.

In the second type of communication the nodes transmit packets to their respective cluster

head and then it is responsible for successful transmission to nearby cluster head using

gateway nodes. Ultimately the packet reached the cluster head of the destination node.

6.3 Common power control technique

In this protocol a distributed, asynchronous and adaptive method named as COMPOW is

based on the concept, that all homogeneously dispersed nodes in the network use a common

necessary power level (Narayanaswamy et al., 2000). It is important to note that link between

transmitter and receiver should be bidirectional. As all receivers, even using common power

level may not have common SINR, so the transmission powers of all nodes should be kept

small so that nodes can have nearly equal SINR value and also create less interference to

others. Moreover it is also proved by the proposed protocol, that power per route can be

saved and MAC contention is minimized on using low power levels at all nodes. A routing

table is maintained for each power level by sending and receiving HELLO messages at that

power level. The number of entries in the table for a power level describe the number of

nodes that can access the specific power level in minimum hops. The minimum power level

whose routing table has the same number of entries as the routing table with maximumpower

level, is known as optimum power level. The routing table of this optimum power level is

considered as master routing table. This protocol can easily be implemented with OSI model.

6.4 Joint power control and clustering techniques

According to this protocol the node clusters are made on the basis of transmit power level

without taking into consideration their physical location (Kawadia & Kumar, 2003). The joint

problem of power control and clustering can be effectively used for a non homogeneously

build network. There are three protocols namely CLUSTERPOW for network capacity

enhancement, tunneled CLUSTERPOW for optimization achievement, and implementation

of MINPOW for optimal routing.

A high transmit power level is required for communication between two separate clusters but

intra cluster communication can be done at low transmission power level with multiple hops.

Alongwith source node the CLUSTERPOWprotocol is implemented at each node from source

to destination route. The dynamic routing daemons are proposed for each power level which

maintains their own routing table by communicating with their daemons of same power level

on other nodes by sending HELLO messages at specific power level. The choice of next hop

depends upon the minimum necessary power routing table. This protocol provides loop free

routes for minimum power assignment.
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The second protocol, tunneled CLUSTERPOW is an advance form of CLUSTERPOW

protocol which is responsible for the successful transmission of packets to its destination

by transmitting packet at small power level hop by hop instead of direct transmission to

destination. In this protocol a dynamic tunneling mechanism is required for each packet

delivery, which makes it more complicated than CLUSTERPOW protocol.

These protocols play an important role in network capacity maximization. Tominimize power

consumption during communication MINPOW protocol based on the concept of link cost is

proposed and implemented at network layer by sending HELLO packets with each power

level. The HELLOpackets with maximumpower level have routing informationwhile others,

considered as beacons, have knowledge of total consumed power, packet transmission power

and sequence number of the HELLO packets. Transmission power level can be calculated by

knowing receiver power level and distance between receiver and transmitter. Total consumed

power can be calculated as

Ptotal = Prec + Ptrans(p) (77)

where p is the transmission power level of a beacon packet. Link cost is calculated as

LinkCost= minbeacons(Ptotal) + Prec (78)

6.5 Joint power control and routing in ad hoc networks

Power can be controlled in ad hoc networks by choosing optimal routes. The choice of existing

routes depends on a complicated costmetric. This costmetric takes in to account theminimum

energy requirements of a particular route, while the routing protocol manages the power

consumption for the entire network. The existing routing protocols may be classified as,

uniform, non uniform, proactive, reactive, hybrid, source, and non source routing protocols

(Kadu & Chaudhari, 2002).

6.6 Minimum average transmission power routing technique

In minimum average transmission power routing technique, a power control routing protocol

named as minimum average transmission power routing (MATPR) is used (Cai et al., 2002).

This protocol is used for CDMA based ad hoc networks using the concept of blind multi-user

detection to achieve the task of minimum power consumption. It is applicable to both real

time services and data services. Multi-user interference, appropriate coding scheme and

acknowledgment scheme is jointly considered for the protocol design.

In normal data service, if a node say B receives a packet with errors from another node say A, it

will transmit the same packet with error to A and then Awill retransmit the packet to B. Now

upon successful reception of error free packet B will send a correct received message to A to

inform other party. This explains that packet transmission latency from source to destination

does not matter in normal data service. The average power for successful transmission of

packet can be calculated as Pav =
αPi

(1−Pe)
. In real time service it has great importance as BER

is very low. Thus the error correction takes place through error correcting codes rather than

retransmission process. MATPR protocol acts as proactive, where as the blind detector is

installed at receiving node.
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6.7 Power aware routing optimization technique

Power aware routing optimization techniques are implemented at network layer. The Power

Aware Routing Protocol (PARO) uses the same principle of power aware routing optimization

(Gomez et al., 2003). This protocol minimizes transmission power in ad hoc networks and is

based on the concept of node to node power conservation using intermediate nodes usually

called as redirectors. The redirectors play their role in transmission even if the source and

destination pairs are in direct transmission range. The increasing number of redirectors

between source and destination lowers the transmission power of packets. According to the

PARO a node keeps its transmitter on for L/C seconds during transmission where L and C

are length of frame and speed of channel respectively. PARO is efficient in both static and

dynamic environments. This protocol is based on three main operations namely overhearing,

redirecting, and route maintenance.

7. Conclusion

In this chapter we presented the power control techniques used in ad hoc networks.

Traditionally, the power control has been implemented and used effectively in cellular

networks. While the use of transmission power control in infrastructure based networks has

proven to workwell and improve performance, the application of power control techniques to

ad hoc networks has many challenges and implementation complexities. We presented power

control algorithms which are applicable to ad hoc networks. The power control is of great

significance in ad hoc networks because of their organizational structure and lack of central

management. It is seen that with the implementation of efficient power control techniques, ad

hoc networks can improve their vital parameters, such as power consumption, interference

distribution, throughput, routing, connectivity, clustering, backbone management, and

organization.
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