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Multi-Aspect Comparative Detection 
of Lesions in Medical Images 

Juliusz Kulikowski and Malgorzata Przytulska 
M. Nalecz Institute of Biocybernetics and Biomedical Engineering, PAS Warsaw, 

Poland 

1. Introduction    

Symmetry is an easily observable property of a normal human body. It also occurs in the 
anatomy of some of its organs: motion or sensory organs, brain, dentition, breasts, kidneys, 
etc. This property is often used as a basis of visual diagnosis of anatomical defects or of 
pathological lesions in the organs, expressed by local disparities between the (generally 
symmetric) pairs of compared images (Rogowska J., Preston K., Hunter G.J. & al., 1995). 
Such approach, based on an assumption that in most cases the defects or lesions have been 
caused by asymmetrically acting factors, leads to a simple algorithm of lesions detection by 
pixel-from-pixel subtraction of matched pairs of images. However, for several reasons this 
approach does not lead to satisfactory results: 1st a general symmetry of normal body organs 
does not mean that small anatomic differences in them cannot occur, 2nd small local 
differences in compared pixel values can also be caused by image acquisition defects, 3rd 
substantial differences may be hidden in specific subtle local morphological structure of 
analyzed organs. A comparative detection of lesions is thus a non-trivial problem needing 
advanced solution approach. This remark also concerns a comparison of acquired at 
distanced time-instants medical images of a given organ aimed at an assessment of the 
results of its medical treatment. A comparative lesions detection should consist not so much  
in a detection of any formal but rather of medically significant differences between the 
compared images. Medically significant image details may be manifested by occurrence of 
both simple differences between the local (monochromatic or multi-chromatic) pixel values 
as well as by occurrence of more subtle features characterizing local sub-areas in the 
examined images. This leads to a concept of comparative image analysis based on a multi-
aspect dissimilarity measure (Kulikowski J. L., Przytulska M., 2009a). The notions of similarity 
and dissimilarity are evidently related: the more similar two objects are, the less they are 
dissimilar. In certain cases, when the objects can be considered as elements of a metric (e.g. 
Euclidean) space their dissimilarity can strongly be connected with a distance between them. 
However, not all objects of medical interest, usually described by combinations of their 
quantitative and qualitative features, as the elements of a formally defined metric space can 
be considered. That is why it seems more reasonable to define dissimilarity (as well as 
similarity) measure as a normalized dimensionless parameter. Using the notion of multi-
aspect dissimilarity to comparative lesions detection seems not only to be intuitively justified 
but also more suitable to distinguish between the normal and pathological tissues than a 
distance notion.  
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The aim of this Chapter is presentation of an approach to computer-aided comparative 

analysis of medical images aimed at detection of lesions occurring in one of two 

symmetrically located body regions. In this approach the concept of multi-aspect similarity 

measure as well as of a based on it concept of dissimilarity measure presented in the mentioned 

paper (Kulikowski J. L., Przytulska M., 2009a) plays a basic role. Moreover,  application of 

morphological spectra, originally presented  in  some former papers (Kulikowski J. L., 

Przytulska M., 2007a; Kulikowski J. L., Przytulska M,  & Wierzbicka  D., 2007b), is also 

presented in a context of multi-aspect similarity of biological tissues assessment.  It will be 

shown how the above-mentioned concepts can be used to an iterative lesions detection 

process consisting in a step-wise reinforcing of the objects’ discrimination criteria. The 

below-presented methods have been primarily tested on cerebral single photon emission 

tomography (SPECT) as well as on liver ultrasound elastography (USE) images and some 

results of those experiments will be shown below. 

2. Formal model of lesions 

A lesion can be defined as a harmful change in the tissues of bodily organs, caused by injury or 

disease (Hornby A.S., 1980). In computer-aided medical images analysis we are interested 

not only in a simple lesions detection but also in their localization (e.g. by contouring), size 

and form description, intensity assessment, etc. Of course, it is assumed that any lesion area 

is visually from the background distinguishable. However, 1st not all visual differences are 

for lesion detection substantial, and 2nd it may a priori be not known how a certain sort of 

lesion should visually be manifested. Lesion detection reminds thus detection of a 

pickpocket in a crowd of bus passengers: we know, that his behavior differs from this of 

other passengers, however, the face and wear differences for his reliable detection are not 

sufficient.  

A comparative lesions detection is thus based on the following assumptions:  

a. there is given a finite sequence of pairs of related images presenting symmetrically 

located organs or parts of a bodily organ available in different projections; 

b. the lesion of interest  in no more but one (and always the same) image of any pair is 

expected; 

c. two types of local differences between  the images of any pair are possible: 

1. substantial differences caused by occurring a lesion in one and lack in other one 

 side of the examined organ; 

2. irrelevant differences caused by objects different positioning, secondary anatomical  

 details existence, inaccurate pairs of images symmetry fixation, image distortions 

 etc.; 

d. the form, size and even the occurrence of lesion in different pairs of images within a 

given sequence may be different.  

In Fig. 1 several examples of pairs of medical images prepared for comparative analysis are 

shown. In the images the pairs of symmetrical regions of interest (ROIs) on which the analysis 

is to be focused are marked by black rectangular contours. Note that not all differences for 

comparative analysis have been chosen there; their primary selection is usually done by an 

experienced medical specialist, the role of computer system is secondary, consisting in 

aiding the analysis: making its results more accurate and comparable if repeated several 

times.  
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a) b)         c) 

Fig. 1. Pairs of medical images prepared for comparative analysis: a) radiological images of 
knees, b) SPECT image of brain, c) microscopic image of aorta tissue. 

For comparative image analysis two basic types of image features can be used: 

1. Primary, local features obtained by a direct point-to-point comparison of images: 

a. pixels’ intensity levels, 

b. pixels’ color components. 

2. Secondary, environmental features defined and calculated as functions of pixel values 

in   selected image fragments: 

a. spectral characteristics, 

b. statistical characteristics,  

c. fractal characteristics, 

d. micro-morphological characteristics, 

etc. Local features neglect any spatial relationships between pixel values in the examined 

images. It can be observed in Fig. 2 where a SPECT image of a brain a) and its mirror-

inversion b) have been subtracted in order to visualize the difference of respective pixel 

intensities c). The spots in Fig. 2.c) correspond to the regions of high brightness disparities in 

the compared brain hemispheres. However, no subtle differences of textures using this type 

of visualization can be detected. 

Environmental features take into account spatial relationships within some regular (e.g. 

square or rectangular) sub-areas, called basic windows, covering the ROIs. The form of ROI is 

not obviously rectangular, as shown in Fig. 3. However, identical form and size of a pair of 

ROIs make their analysis easier. Black points in Fig. 3 represent image elements (pixels), 

adjacent basic windows of 4×4 pixels size are separated by dotted lines, the area under  

 

 
                                                 a)                           b)                           c) 

Fig. 2. Result of subtraction of a SPECT brain image  a)  and its mirror-reflection  b) visualizing 
the difference of respective pixel intensities  c). 

examination (ROI) consisting of a compact subset of basic windows has been contoured by a 

continuous line. 
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Fig. 3. Example of a region of interest (ROI) composed of basic windows. 

An exact delineation of symmetrical pairs of ROIs needs taking both anatomical details and 
measurable geometrical image parameters into consideration. Before starting a computer-
aided comparative lesions detection the images, if necessary, to a preliminary, symmetry 
correcting procedure should be subjected (Lester H., Arrige S.R., 1999). However, even in 
this case some remaining deficiencies of symmetry may affect the detection quality and this 
in design of lesions detection procedures should be taken into consideration.  
Let us take into consideration a pair A’, A” of ROIs selected for comparative analysis. There 
will be denoted by M the number of basic windows in a ROI and by N be the number of 
pixels in a basic window. In most medical imaging modalities, like X-ray, ultrasound (USG), 
computer tomography (CT), single photon emission computer tomography (SPECT), 
positron emission tomography (PET), nuclear magnetic resonance (NMR), monochromatic 
images are dealt with; otherwise, pixel values should be represented by triplets of numbers 
corresponding to basic, e.g. RGB, HSV, CMY, YIQ etc. color components (Foley J.D., Van 
Dan A., Feiner S.K. & al., 1994). Below, monochromatic images are considered; however, the 
methods presented on more general cases can easily be extended.  
For comparative image analysis based on local features the contents of a pair of ROIs of 

identical form and size can be represented by two M × N matrices: 

 U’ = [u’μν],  U” = [u”μν],  μ ∈ [1,…,M], ν∈ [1,…,N], (1) 

where u’μν, u”μν are pixel values belonging to a finite discrete space (brightness scale): 

  X = [0,1,…,K–1] (2) 

value 0 being assigned to the maximum darkness. We also shall denote by  

 u’μ* = [u’μ1, u’μ2,…, u’μN],  u”μ* = [u”μ1, u”μ2,…, u”μN],    μ ∈ [1,…,M], (3) 

the respective rows assigned to the basic windows, identically enumerated in both ROIs, 
and by 

 (u’*ν)tr = [u’1ν, u’2ν,…, u’Mν],  (u”*ν)tr = [u”1ν, u”2ν,…, u”Mν],  ν∈ [1,…,N], (4) 

the (in transposed form presented here) columns of U’ and U”.  Evidently, u’μ* and u”μ*  

represent the basic windows’ contents while u’*ν and u”*ν collect the related components 
from the basic windows in the given ROIs.  
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We consider the vectors u’μ*, u”μ* as elements of a N-dimensional discrete vector space X N. 
The M-row matrices U’ and U” represent thus two M-element subsets in X N. The subsets 
can geometrically be presented as sets of points surrounded by “clouds” (similarity areas 

denoted, respectively, by Ξ ’ and Ξ ”) of  other points (vectors) similar to those of U’ and U”, 
as illustrated by Fig. 4. 
  

 
                                              a)                                                          b) 

Fig. 4. Geometrical illustration of the contents of two ROIs and their similarity areas Ξ”, Ξ”:  
a) easily separable (dissimilar) subsets of vectors, b) similar subsets of vectors. 

For comparative lesions detection not so much vectors representing basic windows but 

rather their differences ξμ* = u’μ* – u”μ* are of particular interest. A condensation of difference 
vectors close to the initial point of coordinates, as it is shown in Fig. 5 below, corresponds to 
high similarity of basic windows contents. 
 

 
                                                                  a)                                      b) 

Fig. 5. Differences of pairs of vectors corresponding to the sets Ξ’ and Ξ”. 

The notion of similarity area below will be more exactly defined. However, it follows from 
the above-made assumption c)-ii that even if significant disparities between the similarity 
areas Ξ’ and Ξ” (like those in Fig. 5 a) exist, they may be caused both by relevant  as well as  
irrelevant factors. Some of them (e.g. those caused by small anatomical details) by a 
compensation technique can be removed. Removing other irrelevant differences needs more 
sophisticated methods using as it later on will be shown. Finally, at each step of an iterative 
lesions detection process it is assumed that the dissimilarities between objects within 

similarity areas Ξ’ and Ξ” are mostly irrelevant while those between Ξ’ and Ξ” are mostly 
relevant to the diagnostic purposes. The comparative lesions detection problem can thus 
roughly be formulated as follows: 
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Assume that Ξ ’ and Ξ ” are two subsets  in XN containing  vectors in a certain sense 

similar, respectively,  to those of U’ and U”;  check belonging of a significant part of 

vectors  of U’ and U”  to the intersection Ξ ’ ∩ Ξ ”.   
Positive checking results mean that no significant differences between the vectors of U’ and 
U” have been detected; hence, A’ and A” are covered by non-distinguishable types of 
texture. Taking into account the above formulated assumption b) of comparative image 
analysis this leads to a conclusion that no lesion in the given pair of ROIs has been detected. 
Otherwise, a detected dissimilarity between U’ and U” suggests that a lesion in one of ROIs 
can be suspected. Is it a real lesion, depends on the relevance of the differences to medical 
expectations, as it has been mentioned. However, in the above formulated problem some 
notions should be explained; what do they: similar, similarity area, significant part or 
dissimilarity, exactly mean? This will be explained below. 

3. Similarity and dissimilarity measures  

The terms: similar and dissimilar as commonly used seem to be intuitively clear. In a formal 
sense they correspond to a relation between some objects satisfying the following 
conditions:  
1. Each object is similar to itself (reciprocity of similarity); 

2. If object ω’ is similar to ω” then ω” is similar to ω’ (symmetry of similarity).  
Similarity is thus a sort of neighborhood relation. In dissimilarity relation symmetry holds as 

well; however, this relation is not reciprocal. In both cases a question of their transitivity 

arises: if an object ω’ is similar to ω” and ω” is similar to ω’’’, does it mean that ω’ is similar 

to ω’’’? Undoubtedly, it is so in the case of similarity of triangles (among all possible 

triangles on an Euclidean plain) or similarity of all animals included into a given biological 

species. On the other hand, it may be not true if visual similarity of some objects is 

considered. E.g., if A (a son) is similar to B – his father (and vice versa, B is similar to A) as 

well as C (a sister of A) is similar to A, then not obviously C is similar to B (for example, 

because A and C were born by the same mother but have different fathers). The problem of 

a limited transitivity of similarity is illustrated in Fig. 6; the closer are any two patterns the 

higher is their similarity, external patterns a) and h) being totally dissimilar. 

 

 
         a)                  b)                 c)                d)                  e)                 f)                 g)                h) 

Fig. 6. A sequence of geometrical patterns whose similarity depends decreasingly on their 
distance in the row. 

Evidently, it is reasonable to distinguish a strong similarity satisfying the transitivity 

condition and a weak similarity where transitivity is not satisfied or is satisfied within some 

limits only. Non-transitivity of similarity may also be caused by the fact that similarity of 

objects can be assessed in practice from different points of view when different pairs of 

objects are taken into consideration. This is illustrated in Fig. 7.  The position, color and form 

of triangles have been taken into consideration as different aspects of similarity of triangular 

patterns.  
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                                              a)                    b)                    c)                   d)   

Fig. 7.  Different aspects of similarity of triangular patterns: 10 a), b) and c) – from their 
position point of view, 20 a), b) and d) – from their color point of view, 30 a), c) and d) – from 
their form point of view. 

Therefore, it arises a problem of a general, multi-aspect objects’ similarity definition. This 

will be done below by definition of a similarity measure. Many proposals of definition of this 

notion can be found in literature (Gotlieb C. C., Kumar S., 1968; Bonner R. E., 1954).  

However, not all of them are flexible enough to take into account the multi-aspect nature of 

similarity into consideration. The below-given definition, as it has been shown in 

(Kulikowski J. L., 2001) makes it possible. 
Definition 1. 

Let  Ω  denote any set consisting of more than 2 elements (objects). We call similarity measure 

a function σ  described on a Cartesian product Ω 2 satisfying the conditions: 

 

a/ 0  σ(ω’,ω”) £ 1,

b/ σ(ω’,ω’) = 1,

c/ σ(ω’,ω”) = σ(ω”,ω’)

d/ σ(ω’,ω”) σ(ω”,ω”’)  σ(ω’,ω”’)    

≤ ⎫
⎪
⎪
⎬
⎪
⎪⋅ ≤ ⎭

 (5) 

for any ω’,ω” ω’’’∈ Ω. 
Condition b/ corresponds to a reciprocity while c/ to a symmetry of similarity; a/ and b/ 

show also that 0 is the minimal and 1 is the maximal similarity measure of any two objects. 

Condition d/ reminds a so called triangle inequality in a distance measure definition 

(Rasiowa H., Sikorski R., 1968) and it really is connected with it as it will be shown later on. 

Moreover, it explains the sense of the limited transitivity of similarity notion.  

A complementary to the similarity measure is the dissimilarity measure. 
Definition 2 

If σ (ω’,ω”) is a similarity measure satisfying the Definition 1 then 

 δ (ω’,ω”)  = 1 – σ (ω’,ω”) (6) 

is called a dissimilarity measure described on the same Cartesian product  Ω 2. 

There are many possibilities to define a similarity measure satisfying the above-given 

definition as well as the corresponding dissimilarity measures. Three of them are presented 

below.  

Similarity based on a distance measure. If Ω  is a metric space where a distance measure r 

between pairs of its elements has been established then similarity measure can be defined as 

 σ (ω’,ω”) = exp[– β⋅r(ω’,ω”)] (7)  

where β  is a scaling parameter. It is clear that the conditions a/, b/ and c/ of Definition 1 
are satisfied due to the distance measure properties. Moreover, condition d/ due to the 
triangular inequality of distance measure is also satisfied. Distance measure may here mean 
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an Euclidean, absolute, Chebyshevian, or any other of non-limited distance measures used 
in applications (Jain A.K., Murthy M.N., Flynn P.J., 1999).  
Similarity based on angular distance. If Ω + is a positive sector of a linear vector space and 
∠(ω’,ω”) denotes an angular measure between a pair of vectors in Ω + then a similarity 
measure can be defined as 

 σ (ω’,ω”) = 1 – |sin[∠(ω’,ω”)]| (8) 

The reciprocity and symmetry of this similarity measure is evident. For proving the 
inequality (5 d) we shall denote α = ∠(ω’,ω”), β = ∠(ω”,ω’’’),  γ = ∠(ω’,ω’’’) and remark that 
a) the angles between any vectors consisting of non-negative components cannot exceed 
π/2, b) for any ω’, ω”, ω’’’∈ Ω +  it is |α−β|  ≤  γ  ≤  α+β. Hence, assuming that α ≥ β (this 
being a problem of denotation only) it follows from (7) that σ(α−β) ≥ σ(γ) ≥ σ(α+β). 
However, from the convexity of σ (ω’,ω”) it also follows that  

( ) ( )

1 ( )

σ ǃ σ ǂ ǃ
σ ǂ
+

<  (see Fig. 6)  what leads to the inequality  σ(α)⋅σ(β) < σ(α+β) ≤ σ(γ)  as  it  was  

to  be shown • 
 

 

Fig. 6. Convexity of similarity measure based on angular distance. 

Similarity based on logical tests. This type of similarity measure is particularly useful if 
some qualitative criteria to objects’ similarity assessment are used. Such criteria may state, 
for example,  that some external factors (noise, side anatomical details, lack of careful image 
preprocessing, etc.) could disturb the images and influence increasing the disparities. They 
also may state that difference of a qualitative feature characterizing the images is negligible.  
Let it will be defined a set of N testing functions (tests) of a general form  

 tn: Ω 2 → {0,1} ,   n = 1,2,…,N, (9) 

assigning value 1 to a tn(ω’,ω”) if  (ω’, ω”) satisfy a given condition confirming supposition 
of their similarity and value 0 otherwise. For the given series of tests T = [t1, t2,…, tN], we 
denote by H the number of tests to which value 0 has been assigned. Then the similarity 
measure can be defined as 
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 –
( ', ")

N Hσ ω ω
N H

=
+

 (10) 

Reciprocity and symmetry of the above-defined similarity measure is evident. The property 
(5d) follows, like before, from its convexity which for several values of N is shown in Fig. 7.   
Similarity measures satisfying the conditions of Definition 1 have an important property 
making possible creation of multi-aspect similarity measures: 
Theorem 1 
Let σ1 (ω’,ω”),  σ2 (ω’,ω”) ,…, σk (ω’,ω”) be similarity measures satisfying the conditions of     
Definition 1. Then 

   

1

(  ',   ")   (  ',   ")
k

ǋ
ǋ

σ ω ω σ ω ω
=

=∏  (11) 

is also a similarity measure in the sense of Definition 1. 
Proof of this theorem is very simple, following directly from the Definition 1 • 
 

 

Fig. 7. Behavior of similarity measure based on logical tests. 

It follows from this Theorem that if σ (ω’,ω”) is a similarity measure then σν (ω’,ω”) for any 
real ν  > 1 is a similarity measure as well. However, due to the inequality σν (ω’,ω”) ≤σ 
(ω’,ω”) such a similarity measure is more rigid than σ (ω’,ω”). Using  σν (ω’,ω”) instead of σ 
(ω’,ω”) for 0 <ν<1 leads to a reciprocal effect of similarity measure weakening. However, it 
cautiously can be used  because  for ν  close to 0 convexity  of σν (ω’,ω”) may be lost. 
Using dissimilarity instead of similarity measure in comparative image analysis may be 
more convenient. Basic dissimilarity measure properties follow directly from the expression 
(6) and the corresponding similarity measure properties. In particular: 
Theorem 3 
If  δ (ω’,ω”) is a dissimilarity measure described on Ω 2 according to the Definition 2 then for 
any ω’,ω”, ω’’’ ∈ Ω 2 the following inequality holds: 

 δ (ω’,ω’’’) ≤ δ (ω’,ω”) + δ (ω”,ω’’’) – δ (ω’,ω”)⋅δ (ω”,ω’’’). (12) 

Theorem 4 
If δ1 (ω’,ω”), δ2 (ω’,ω”),… , δk (ω’,ω”) are some dissimilarity measures described on  Ω 2 then 
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1

(  ',  ") [1 - (  ',  ")]
k

ǋ
ǋ

δ ω ω δ ω ω
=

=∏  (13) 

is also a dissimilarity measure in the sense of Definition 2. 

Proving validity of (12) and (13) consists in substitution of 1–δ( ) instead of σ( ), respectively, 

in (5 d) and (11) • 

4. Description of textures by morphological spectra 

4.1 Morphological spectra.  

In Sec. 1 several possibilities of features selection for comparative image analysis have been 
mentioned. It also was remarked that environmental features better suit to a deep texture 
analysis than a point-to-point comparison of pixel values. The main difficulty in texture 
analysis lies in the randomness and multi-level morphological textures’ structure. In most 
cases a texture is given as an instance of a random field whose statistical properties are not 
exactly known. Detection of textures dissimilarity is in fact a heuristic attempt to prove a 
hypothesis that the given two fragments of textures belong (or do not belong) to the same 
statistical population. For proving this hypothesis spatial relationships between pixel values 
visually observed as morphological texture features should be taken into consideration. One 
of possible ways to do it consists in using 2-dimensional spectral texture description. For 
this purpose, in principle, any complete system of bi-variable orthogonal functions can be 
used. However, any system of this type better or worse suits to morphological structures 
characterization and needs less or more sophisticated calculations. Morphological spectra 
seem to offer a compromise between calculation complexity and accuracy of textures 
description including their ability to describe them on several morphological organization 
levels. 
We call morphological spectra a system of discrete bi-variable Walsh functions arranged in a 
hierarchical tree (Kulikowski J. L., Przytulska M. & Wierzbicka D. (2007a). For image 
description by morphological spectra selected ROIs are divided into square basic windows 

of 2n×2n size (see Fig. 2), n being a natural number called spectrum level. Each n-th level 
morphological spectrum is represented by 4n spectral components. For the sake of 
presentation consistency, original image (U’ or U” defined by (1)) is considered as its 0-th 
level morphological spectrum. However, morphological spectrum of any fixed level 
contains full information about morphological spectra of any other level and into them can 
easily be transformed. 
For calculation of morphological spectra special vectors called spectral component masks will 
be used.  

Let us take into consideration the contents of μ-th basic window in a ROI represented by the 

vector uμ* = [uμ1, uμ2,…, uμN] (see  (3)). Then, its four 1st level morphological spectrum 
components are given by the formulae: 

 

[ ]
[ ]
[ ]
[ ]

* 1 2 3 4

* 1 2 3 4

* 1 2 3 4

* 1 2 3 4

1,1,1,1 ( ) ,

-1,1,-1,1 ( ) ,

-1,-1,1,1 ( ) ,

-1,1,1,-1 ( ) ,

tr
Ǎ Ǎ Ǎ Ǎ Ǎ

tr
Ǎ Ǎ Ǎ Ǎ Ǎ

tr
Ǎ Ǎ Ǎ Ǎ Ǎ

tr
Ǎ Ǎ Ǎ Ǎ Ǎ

S u u u u u

V u u u u u

H u u u u u

X u u u u u

⎫= ⋅ = + + +
⎪
⎪= ⋅ = − + − + ⎪
⎬

= ⋅ = − − + + ⎪
⎪

= ⋅ = − + + − ⎪⎭

 (14) 
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The same can graphically be presented as four component masks shown below: 
 
                                      S:                           V:                         H:                        X: 

 

Fig. 8. Graphical masks of 1st level morphological spectrum components.   

White marks denote the pixels in the basic window whose values should be taken with 
positive, while black  –  with negative sign in calculation of a sum corresponding to a  given 
spectral component. A 1st level morphological spectrum of a given ROI  consisting of N basic 
windows arranged into an I × J rectangular array (I × J = N) will be given by four I × J  real 
matrices collecting spectral components’ values and denoted, respectively, by S, V, H and X. 
For calculation of the components of the next (i.e. 2nd) spectral level the matrices S, V, H and 
X are once more handled as original images: they are divided into 2×2 basic windows for 
which the spectral components S, V, H and X are calculated. Therefore, from the spectral 
matrix S next, 2nd level spectral matrices denoted by SS, VS, HS and XS are obtained, their 
seize being reduced to ½I × ½J. Similarly, the spectral matrices V, H and X respectively 
generate the 2nd level spectral matrices SV, VV, HV, XV, SH, VH, HH, XH, SX, VX, HX and 
XX. This, iterative procedure can be used for higher-level spectral components. The 
components of morphological spectra can thus be presented in the form of a hierarchical 
tree shown in Fig. 9. 
 

 

Fig. 9. Hierarchical tree of morphological spectral components. 

 

 

Fig. 10. Original image a) and its morphological spectral components b) of a bone section. 

□  □
 □  □

■  □
■  □

■  ■ 

□  □
■  □
□  ■
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In Fig. 10 a 128×128 pixels-size ROI presenting texture of a bone section and 16 its 2nd level 
morphological spectral components are shown. It can be noticed that intensities of different 
components are different due to the fact that different micro-morphological details are by 
them represented. 

4.2 Statistical analysis of morphological spectra. 

Symbolic denotations of spectral components can also be interpreted as linear 
transformations which should be performed (from the right to left) on the image in order to 
get the corresponding component value. Transformation S (see (14)) plays a role of details 
smoothing operation: standing on the right side of the component’s name it averages pixel 
values and reduces the image resolution power, while standing on the left side it averages 
on larger areas the former transformations results as it can be observed in Fig. 11.  
Like the original image of a texture, its spectral components can be considered as instances 
of some random fields. Their direct interpretation is rather difficult; however, for 
comparative lesions detection they can be subjected to a statistical data processing. It should 
be remarked that spectral components of a given image are in general not statistically 
independent. Their cross-correlations thus can be used to a reduction of data necessary to 
aneffective lesions detection (Kulikowski J. L., Przytulska M. (2009b). However, for the sake 
of simplicity of lesions detection procedures statistical dependence of spectral components 
can in practice be neglected.  Moreover, in order to avoid an effect of parallel image shift 
sensitivity of the results of spectral texture analysis using absolute spectral components 
instead of their original, real magnitudes is reasonable.  For basic parameters characterizing 
statistical properties of the spectral components calculation, first, histograms (experimental 
probability densities) of their intensity in the given ROI should be calculated. For this 
purpose, instead of single matrices U’, U” (see (1)-(4)) used to contents of selected ROIs 

presentation sets of spectral matrices can be used. Let us denote by Λ(n) the set of symbolic 

names of n-th level spectral components and let λ  be a shortly denoted symbolic name of a 

spectral component. We denote by vμ* = [vμ,λ], λ ∈ Λ(n), a vector of spectral components of μ-

th basic window of the considered ROI, μ ∈ [1,2,…,M(n)], (M(n) being 4n times reduced with 
respect to the number M  of pixels in the original ROI). Then, the spectral ROI representation 

will be given by a matrix V(n) composed of M(n) rows vμ* describing the spectra of basic 

windows. A λ-th column v*λ of V(n) consists of the λ -component  values in the basic 
windows of the ROI. Any statistical parameters of spectral components should be thus 
calculated on the corresponding V(n) columns considered as random vector’s instances. For a 

v*λ component’s histogram hλ(δ) calculation  the  minimal vλ min and maximal vλ max values in 

the column v*λ  first should be found. 
 

 

Fig. 11. Effects of image details smoothing by the S operation  used after (SH, SSH) and 
before (HS, HSS) the basic operation H performed on a SPECT image of a brain. 
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Then, according to the desired statistical parameters estimation accuracy, an interval length 

 
max  min - 

 - 1

ǌ ǌv vǃ =
Δ

 (15) 

where Δ  > 1 is a fixed natural number, should be calculated. On the abscissa axis Δ  left-
open right-closed intervals: 

 bδ = (vλ min+ (δ – 1–½)β, vλ min+ (δ –1+½)β],   δ ∈ [1,2,…, Δ ] (16) 

of δ  length should be chosen and for each bδ  the number  nδ  of  the elements of  v*λ  whose 

values fall into bδ  should be evaluated. The histogram is then defined as a vector hλ(δ) = [h1, 

h2,…,hΔ] whose components are given by the frequency rates: 

 
( )

 
δ

δ
n

n
h

M
=  (17) 

Of course, it should be ( )

1

nδ
δ

n M
Δ

=
=∑ . In Fig. 12 several histograms of morphological spectra 

components are shown. For comparison, the 1st level, S and X components of ultrasound 
liver imaging in a normal and liver fibrosis diagnosed patients have been chosen. The visual 
differences between the diagrams seem rather small. However, the beside shown estimated 
parameters of the histograms exhibit non-negligible differences: the histograms in ill 
patients are shifted to the right. This becomes evident if the minimal and mean values of the 
corresponding spectral components in normal and ill patients are compared. This example 
illustrates the idea of using morphological spectra as source of parameters suitable to 
comparative lesions detection. For this purpose, the following widely used parameters can 
be calculated and used: 

• Minimal, vλ min  and maximal, vλ max component values; 

• Statistical mean: 

 
1

ǌ δ
δ

m δ h
Δ

=
=∑  (18) 

• Median: 

 medλ = δ* such that 
( )*-1 *

1 12

nδ δ
δ δ

δ δ

M
n n

= =
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• Standard deviation: 
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• Skewness: 

 

3

1
3

(  - )
1

 
( )

ǌ
δǌ

ǌ

δ m

sk
sdev

Δ

==
Δ

∑
 (21) 

www.intechopen.com



 Biomedical Engineering, Trends, Research and Technologies 

 

502 

• Kurtosis:  
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•   Entropy: 

 
1

- ln( )ǌ δ δ
δ

H h h
Δ

=
= ∑  (23) 

etc.  
 

 
                                                a)                                                                                 b) 

 
                                                  c)                                                                                  d) 

Fig. 12. Histograms of selected liver tissue morphological spectra components:  
a) S component in a normal patient, b) X component in the normal patient,  
c) S component in an ill (liver fibrosis diagnosed) patient, d) X components in  the ill patient. 

Finally, for each λ-th spectral component we get a sequence of F estimated parameters w*λ = 
[w1λ, w2λ,…, wFλ]tr (for the sake of convenience presented here in transposed, horizontal 
form). For further considerations, the contents of compared ROIs instead of their original 
images U’, U” will thus be presented by two matrices W’, W” of F×L size, L denoting the 
number of spectral components selected for image analysis (L ≤ 4n), composed of the 
corresponding column-vectors w’*λ, w”*λ . 

4.3 Statistical aspects of textures’ similarity. 
On the basis of morphological spectra the notion of textures’ similarity can be formulated so 
that the randomness of textures is taken into consideration. 
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Definition 3  

A set of objects Ξ = {uμ* } described  by their  morphological  spectra  v’μ*   is  called a         

fuzzy e-similarity class if for a given real non-negative vector e = [eλ ], λ ∈Λ(n), standard 

deviations sdevλ  of its spectral components satisfy the inequalities  

 sdevλ ≤ eλ . (24) 

Taking into account that various spectral components in textures similarity establishment 
may be of different importance, the inequalities (24) can be used as basis of a multi-aspect 
similarity measure based on logical tests. For different spectral components or their 
algebraic combinations different tests and final similarity criterion, according to Theorem 1, 

as their product can be established. In similar way, a dissimilarity of a pair Ξ’, Ξ” of objects 
can be defined. 
Definition 4 

For a given dissimilarity measure  δ  and a fixed d, 0 ≤ d ≤ 1, two texture instances u’μ*, u”μ* 

are called fuzzy d-dissimilar if their morphological spectra v’μ* , v”μ* satisfy the condition 

 δ(v’μ*, v”μ*) ≥ d. (25) 

In this case, the dissimilarity measure can also be defined as multi-aspect, constructed 
according the Theorems 3 and 4, based on all estimated statistical parameters of 
morphological spectra.   

5. General remarks on multi-aspect comparative detection of lesions 

To the above-defined notions of fuzzy e-similarity and fuzzy d-dissimilarity in application to 
lesions detection a medical interpretation can also be assigned. A notion of medical 
diagnostic test’s sensitivity is related to its ability to detect with high accuracy existence of a 
pathological factor. In comparative lesions detection this property is connected with ability 
to assign high dissimilarity measure to the textures of a normal and a pathological tissue. 
On the other hand, a diagnostic test’s specificity means its ability to neglect seemingly 
pathological factors. In comparative lesions detection this means that high similarity 
measure is assigned to the basic windows within the same (normal or pathological) ROI. It 
might seem that both, high sensitivity and high specificity of lesions detection can easily be 
reached by choosing the (in Definitions 3 and 4 mentioned) threshold levels e and d as low 
as possible. However, it is not so. Low d means high that highly similar textures could be 
decided different. Moreover, it might happen in this case that certain objects are decided 

both, e-similar and d-dissimilar to a given set Ξ.  In order to avoid this situation d should be 
chosen so that an intersection of the fuzzy e-similarity and (1– d)-similarity classes is 
reduced. However, this situation may on the other hand lead to existence of objects e-similar 

neither to  Ξ ’ nor to Ξ ”. The effect of strengthening the dissimilarity criterion by threshold d 

is illustrated in Fig. 13. For a 128×128 size SPECT image of brain (compare Fig. 2) absolute 
value of spectral component SX, as most sensible to fine local texture granularity, was 
calculated. Then, a difference of this component between the right and left cerebral 
hemisphere was taken into consideration as a parameter characterizing the disparities 

between the corresponding 4×4 basic windows in the two ROIs covering the hemispheres.  
The spectral images b), c) and d) are presented in artificially increased scale, compensating 
the effect of their size reduction caused by basic windows increasing. Logical dissimilarity 
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test consisted in checking the difference value exceeding a threshold level dSX . Higher 
threshold level brings to a reduction of detected local disparities. 
 

 
                                   a)                           b)                         c)                          d) 

Fig. 13. Disparities detection in cerebral SPECT image: a) original image, b) its  morphological 
X component, c) disparities on low dissimilarity level, d) disparities on  high dissimilarity 
level. 

Hence, it follows from the analysis and example that reaching simultaneously a detection 

rule of high sensitivity and high specificity is impossible. Taking this basic constraint into 
account one can formulate the comparative lesions detection problem as follows: 

Assume that Ξ ’ and Ξ ” are two subsets of objects in XN considered as instances of two 
statistical populations. Let there be given criteria of fuzzy similarity of objects within the 
separately taken populations and fuzzy dissimilarity of objects belonging to different 
populations, based on estimated statistical parameters of the populations. Check: a) the 

fuzzy similarity requirement being satisfied by Ξ ’ and Ξ ”, b) in positive case – the 

requirement of fuzzy dissimilarity of Ξ ’ and Ξ ”. 
This problem formulation does not settle the necessity of using morphological spectra to 
textures description. The concepts of multi-aspect similarity measure and dissimilarity 
measure admits using combinations of various types of objects description. However, 
statistical nature of textures forces preferring fuzzy similarity and dissimilarity concepts 
with respect to their deterministic versions. It also should be remarked that if fuzzy 

similarity of  Ξ ’ and Ξ ” is not satisfied, checking their dissimilarity is pointless; such 
situation may arise if ROIs have been delineated on the borders between different textures. 
Statistical nature of textures leads also to another type of limitation. Fuzzy similarity and 
dissimilarity of sets of instances of random objects can be the more accurately established 
the larger are the populations. This leads to a necessity of ROIs containing large number of 
basic windows delineation. However, this means that small-area lesions are poorly 
detectable. Therefore, the requirements of high lesions detection sensitivity and of high 
accuracy of small lesions localization can not be together satisfied. This can be considered 
as a sort of uncertainty principle in lesions detection.  
A general scheme of comparative lesions detection realizing the above-presented concept 
based on morphological spectra application is shown in Fig. 14. In reaching high 
effectiveness of lesions detection selection of spectral components, choosing their statistical 
parameters and construction of similarity and dissimilarity measures play a crucial role. 
This can be reached by experiments rather than by solving a typical mathematical 
optimization problem. Moreover, experiments performed on different types of textures 
usually lead to different recommendations for choosing satisfactory solutions. In particular, 
it is necessary to distinguish isotropic and anisotropic biological tissues and to chose 
adequate to this combinations of spectral components for texture analysis. The S- and X-
type operations are insensible to the anisotropy of texture, V-type operation is sensible to 
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vertical, while H-type to horizontal structures. Therefore, in anisotropic textures analysis 
combinations of spectral components   containing V- and H-operators (e.g. SH and SV, XVH 
and XHV, etc.) equally should used.   

7. Conclusion 

Comparative lesions detection is a well known technique used in medical diagnosis. It is 
based on an assumption that even  if  not only the existence, but also the form, size, location 
in patient’s body, etc. of a lesion are not a priori known, nevertheless, it can be assumed that 
they exhibit differences with respect to a normal body. To detection of such differences  
 

Image acquisition

Fixing ROIs for comparative analysis

Calculation of morphological spectra

Calculation of histograms of spectral components

Calculation of statistical parameters of histograms 

Construction of similarity and dissimilarity measures

Checking fuzzy e-similarity of sets of objects

Checking fuzzy d-dissimilarity of sets of objects

Final decision making about detection of a lesion

N Y 
Decision about continuation of 

calculations

 
 

Fig. 14. Scheme of comparative lesions detection algorithm based on morphological spectra. 
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various approaches can be used. All they should satisfy the requirement of high sensitivity 
and specificity of lesions detection. Unfortunately, the requirements are in a sort of 
contradiction leading to the necessity of choosing a compromise between them. Moreover, a 
simultaneous reaching high detection effectiveness and high accuracy of lesion’s localization 
in the body is also limited. The above-mentioned difficulties inspire looking for advanced 
lesions detection methods based on new concepts and effective mathematical tools.  
The above-presented concept of multi-aspect similarity measures based on strongly defined 
assumptions, in combination with this of morphological spectra and on some standard 
statistical methods seems generally to satisfy those expectations. Nevertheless, at a present 
state it still needs more experiments to be verified on large and more diversified sets of 
clinical data.  
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