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1. Introduction

The objective of text mining is to automatically identify, extract, manage, integrate and exploit
the information in texts (Ananiadou & McNaught, 2006). In order to understand biological
texts, it is not enough to know what the extracted proteins are. Also the interactions between
them should be extracted. Therefore, extracting relations between proteins is an important
and more advanced text mining task in biological domain.
The study of the protein-protein interactions (PPI) is one of the most pressing problems.
Characterizing protein interaction pairs is crucial to understand not only the functional role
of individual proteins but also the organization of entire biological processes (Krallinger et al.,
2007). Several approaches have been applied to PPI pair extraction including purely statistical
co-occurrence approaches (De Bruijn & Martin, 2002; Craven, 1999), pattern-matching
approaches (Baumgartner Jr. et al., 2007; Ray & Craven, 2001; Hakenberg et al., 2008) and
machine learning approaches such as maximum entropy (Grover et al., 2007) and support
vector machines (SVMs) (Airola et al., 2008; Bunescu et al., 2005; Zelenko et al., 2003).
In this chapter, we propose a Protein-Protein Interaction Pair Extractor (PPIEor) to extract PPI
pairs from the biological literature. PPIEor is essentially a SVM for binary classification, which
uses a linear kernel and a rich and informative set of features based on linguistic analysis,
contextual words, interaction words, interaction patterns, specific domain information and so
forth.

2. Methods

2.1 System description

Fig. 1 shows the overall architecture of PPIEor consisting of a number of components
including a preprocessor, a feature extractor and feature selector, a SVM-based classifier and
a post-processor.
PPIEor’s input data are the biological articles annotated with protein names. Before extracting
the features, the inputs have to go first through the preprocessor which includes a clause parsing
module, a coreference resolution module and a pair extraction module. Then these processed
articles and the extracted candidate PPI pairs together with external interaction databases

25

www.intechopen.com



2 Biomedical Engineering, Trends, Researches and Technologies

Fig. 1. The overall architecture of the Protein-Protein Interaction Pair Extractor (PPIEor)

like MINT1 and IntAct2 are used by the feature extractor and the feature selector to extract a
rich and informative set of features. Next, the binary SVM classifier, the core component of
PPIEor, is used to predict whether the candidate PPI pairs are correct or not. Finally, the
output from the SVM classifier is combined with the self-interaction protein pairs generated
by the post-processor to produce the final PPI pairs.

2.2 Data set

The data set used to train, tune and evaluate PPIEor consists of articles that have Structured
Digital Abstracts (SDAs) (Ceol et al., 2008) from the journal, FEBS Letters3. More specifically,
the total of 61 articles taken from DOI:10.1016/j.febslet.2008.01.064 to DOI:10.1016/j.febslet.
2008.11.009 are used as the training set. And the total of 39 articles with SDAs in FEBS Letters
(from DOI:10.1016/j.febslet.2008.11.022 to DOI:10.1016/j.febslet .2009.03.013) are used as the
test set. The SDA is an extension of the regular journal article abstract containing the PPI
relations between the protein pairs mentioned in the article. Making use of these SDAs, we
can obtain the PPI pairs of the articles in the data set. We denote this data set as DataFEBS and
it contains 228 unique PPI pairs in the training set and 123 unique PPI pairs in the test set.

2.3 Protein name annotation

As it can be seen in Fig. 1, PPIEor’s input data are the articles annotated with protein names.
Because the interactions only exist between proteins, protein names have to be recognized
before we can extract the PPI pairs. Therefore, after building DataFEBS, the next step is to
annotate DataFEBS with protein names.

1http://mint.bio.uniroma2.it/mint/ [accessed on 20/03/2010]
2http://www.ebi.ac.uk/intact/ [accessed on 20/03/2010]
3http://www.febsletters.org/ [accessed on 20/03/2010]
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In FEBS Letters, protein names are represented by database identifiers (database ID) of
UniProt4. Therefore, we manually annotated articles with golden standard protein names which
were obtained from the Structured Digital Abstracts (SDAs) of the selected articles. In this way
we focus solely on the performance of PPIEor as a standalone system and avoid the errors
derived from protein name recognition.

2.4 Preprocessor

Before passing on the input articles that have been annotated with the protein names to the
SVM classifier in order to extract the features, they will first go through the preprocessor
containing 1) a clause parsing module to split complex sentences into simpler units, 2) a
coreference resolution module to find which protein a pronoun refers to, and 3) a pair
extraction module to distill the candidate PPI pairs for the SVM classifier. These components
are discussed in detail below. The sentence SFEBS

Our previous results revealed that Q9HBI1 associates with PIX/ARHG
EF6/Cool2 (Q8K4I3) at the tips of lamellipodia of motile cells and transmits
integrin-O55222 signals which activate P60766 and P63001, small Rho GTPases.

taken from the input article DOI:10.1016/j.febslet.2008.01.064 in FEBS Letters and annotated
with the UniProt identifiers Q9HBI1, Q8K4I3, O55222, P60766 and P63001 is used to illustrate
the preprocessing steps.

2.4.1 Clause parsing

Sometimes compound sentences are too complex to analyze and may induce too much
irrelevant and noisy information. Therefore instead of using the whole sentence, we separate
it into several unit structures called clauses (Ejerbed, 1988). Based on these simpler structures,
interaction relations can be extracted more easily and more efficiently because the candidate
PPI pair extraction can be limited to the pairs appearing within the same clause rather than in
the same whole sentence. Hence the amount of the false PPI pairs can be reduced a lot. So we
propose to use the clause-based representation for the input articles in PPIEor.
We design the clause parsing module based on a widely used statistical syntactic parser,
nlparser (Charniak & Johnson, 2005), to split each compound sentence into a main sentence
and several clauses. Charniak & Johnson (2005) reported that the nlparser could obtain a
Fβ=1 measure of 91.0 on the sentences of length 100 or less and it could produce multiple-best
parses. Here we use the first-best parses to decompose the sentences. However, producing
a full parse tree sometimes fails due to grammatical inaccuracies. Hence, when the nlparser
fails to output a parse tree, we use the original sentence instead.
After this step, the sentence SFEBS is split into 1 main sentence SMAIN and 2 clauses SCLAUSE1

and SCLAUSE2:

– SMAIN : Our previous results revealed that

– SCLAUSE1: Q9HBI1 associates with PIX/ARHGEF6/Cool2 (Q8K4I3) at the tips of
lamellipodia of motile cells and transmits integrin-O55222 signals

– SCLAUSE2: which activate P60766 and P63001, small Rho GTPases.

4http://www.uniprot.org/ [accessed on 20/03/2010]
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2.4.2 Coreference resolution

After splitting the sentences into clauses another essential step needs to be done, i.e.
coreference resolution. For example, in SCLAUSE2 “which” refers to “O55222”. Now suppose
there are 2 PPI pairs in SCLAUSE2: “O55222:P60766” and “O55222:P63001”. Without using
the coreference resolution module, these two pairs can never be retrieved. Unfortunately,
because of the ambiguity of natural language in general, it is difficult to get full coreference
resolution in practice. As a result, we restrict ourselves to a simple rule-based coreference
resolution module that only resolves the Wh-pronominal coreference. Wh-pronouns refer to
WHO, WHICH, THAT, WHAT and WHOSE. Detailed information about Wh-pronouns can
be found in Santorini (1991).
Because the first word “which” in SCLAUSE2 refers to “integrin-O55222 signals”, the
coreference resolution module replaces “which” with “integrin-O55222 signals”. Hence,
SMAIN and SCLAUSE1 remain unchanged and the clause SCLAUSE2 becomes:

– SCLAUSE2: integrin-O55222 signals activate P60766 and P63001, small Rho GTPases.

2.4.3 Candidate pair extraction

After preprocessing, we are ready to extract the candidate PPI pairs from the clause-based
articles. First those clauses that do not contain any database ID or contain only 1 database
ID are ignored. Then for each remaining clause, every two different database IDs are selected
to compose one candidate PPI pair. If both database IDs occur only once in that clause, the
choice of the candidate PPI pair is straightforward. However, in case one or both database IDs
appear more than once in that clause, the nearest two database IDs are chosen to compose a
candidate PPI pair.
Therefore, the input sentence SFEBS is finally transformed into a set of pair-based clauses from
which the SVM classifier will extract the features based on which it will predict whether the
candidate PPI pairs are correct or not. For example, in SCLAUSE1, the pair-based clauses are

– Q9HBI1:Q8K4I3 Q9HBI1 associates with PIX/ARHGEF6/Cool2 (Q8K4I3) at the tips of
lamellipodia of motile cells and transmits integrin-O55222 signals

– Q9HBI1:O55222 Q9HBI1 associates with PIX/ARHGEF6/Cool2 (Q8K4I3) at the tips of
lamellipodia of motile cells and transmits integrin-O55222 signals

– Q8K4I3:O55222 Q9HBI1 associates with PIX/ARHGEF6/Cool2 (Q8K4I3) at the tips of
lamellipodia of motile cells and transmits integrin-O55222 signals

2.5 Feature extractor

After extracting the candidate pairs, a list of candidate PPI pair-based clauses “(P1:P2) C” is
obtained where P1 and P2 are the protein names (i.e. UniProt identifiers) and C is the clause
where P1 and P2 are extracted. Then based on these pair-based clauses we derive a set of
features including surface features and advanced features to train the SVM model. All the
features used in PPIEor are listed below and we use the pair-based clause

S1 “Q9HBI1:Q8K4I3 Q9HBI1 associates with PIX/ARHGEF6/Cool2 (Q8K4I3) at
the tips of lamellipodia of motile cells and transmits integrin-O55222 signals”

to illustrate the feature extraction procedure.
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2.5.1 Surface features

Surface features are derived from the pair-based clauses describing the explicit properties of
candidate PPI pairs and their interactions. In the following feature extraction procedures, all
punctuation marks are ignored when counting tokens.

– Featurepair: The candidate PPI pair “P1:P2”. For example, Featurepair(S1) = (“Q9HBI1:
Q8K4I3”) in S1.

– FeatureP1
: P1 and the two tokens before and after it. Then FeatureP1

(S1) = (“-”, “-”,
“Q9HBI1”, “associates”, “with”) where“-” stands for the empty token.

– FeatureP2
: P2 and the two tokens before and after it. FeatureP2

(S1) = (“ARHGEF6”, “Cool2”,
“Q8K4I3”, “at”, “the”).

– FeatureiWord: Usually interaction words are good indicators for the occurrence of
interactions. We construct a lexicon called iLexicon that consists of interaction nouns and
verbs similar to the ones proposed by Plake et al. (2005). Then we refine and extend iLexicon
based on the training data of DataFEBS. Due to the spacial limitation, we cannot present
iLexicon here but it can be found in the PhD thesis of Chen (2009). Declensions of these
nouns and conjugations of these verbs are also accepted. Every token in the given clause
is matched against the entries of iLexicon to find the corresponding interaction words. If
several interaction words exist, the one nearest to the proteins consisting of candidate PPI
pairs is chosen while if no interaction word exists the value of this feature is NULL. In S1,
only the interaction word “associate” is found. So, FeatureiWord(S1) = (“associate”).

– FeatureLocation: Sometimes the importance of a clause is related to the location of that
clause in the article. For example, the candidate PPI pairs appearing in the TITLE or the
ABSTRACT have a higher probability to be correct than those appearing somewhere else.
Usually, authors only write the most essential information in the TITLE or the ABSTRACT.
We consider the following 5 categories for the location of the clauses: TITLE, ABSTRACT,
FIGURE, TABLE and BODY. As a consequence, FeatureLocation(S1) = (“BODY”).

– FeatureP2Pdistance: The distance in tokens between the two proteins P1 and P2. So,
FeatureP2Pdistance(S1) = (5).

– FeatureNP: This feature is the number of other identified proteins between the two proteins.
FeatureNP(S1) = (0).

– FeatureiWordLocation: The relative location of iWord within candidate PPI pairs, which is
whether iWord appears between, before or after the pairs. In S1, FeatureiWordLocation(S1)
= (“between”). The value of FeatureiWordLocation is set to NULL if no iWord exists.

– FeatureiWord2P1distance: The distance in tokens between the iWord and P1, e.g. from S1,
FeatureiWord2P1distance(S1) = (0). If no iWord exists, the value of FeatureiWord2P1distance is
NULL.

– FeatureiWord2P2distance: The distance in tokens between the iWord and P2. For example
FeatureiWord2P2distance(S1) = (4). In the same way, the value of FeatureiWord2P2distance is NULL
if no iWord exists.

2.5.2 Advanced features

As discussed before, surface features only use basic information. In order to improve the
performance further, we also incorporate some more advanced features.

573Extract Protein-Protein Interactions
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Pattern

1: P1 W1.1 iVerb W1.2 P2

2: P1 W2.1 iVerb W2.2 by W2.3 P2

3: iVerb of W3.1 P1 W3.2 by W3.3 P2

4: iVerb of W4.1 P1 W4.2 to W4.3 P2

5: iNoun of W5.1 P1 W5.2 (by|through) W5.3 P2

6: iNoun of W6.1 P1 W6.2 (with|to|on) W6.3 P2

7: iNoun between W7.1 P1 W7.2 and W7.3 P2

8: complex between W8.1 P1 W8.2 and W8.3 P2

9: complex of W9.1 P1 W9.2 and W9.3 P2

10: P1 W10.1 form W10.2 complex with W10.3 P2

11: P1 W11.1 P2 W11.2 iNoun

12: P1 W12.1 P1 W12.2 iVerb W12.3 with each other

13: P1 W13.1 iVerb W13.2 but not W13.3 P2

14: P1 W14.1 cannot W14.2 iVerb W14.3 P2

15: P1 W15.1 (do|be) not W15.2 iVerb W15.3 P2

16: P1 W16.1 not W16.2 iVerb W16.3 by W16.4 P2

Table 1. A set of 16 patterns for FeaturePattern. Pattern 1−12 indicate the interactions between
candidate PPI pairs while Pattern 13−16 indicate that no interaction exists. Wi.j means the ith

word gaps in Pattern j.

– Pattern Matching Features (FeaturePattern): Inspired by Plake et al. (2005), we designed a set
of 16 syntactic patterns based on the training data. Each pattern is a syntactic description
of sentence parts expressing protein locations, interaction nouns and verbs, and particular
words. Two types of semantic information are integrated into these syntactic patterns, i.e.
a protein-protein interaction exists or not. 12 patterns are designed to describe interactions
between proteins and the remaining 4 patterns describe negations. Hence, in total 16
pattern matching features are designed: FeaturePattern1

, FeaturePattern2
, · · · , FeaturePattern16

.
If a clause matches a pattern Patterni, the value of corresponding FeaturePatterni

is “1”,
otherwise it is “0”. The 16 syntactic patterns are listed in Table 1 and they contain five
different types of components:

1. P1 and P2: P1 and P2 refer to the first and second proteins respectively in the PPI pair.

2. iNoun: iNoun refers to the nouns indicating interactions taken from iLexicon.

3. iVerb: iVerb refers to the verbs indicating interactions taken from iLexicon.

4. Fixed words: Besides PPI pairs and iNouns/iVerbs, some patterns require that particular
words occur in the clause. A pattern can require a fixed word like “by” in Pattern 2, or a
word from a list, e.g. (with|to|on) in Pattern 6.

5. Word gaps: Word gaps describe an optional sequence of words between the four
components above. These gaps are limited in length but they do not require particular
words. As recommend in Plake et al. (2005) we have set the maximum length of the gaps
equal to 5.
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– Database Matching Features: We match each candidate PPI pair with the entries of the protein
interaction database used to see if this pair has already been recorded. Note that this feature
will not be used by PPIEor until we have discussed the impact of the interaction databases
in Section 3.5. For the moment, the most popular protein interaction databases are MINT
and IntAct. Therefore we use the following two database matching features:

1. FeatureMINT : Each candidate PPI pair is matched against all the entries in MINT. If
matched, FeatureMINT = 1 otherwise FeatureMINT = 0. For instance, in S1, the pair
“Q9HBI1:Q8K4I3” can be found in MINT, hence FeatureMINT(S1) = (1).

2. FeatureIntAct: Each candidate PPI pair is matched against all the entries in IntAct. If
matched, FeatureIntAct = 1 otherwise FeatureIntAct = 0. For instance, in S1, the pair
“Q9HBI1:Q8K4I3” cannot be found in IntAct, hence FeatureIntAct(S1) = (0).

2.6 Feature selector

A feature selection method was used to select a subset of the most relevant features in order
to build a robust machine learning model. By removing the most irrelevant and redundant
features from the feature set, feature selection helps to improve the learning performance,
to reduce the curse of dimensionality, to enhance the generalization ability, to accelerate the
learning process and to boost the model interpretability.
The most straightforward method is subset selection with greedy forward search. This
method is very simple to use but it has some drawbacks. It is more prone than other
methods to get stuck in local optima and computationally it is very expensive (Saeys et al.,
2007). Hence, for PPIEor we decided in favor of SVM Recursive Feature Elimination (SVM RFE)
proposed by Guyon et al. (2002) to do the feature selection. SVM RFE interacts with the SVM
classifier to search the optimal feature set and is less computationally intensive than the subset
selection method. For a more detailed discussion about feature selection methods, the reader
is referred to the review paper (Saeys et al., 2007).
In case of a linear kernel, SVM RFE uses the weights wi appearing in the decision boundary
to produce the feature ranks. The best subset of r features is the one that generates the largest
margin between the two classes when the SVM classifier is using this subset. Stated in Guyon
et al. (2002), the criteria (wi)

2 estimates the effect on the objective function of removing one
feature at a time. The feature with the smallest (wi)

2 is removed first and as a result it has
the lowest rank. In this way a corresponding feature ranking can be achieved. However, the
features that are top ranked (eliminated last) are not necessarily the ones that are individually
the most relevant. In some sense the features of a subset are optimal only when they are taken
together. For computational reasons, it may be more efficient to remove several features at a
time but at the expense of possible classification performance degradation.
In this chapter we use the toolbox Java-ML designed by Abeel et al. (2009) to implement the
SVM RFE algorithm. Java-ML is a collection of machine learning and data mining algorithms
and it has a usable and easily extensible API used by PPIEor. The library is written in Java
and is available from http://java-ml.sourceforge.net/ under the GNU GPL license.

2.7 Classification model

After extracting features for the candidate PPI pair-based clauses (P1:P2)C, a binary classifier
is needed to decide whether the candidate PPI pairs are correct or not. ModelSVM linear is
proposed using a linear kernel and the features described above. The toolbox LIBSVM (Chang
& Lin, 2001) is used to train and tune ModelSVM linear using 5-fold cross validation.

575Extract Protein-Protein Interactions
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2.8 Post-processor

PPIEor makes an implicit assumption, i.e. the proteins in PPI pairs are different. This
assumption leads to the problem that we cannot find self-interaction proteins. In the article
DOI:10.1016/j.febslet.2008.12.036, the only correct PPI pair is “P64897:P64897”, i.e. “P64897”
interacts with itself. However, usually self-interactions are not stated explicitly in the articles.
Therefore, we develop a post-processor to recover some self-interaction protein pairs and it
consists of three steps:

– First, recall from Section 2.4.3 that the clauses that contain only 1 protein are ignored. Now
we want to see if these proteins can interact with themselves. Therefore, for each article the
proteins that do not consist of any candidate PPI pair are picked out.

– Second, for each protein obtained in the first step, search the MINT and IntAct databases to
see if it can interact with itself.

– Finally, if the answer is yes, regard this protein as a self-interaction protein and add the
corresponding pair to final PPI pair list.

Same as the database matching features discussed in Section 2.5.2, this component will not
be used by PPIEor until the impact of the two databases on its performance is discussed in
Section 3.5.

3. Results and discussion

3.1 Experimental purpose

Before discussing the experimental results, we would like to state the two purposes of PPIEor.
The first purpose is to extract PPI pairs in the articles as accurately as possible to help the
researchers avoid reading all the available articles. In this case, the performance of the system
can be improved a lot by making use of interaction databases like MINT and IntAct. The
second purpose is to help database curators who want to extract newly discovered PPI pairs
from the articles that have not been recorded yet in databases. In this case it is not realistic to
use existing interaction databases.
In the following we first focus on the second purpose, i.e. to build PPIEor without using
any interaction database. First, in Section 3.2 we compare the fine-tuned PPIEor with other
leading protein-protein interaction pair extraction systems built on similar data sets. Then
in Sections 3.3 and 3.4 we show the impact of these components on PPIEor including the
contribution of the preprocessor, the features and the feature selection method. Finally, in
Section 3.5 we turn to the first purpose mentioned above and discuss the impacts of the
databases, i.e. MINT and IntAct.

3.2 Results

PPIEor is developed and tuned on the training data of DataFEBS by doing 5-fold cross
validation. After finding the optimal parameter value C = 2−7 for the box constraint in the
SVM the system is applied to the test data of DataFEBS and evaluated using the precision, the
recall and the Fβ=1 measure (Van Rijsbergen, 1979). The confidence intervals shown here are
obtained by the bootstrap resampling method (Efron & Tibshirani, 1994) making use of 1,000
samples and for a confidence level of α = 0.05.
The performance of PPIEor using ModelSVM linear is compared with some of the leading
protein-protein interaction extraction systems in Table 2. PPIEor is built by using the optimal
feature set obtained by the SVM RFE feature selection method in Section 2.6. All systems
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Precision Recall Fβ=1

PPIEor (ModelSVM linear) 72.66% 75.61% 74.10 ± 2.11

Syntax Pattern-based System 60.00% 46.00% 52.00

MDL-based System 79.80% 59.50% 68.17

Table 2. Evaluation results of PPIEor compared with other systems.

are evaluated on similar data sets, i.e. biological literature annotated with golden standard
protein names.
Since we cannot reproduce the other systems, we compare the performance of PPIEor on the
test set of DataFEBS with the ones reported in the literature by these competitors.
The Syntax Pattern-based System proposed by Plake et al. (2005) matched sentences against
syntax patterns describing typical protein interactions. The syntax pattern set was refined
and optimized on the training set using a genetic algorithm. This system was evaluated on
the corpus of the BioCreAtIvE I challenge, Task 1A (Yeh et al., 2005) and got a Fβ=1 measure
of 52.00.
Another leading system, MDL-based System, proposed by Hao et al. (2005) used a minimum
description length (MDL)-based pattern-optimization algorithm to extract protein-protein
interactions and used a manually selected corpus from biological literature consisting of 963
sentences. This system got a Fβ=1 measure of 68.17.
From Table 2, it can be seen that PPIEor using ModelSVM linear gets a comparable Fβ=1 measure
with the above two leading systems, which is 74.10 ± 2.11. Therefore we can conclude that
PPIEor’s performance is quite promising.

3.3 Contribution of preprocessor

First, we discuss the contribution of the preprocessor. It transforms the original sentences into
a clause-based representation consisting of main sentences and a number of clauses followed
by a coreference resolution module that resolves the Wh-pronominal coreference in order to
facilitate the extraction of the candidate PPI pairs. Table 3 shows the performance of PPIEor
without and with preprocessor. In the former case, the original sentences themselves are used
as input data. It can be seen that with the preprocessor PPIEor performs much better, i.e
the precision is increased by 4.08, the recall by 1.62 and the Fβ=1 measure by 2.89. And the
difference of the Fβ=1 measures is significant for a confidence level α = 0.05.
Another advantage of the preprocessor is that less candidate PPI pairs are extracted especially
negative ones, which is illustrated in Example 3.1.

Example 3.1 Consider that the sentence S consists of 2 clauses, C1 and C2. In C1 2 proteins P1 and P2 are
recognized and in C2 also 2 proteins P3 and P4 are recognized. Only the PPI pair “P1:P2” are correct.

S1 : · · ·P1 · · ·P2 · · ·
︸ ︷︷ ︸

C1

, · · ·P3 · · ·P4 · · ·
︸ ︷︷ ︸

C2

.

With using the preprocessor, only 2 candidate PPI pairs are extracted: 1 positive PPI pair “P1:P2” and 1 negative
PPI pair “P3:P4”. However, without using the preprocessor, 6 candidate PPI pairs are extracted: 1 positive PPI pair
“P1:P2” and 5 negative PPI pairs: “P1:P3”, “P1:P4”, “P2:P3”, “P2:P4” and “P3:P4”.

From Example 3.1, we see that on one hand, the preprocessor can handle the unbalance in
the distribution of candidate positive and negative pairs to some extent and hence avoid the
problems caused by such unbalance when building machine learning based models. On the
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Data set Precision Recall Fβ=1

The sentence-based data set 50.51% 80.49% 62.69 ± 1.27

The clause-based data set 54.59% 82.11% 65.58 ± 1.31

Table 3. Comparison of the performance of PPIEor without (the data set consists of sentences)
and with (the data set consists of clauses) preprocessor.

other hand, PPIEor becomes more efficient since less candidate PPI pairs has to be considered.
Hence, it is better to use the preprocessor as a component of PPIEor.

3.4 Contribution of feature selection

The SVM Recursive Feature Elimination (SVM RFE) algorithm is designed specifically for
SVMs and hence this feature selection method interacts directly with the SVM model. Since
the core component of PPIEor is the SVM-based binary classifier ModelSVM linear, we think that
the SVM RFE algorithm is to be prefered over other feature selection techniques like χ2 (White
& Liu, 1994), information gain (Quinlan, 1986) and gain ratio (Quinlan, 1993) which ignore
interactions with the classifier. Hence the SVM RFE algorithm is applied to the original feature
set (except the two database matching features FeatureMINT and FeatureIntAct) discussed in
Section 2.5 to select the optimal subset of features.
However, it is important to note that based on the specifications of the PPIE task, the
performance of ModelSVM linear is not exactly same as the performance of the final PPIEor.
We will illustrate this in Example 3.2.

Example 3.2 Consider the snippet of the input instances from the article DOI: 10.1016/j.febslet.200 8.01.064
shown below. The first item is the class label and the rest are the extracted features.
1|O55222:Q9HBI1|DISTANCE:CLOSE|P2P:0|NULL| . . .
1|Q9ES28:Q9HBI1|DISTANCE:CLOSE|P2P:0|NULL| . . .
1|O55222:Q9HBI1|DISTANCE:CLOSE|P2P:0|LOC:BETWEEN| . . .
1|O55222:Q9HBI1|DISTANCE:MIDDLE|P2P:0|LOC:RIGHT| . . .

It is clear that there are two different candidate PPI pairs “O55222:Q9HBI1” and “Q9ES28:Q9HBI1”. Because the
candidate PPI pair “O55222:Q9HBI1” is discussed many times in the article DOI: 10.1016/j.febslet.2008.01.064,
e.g. it appears in the figure, the title and the abstract, three instances are created, i.e the first, third and fourth
instance above.

First, we use Example 3.2 to see the performance changes in ModelSVM linear:

– Step 1: ModelSVM linear classifies all these 4 instances correctly, the recall is 4/(3 + 1) ×
100% = 100%.

– Step 2: If ModelSVM linear classifies the first instance incorrectly but the other three ones
correctly, this gives 3 true positives and 1 false negative and hence the recall is 3/(3 + 1)×
100% = 75%.

– Step 3: If ModelSVM linear classifies the first and second instances incorrectly but the other
two ones correctly, the recall is 2/(3 + 1)× 100% = 50%.

– Step 4: If ModelSVM linear only classifies correctly the fourth instance, the recall is 1/(3 +
1)× 100% = 25%.

– Step 5: If ModelSVM linear misclassifies all the instances, this gives a recall of 0/(3 + 1) ×
100% = 0%.
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Hence it can be seen that as the number of misclassifications increases, the performance of
ModelSVM linear decreases.
However, the purpose of PPIEor is to find distinct PPI pairs in each article. For example, in
the article DOI: 10.1016/j .febslet.2008.01.064, the correct PPI pairs are “O55222:Q9HBI1” and
“Q9ES28:Q9HBI1”. Again using Example 3.2, the performance of PPIEor changes as follows:

– Step 1: All these 4 instances are classified correctly, the recall is 2/2 × 100% = 100%.

– Step 2: If the first instance is misclassified but the other three ones are classified correctly,
the recall is still 2/2 × 100% = 100%.

– Step 3: If the first and second instances are classified incorrectly but the other two ones
correctly, the recall becomes 1/2 × 100% = 50%.

– Step 4: If only the fourth instance is classified correctly, the recall is 1/2 × 100% = 50%.

– Step 5: If all the instances are misclassified, this gives a recall of 0/2 × 100% = 0%.

As in the case of ModelSVM linear, as the number of misclassifications increases, the
performance of PPIEor also decreases but differences are not the same. Therefore, we can
conclude that the performances of ModelSVM linear and PPIEor are different but closely related.
Since the performance of PPIEor is our final purpose, we decide to tune the feature selection
based on the Fβ=1 measure of PPIEor. Fig. 2 shows the contribution of the SVM RFE algorithm
to the performances of both PPIEor and ModelSVM linear.
As explained above, ModelSVM linear and PPIEor perform differently. In Fig. 2 one can see that
their best Fβ=1 measures are achieved for a different number of highest ranked features.
However, it can also be seen that the performances of ModelSVM linear and PPIEor are closely
related. Using the SVM RFE algorithm to rank the features by interacting with ModelSVM linear

also imposes the positive effect on the performance of PPIEor. The Fβ=1 measure of PPIEor
with all the features is 65.58± 1.31. When the top ranked 143 features (4.04%) are used, which
are obtained by 5-fold cross validation on the training data, PPIEor achieves a Fβ=1 measure of
74.10 ± 2.11. After applying the SVM RFE algorithm, the Fβ=1 measure of PPIEor is increased
by 8.52. This is significantly different for a confidence level α = 0.05.
Finally, we look at types of the 143 best features. In Table 4, the types of the designed
features are listed in a descending order according to their relative importance for PPIEor.
Here importance means the more features are selected from a certain feature type, the more
important that type is. It can be seen that the most important feature types are Featurepair

and FeaturePattern with 122 and 9 features among the 143 best ones. In contrast, FeatureiWord,
FeatureLocation and FeatureiWord2P1distance are not important since no features of this type are
selected.

3.5 Impact of the interaction databases

In this section we turn to the first purpose of PPIEor, i.e. to extract the PPI pairs in the
articles as accurately as possible to help the researchers avoid reading all the available articles.
For this situation, the interaction databases used by the database matching features and the
post-processor give the positive contribution.
First, the two interaction databases, MINT and IntAct, are used to extract the database
matching features, FeatureMINT and FeatureIntAct. Second, based on MINT and IntAct, the
post-processor will recover some self-interaction pairs. Table 5 shows the comparison of the
performance of PPIEor without the interaction databases, with the database matching features
and with the post-processor.
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Fig. 2. Contributions of the SVM Recursive Feature Elimination (SVM RFE) algorithm to the
performances of both PPIEor and ModelSVM linear. Note that x-axis is restricted to the range
from 0 to 800 features since the performances do not change anymore when more features
are added. The SVM RFE algorithm ranks the total of 3,543 features in a descending order
according to their weights. The Fβ=1 measure of PPIEor with all the features is 65.58 ± 1.31.
When the optimal parameter values obtained by 5-fold cross validation on the training data
are used, PPIEor achieves the Fβ=1 measure of 74.10 ± 2.11 when the top 143 features (4.04%)
are used. For ModelSVM linear, the best Fβ=1 measure of 79.35 is obtained when the top 635
features are used while the Fβ=1 measure for all the features is 79.17.

From the results shown in Table 5, it can be seen that the database matching features can
greatly improve the performance. They increase the Fβ=1 measures from 74.10 to 88.99. This
makes sense because the PPI pairs that are recorded in MINT and IntAct have been verified
by biological experiments and hence the matched candidate pairs have higher probabilities to
be correct PPI pairs. The post-processor which has to recover some self-interaction pairs also
contributes to the performance of PPIEor. It is clear that with post-processor the recall and
the Fβ=1 measure increase significantly although the precision drops slightly. Therefore we

Feature Type Number of Selected Features
after the feature selection

Featurepair 122/290 (42.07%)

FeaturePattern 9/37 (24.32%)

FeatureNP 3/6 (50.00%)

FeatureP1 3/1532 (0.20%)

FeatureP2Pdistance 2/3 (66.67%)

FeatureP2 2/1566 (0.13%)

FeatureiWordLocation 1/4 (25.00%)

FeatureiWord2P2distance 1/4 (25.00%)

FeatureiWord 0/92 (0.00%)

FeatureLocation 0/5 (0.00%)

FeatureiWord2P1distance 0/4 (0.00%)

Table 4. Importance of the different types of features in descending order according to the
number of selected features.
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Precision Recall Fβ=1

Without Using Databases 72.66% 75.61% 74.10 ± 2.11

+Database Matching Features 97.12% 82.11% 88.99 ± 0.81

+Post-Processor 96.36% 86.18% 90.99 ± 0.81

Table 5. Contribution of the interaction databases to PPIEor.

conclude that the post-processor reduces to some extent the self-interaction problem.
However it should be noted that using the interaction databases makes PPIEor hardly capture
newly discovered PPI pairs that are not recorded in the databases yet. Hence it is better not to
use the interaction databases when searching for new PPI pairs.

4. Conclusion

In this chapter we presented a protein-protein interaction pair extractor (PPIEor), which used
a binary SVM classifier as the core component. Its purpose was to automatically extract
protein-protein interaction pairs from biological literature. During the preprocessing phase,
the original sentences from the articles were transformed into clause-based ones and the
candidate PPI pairs were distilled. Then we derived a rich and informative set of features
including surface features and advanced features. In order to improve the performance
further, we used a feature selection method, the SVM Recursive Feature Elimination (SVM
RFE) algorithm, to find the features most relevant for classification. Finally, the post-processor
recovered some of the self-interaction proteins which could not be identified by our SVM
model. The experimental results has proved that PPIEor can achieve the quite promising
performance.
However, PPI pairs that appear in the figures, span different sentences or interact with
themselves cannot be handled well for the moment. More advanced techniques need to
be exploited in the future, like anaphora resolution used for semantic analysis to detect the
inter-sentence PPI pairs, or specifically designed patterns to recover more self-interaction PPI
pairs, etc.
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