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1. Introduction  

Aliphatic polyesters are biocompatible and biodegradable polymers exhibiting good 
mechanical properties and hydrolyzability. They are among the best characterized and most 
studied biodegradable systems for temporary biomedical applications such as drug delivery 
systems, resorbable implants or tissue engineering scaffolds. Properties such as 
hydrophilicity and biodegradation can be tailored by the introduction of biologically 
relevant functional groups in the polymer. This chapter examines critically the various 
strategies implemented for this purpose. 
Polyesters can be synthesized by polycondensation (step growth polymerization) or by ring 
opening polymerization (chain growth polymerization). A specific functionality can be 
introduced via these polymerizations using functionalized monomers or functionalized 
initiators. The presence of functional groups such as hydroxyls for instance can be 
detrimental for both polymerization methods, leading to deactivation and/or undesirable 
crosslinking reactions. Protection/deprotection chemistries are thus usually applied prior 
and after polymerization. These strategies will be presented and illustrated by relevant 
examples. Such multistep approaches provide interesting and sophisticated materials but 
require long production times and high production costs. For practical applications 
however, biomedical materials must also be cost-effective, introducing a balance between 
sophistication and ease of production. Recent advances enabling a one pot approach for 
each strategy are of particular interest (Zinck 2009) and are further presented and discussed 
in this frame. 

The polyesters classically used for biomedical applications are poly(ε-caprolactone), 
poly(lactic acid), poly(glycolic acid) (Fig. 1) and their copolymers, and in a lesser extent, 
poly(3-hydroxybutyrate) and polyorthoesters. This chapter focuses essentially on the first 
three polyesters, with some extensions to other polyesters when the synthetic strategy or 
functionalization concept is judged relevant. These polyesters can be synthesized by the 

ring-opening polymerization of the corresponding cyclic ester (ε-caprolactone, lactide and 
glycolide, respectively, the two latter being dimers) and by polycondensation of the 

corresponding ω-hydroxyacid (6-hydroxyhexanoic, lactic and glycolic acids respectively). 6-
hydroxyhexanoic acid is scarcely isolable, and the polycondensation route for the formation 

of poly(ε-caprolactone) is rarely used. Lactic acid has a stereocenter, and can be found as L-
lactic acid, D-lactic acid or a racemic mixture of both forms. The lactide dimer exhibits thus 

www.intechopen.com



 Biomedical Engineering, Trends in Materials Science 

 

490 

two diastereomeric forms. The most widely used forms of the polymer are poly(L-lactic 
acid) or poly(L-lactide) and poly(D,L-lactic acid) or poly(D,L-lactide). 
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Fig. 1. Polyesters used for biomedical applications and their monomers 

This chapter deals mainly with linear polymers and graft copolymers, with some extensions 
to star-shape polymers. Networks (e.g hydrogels), dendrimers and hyperbranched 
macromolecules have not been considered. Post-polymerization modifications of the 
polymers have not been dealt with in a systematic manner, but appear when judged 
relevant for specific strategies. Metal mediated polymerizations can lead to the presence of 
residual metal traces in the material, which can be detrimental for the targeted applications. 
This can be circumvented by the use of organic molecules or enzymes as polymerization 
mediators. A particular emphasis on organocatalysis and enzymatic catalysis will be made 
in this frame. Recent approaches based on click chemistry will also be presented. This 
multistep strategy has gained much interest in the last years, due to its relative simplicity 
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and the tolerance of the groups formed. The chapter is divided into three sections covering 
the main strategies in the field of ring-opening polymerization, polycondensation and 
transesterification illustrated by several examples. 
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Fig. 2. Ring-opening polymerization mechanisms 

2. Ring-opening polymerization 

2.1 Basics and concepts 
2.1.1 Ring-opening polymerization mechanisms 

Ring-opening polymerization of cyclic esters can occur via different mechanisms, and 
readers interested in more details are invited to consult reviews on this subject (see for 
example Albertsson & Karma, 2003). The ring-opening polymerization pathways reported in 
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this chapter are anionic, coordination-insertion, nucleophilic and cationic, and are shown in 
Fig. 2. Organocatalytic ring-opening polymerization can be considered when using organic 
molecules as catalysts or initiators for the polymerization. It can be found here as 
nucleophilic polymerization or cationic monomer activated polymerization. 

2.1.2 Statistical, sequential block copolymerizations and end functionalization 

The simplest strategies used for modifying the properties of a polymer are statistical and 

sequential block copolymerizations (Fig. 3). Copolymerization involves the use of more than 

one monomer. When two monomers are polymerized simultaneously, the polymerization is 

called statistical. In a sequential block copolymerization, one of the monomers is 

polymerized in a first step, and the second monomer is polymerized after completion of the 

first step. The polymerization has to be living in this case, i.e the active species has to be 

stable at the end of the first step. Numerous catalytic systems developed in the recent years 

for the ring-opening polymerization of cyclic esters enables statistical and sequential block 

copolymerization of lactide, glycolide and ε-caprolactone. Copolymers between poly(lactic 

acid) and poly(glycolic acid) can also be synthesized by polycondensation techniques, and 

enables to confer more hydrophilicity to the resulting copolymer and a higher degradation 

rate in comparison with pure poly(lactic acid). Of interest is also the combination of 

polyesters with poly(ethylene glycol), a water-soluble polymer also called poly(ethylene 

oxide), which confers also hydrophilicity to the resulting materials (the structure of 

poly(ethylene glycol) can be seen in Fig. 19). Such a combination can be done by numerous 

ways that will be presented in this chapter. The anionic sequential block copolymerization 

of ethylene glycol and D,L-lactide for example results in the formation of such block 

copolymers (Yasugi et al., 1999).  
 

Monomer1 Polymer1 Monomer2
Block copolymer

Monomer1

Ring Opening
Polymerization

Monomer2 Statistical copolymer

+

Ring Opening
Polymerization

Ring Opening
Polymerization

 

Fig. 3. Statistical and sequential block copolymerizations 

The living character of certain polymerizations enables also a sequential end 

functionalization of the polymer. Instead of a second monomer, a functional group is 

introduced at the end of the first step, leading to a sequential end-functionalization of the 

polymer. This differs from one-pot end functionalization, where the functionalized 

compound is introduced at the beginning of the polymerization, as discussed in section 2.2. 

Coupling reactions can also be performed. For example, telechelic carboxylic chlorides end-

capped poly(ethylene glycol) can react with the hydroxyl end group of poly(ε-caprolactone) 

to yield triblock copolymers (Morikawa et al., 2008). 
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2.1.3 Graft copolymerizations 

Graft copolymers represent another kind of architecture that can be obtained. The synthesis 
of graft copolymers can be realized by three different ways (Fig. 4). In the grafting from 
method, the grafts are polymerized starting from the polymeric backbone, which can be 
considered as a macroinitiator. The graft can also be introduced on the monomer, whose 
polymerization leads to the graft copolymer. This is known as the grafting through process. 
In the grafting onto approach, a polymer end-capped with a reactive group is grafted onto 
the macromolecular backbone via reaction with another reactive group. 
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Fig. 4. Graft copolymerization strategies. RG represents a reactive group 

2.2 One-pot end functionalization and grafting from methods (Fig. 5) 
Ring opening polymerization can occur via anionic, coordination-insertion, nucleophilic or 
cationic mechanism. Alcohols and/or alkoxy groups can initiate the growth of one 
macromolecular chain for these polymerizations (see Fig. 2). The general functionalization 
strategy consists in the use of relevant hydroxyl bearing compounds: 
i. to modify the initiator of anionic and coordination/insertion ring-opening 

polymerization 

ROH + M-R’→ RO-M + R’H 

ii. as a co-initiator, as presented in Fig. 2 for nucleophilic and cationic mechanisms.  
The presence of high amount of hydroxyl groups is thus detrimental, and 
protection/deprotection chemistries are usually applied in the presence of highly 
hydrophilic compounds such as carbohydrate derivatives. This will be presented for anionic 
and coordination/insertion ring opening polymerization in section 2.2.1 and 2.2.2 respectively. 
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Fig. 5. End functionalization and grafting from methods, using carbohydrates as 
polymerization initiators 

The use of regioselective catalysts such as enzymes or certain organic molecules can lead to 
regioselective end-functionalization and/or grafting from approaches without 
protection/deprotection steps. This will be presented in sections 2.2.3 and 2.2.4, respectively. 
Section 2.2 focuses essentially on carbohydrates derivatives for the end-functionalization of 
polyester, regarding the scope of the article. Note that the overall strategy can also be applied 
to the synthesis of block copolymers, using hydroxyl end-capped polymers such as 
poly(ethylene glycol) for instance as ROH initiator (via organocatalytic (Nyce et al., 2003) and 
coordination/insertion (Choi et al., 2006) ring opening polymerization). 

2.2.1 Anionic ring-opening polymerization 

The strategy consists here to use the carbohydrate compound as the counter-ion of the metal 
catalyst (Fig. 6, Ouchi et al., 2001). Protected D-glucose bearing an hydroxyl in the C1 
position is allowed to react with the tBuOK anionic initiator to form the corresponding 
glucosate. This latter compound is used to polymerize L-lactide in tetrahydrofuran at room 
temperature. Subsequently, the removal of O-protecting benzyl groups in the terminal 
carbohydrate can be carried out by hydrogenolysis with Pd/C to obtain D-glucose-end-
capped poly(L-lactide). Number-average molecular weights of 5700 g/mol were reported 
with polydispersity index of 1.35. Due to the living character of anionic polymerization, this 
strategy can also be used to synthesize monosaccharide end-capped poly(D,L-lactide)-block-
polyethylene glycol copolymers (Yasugi et al., 1999). 

2.2.2 Coordination – insertion 

The strategy is close to that reported for anionic polymerization, i.e the carbohydrate 

compound serves as counter-ion of the catalyst metal. The main difference resides in the 

possibility of rapid and reversible chain transfer for coordination – insertion ring opening 

polymerization. The reaction can operate in the presence of excess alcohol vs. catalyst metal, 

leading to the growth of several macromolecular chains per metal atom (Fig. 7). 

One may distinguish here end functionalization and grafting from strategy. The 

polymerization starts from a single compound such as monosaccharide for the former, while 

the grafting from method starts from a polymer such as a polysaccharide for the latter. 

Poly(ε-caprolactone) (Hamaide et al., 2001) and poly(L-lactide) (Bernard et al., 2003) were 

polymerized starting from protected monosaccharides, yielding monosaccharides end-

capped polymers and eventually nanoparticles (Hamaide et al., 2001). The number-average 

molecular weight and polydispersity indexes were up to 4000 g/mol vs. polystyrene 

standards and 1.2 for poly(L-lactide) (Bernard et al., 2003) and up to 10 000 g/mol and 1.1 

for poly(ε-caprolactone) (Hamaide et al., 2001). Linear protected carbohydrates end-capped 

poly(D,L-lactide) (Tang et al., 2008 – Fig. 8) and macrocyclic polycaprolactone were also 

synthesized  by this way (Kricheldorf & Stricker, 2000 – Fig. 9) as well as poly(ethylene 
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glycol)-block-poly(ε-caprolactone) copolymers (Choi et al., 2006). The polymerization is 

initiated by a hydroxyl end-capped poly(ethylene glycol) in this latter case. 
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Fig. 6. Poly(L-lactide) end functionalization via anionic ring-opening polymerization (Ouchi 
et al., 2001) - Bn = benzyl 
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Fig. 8. Poly(D,L-lactide) end functionalization via coordination/insertion ring-opening 
polymerization using linear derivatives (Tang et al., 2008) 
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Fig. 9. Macrocyclic poly(ε-caprolactone) (Kricheldorf & Stricker, 2000) - Ac = CH3CO- 

Coordination/insertion ring-opening polymerization was also used for grafting from 
approaches. Dextran was used as an initiator for the grafting from approach, leading to 

poly(ε-caprolactone)-graft-dextran (Ydens et al., 2000) and poly(D,L-lactide)-graft-dextran 
copolymers (Nouvel et al., 2004). The polysaccharide was protected in a first step, and could 
be easily deprotected after the polymerization (Fig.10). Aluminum, tin and zinc alkyls or 
alkoxy are the most widely used catalysts for the strategies presented in this section.  

2.2.3 Enzymatic ring opening polymerization 

Poly(ε-caprolactone) was functionalized by this way using Candida antartica lipase B 

(Novozym 425, Córdova et al., 1998) and porcine pancreatic lipase (Bisht et al., 1998). The 

reactions were conducted at 60-70°C in bulk, using alkyl galacto- and glucopyranoside as 

carbohydrate initiators. The reactions conducted without protection – deprotection steps 

were found to be highly regioselective, the oligo(ε-caprolactone) chains formed being 

attached by an ester link to the primary hydroxyl moiety of the carbohydrate initiator (Fig. 

11). Weight-average molecular weights around 4000 g/mol were reported with 

polydispersity indexes around 1.3 using Candida antartica lipase B (Córdova et al., 1998), 

while weight-average molecular weights of 2200 g/mol (vs. polystyrene standards) were 

reported for porcine pancreatic lipase (Bisht et al., 1998). The resulting carbohydrate end-

capped oligo(ε-caprolactone) can be further used for the synthesis of multi-arm poly(lactide-

co-(ε-caprolactone)) via coordination/insertion ring opening polymerization (Deng et al., 

1999). The oligo(ε-caprolactone) hydroxyl end group is first protected by lipase catalyzed 

acetylation, and the remaining carbohydrate free hydroxyl groups can further initiate the 

polymerization of L-lactide mediated by tin octanoate (Fig. 11). 
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Fig. 10. Synthesis of poly(ε-caprolactone)-graft-dextran via coordination/insertion ring- 
opening polymerization (Ydens et al. 2000) - HMDS = 1,1,1,3,3,3-Hexamethyldisilazane, R = 
-Si(CH3)3 or H. 

2.2.4 Organocatalysis  

Personn et al. (2004) reported the use of lactic acid as a catalyst for the ring-opening 

polymerization of ε-caprolactone initiated by unprotected mono, di and tri-saccharides. The 

reaction was conducted at 120°C in bulk. The main products were regioselectively acylated 

on the primary hydroxyl groups of the carbohydrate end groups. Weight-average molecular 

weights of 2000 g/mol (vs. polystyrene standards) were reported with polydispersity 

indexes of 1.5. This one-step approach conducted without protection – deprotection steps 

lead to both carbohydrate (major product) and lactic acid end-capped poly(ε-caprolactone), 

as lactic acid also initiates the polymerization of ε-caprolactone under the experimental 

condition reported. (Fig. 12) 
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Fig. 11. Regioselective one-step poly(ε-caprolactone) end functionalization via enzymatic 
ring-opening polymerization (Bisht et al., 1998) and subsequent multiarm formation via 
coordination/insertion ring-opening polymerization of L-lactide (Deng et al., 1999) - 
Ethylglucopyranoside consists of a mixture of α- and β-anomers 

O

OH

HO

OH

CH2OH

OCH3

Lactic acid (catalyst)

ε-caprolactone (monomer) O

OH

HO

OH

CH2O

OCH3

(CH2)5

O

O
H
n

CHO (CH2)5

O

O
H
n

CH3

O

HO

120°C, Bulk

+

 

Fig. 12. One-pot poly(ε-caprolactone) end functionalization via organocatalytic ring-opening 
polymerization (Persson et al., 2004) 
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Fig. 13. Synthesis of poly(ε-caprolactone)-graft-chitosan via organocatalytic ring-opening 
polymerization (Feng et al. 2004) 

The grafting from approach was also applied using organocatalysis. Feng et al. (2004) 

reported the synthesis of poly(ε-caprolactone)-graft-chitosan using 4-dimethylaminopyridine 

as a catalyst and water as a swelling agent starting from unprotected chitosan. The amino 

group of chitosan initiated the graft polymerization of ε-caprolactone through the chitosan 

backbone, while the hydroxyl group (HO-CH2) of chitosan did not react (Fig. 13). 

Unprotected cyclodextrins were also used as initiators for the ring opening polymerization 

of lactones in the absence of catalysts. The yield remains modest for the polymerization of ε-
caprolactone initiated by β-cyclodextrin in bulk at 100°C, but the reaction was shown to be 

regioselective, yielding a polymer attached to the C2-hydroxyl group of a single 

glucopyranose unit of the cyclodextrin (Takashima et al., 2004). 

2.3 Use of functionalized compounds as (co-)monomers  

The polymerization of functionalized cyclic esters represented in Fig. 14 is often rendered 

difficult by the chemical nature of the functional group. The latter must not interfere with 

the ring-opening polymerization, or has to be protected. Deprotection of sensitive functional 

groups and/or derivatization are thus applied, in addition to the synthesis of  

the functionalized monomer. This section presents some of the strategies developed in this 

field. 
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Fig. 14. Use of functionalized compounds as monomer or comonomer for the ring-opening 
polymerization of cyclic esters - FG represents a functional group 
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2.3.1 Protection strategies 

A typical example of the synthesis of a cyclic ester bearing a protected hydroxyl group is 

presented in Fig. 15 (Trollsas et al., 2000). The ε-caprolactone derivative is generated by the 
Bayer-Villiger oxidation of the corresponding cyclohexanone, and is polymerized using tin 
octanoate, followed by the deprotection of the hydroxyl group. The authors reported also 
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Fig. 15. Synthesis and polymerization of cyclic esters bearing a protected hydroxyl group 
(Trollsas et al., 2000) 
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Fig. 16. Examples of carbohydrate derived monomers : 3-(1,2-3,4-tetraoxobutyldi-
isopropylidene)dioxane-2,5-dione ((a), Benabdillah et al., 1999), 1,2-o-isopropylidene-[D]-
xylofuranose-3,5-cyclic carbonate ((b), Chen & Gross, 1999) and 1,4-dioxane-2,5-diones 
featuring pendant carboxyl groups (P = protecting group, x=1, R=CH2COOP; x=1, R=H; 
x=2, R=CH3, Thillaye du Boulay et al., 2008) 

the synthesis of bishydroxyl, amino, and carboxyl functionalized poly(ε-caprolactone) using 

similar strategies. New carbohydrate derived cyclic esters or carbonate monomers where the 

functional groups are protected have also been synthesized (Fig. 16). They can be further 

polymerized or co-polymerized with classical polyester precursors. 

2.3.2 Non-sensitive functional groups and derivatization 

The synthesis of ε-caprolactone bearing allyl or cyclopentene pendent groups that are not 

sensitive to ring opening polymerization was reported (Mecerreyes et al., 2000 and Parish & 

Emrick 2004). The resulting monomer can be copolymerized with ε-caprolactone and 

lactide, and derivatization can be further performed, such as bromination, epoxidation, and 

hydrosylilation of the allyl group. The obtention of graft copolymers with poly(ethylene 

glycol) is also possible by conversion of the cyclopentene groups to 1,2-diols, and coupling 

of the hydroxyl groups to poly(ethylene glycol)-carboxylic acid derivatives. This latter 

approach, known as grafting onto, is presented in the next section using click chemistry. 

2.3.3 Grafting onto methods and click chemistry 

Grafting onto methods knows a recent regain of interest due to the development of click 

chemistry. Click chemistry considers reactions that can be carried out under mild 

conditions, in the presence of various functional groups, leading to high yields and to the 

generation of few or none harmless by-products. Among the reactions used in click 

chemistry, the most popular is the copper(I)-catalyzed alkyne-azide cycloaddition 

represented in Fig. 17. The application of this reaction for in vitro and in vivo studies 

suggests that the resulting 1,2,3-triazole group is biocompatible.  
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Fig. 17. Copper(I)-catalyzed alkyne-azide cycloaddition 

The use of click chemistry for the functionalization of polyesters has also been reported for 
block copolymerization and for the synthesis of star-shaped polymers (Lecomte et al. 2008), 
but the most interesting strategies remain the grafting onto and grafting through 
approaches. The latter will be briefly described in the next paragraph. For the grafting onto 
strategy, cyclic esters bearing an azide or alkyne functional group are synthesized in the first 
step, followed by ring-opening polymerization and the grafting of an azide or alkyne end-
capped polymer onto the functionalized polyester backbone.  

Parrish et al. (2005) pioneered this approach synthesizing a α-propargyl-δ-valerolactone that 

was further copolymerized with ε-caprolactone (Fig. 18). The resulting alkyne grafted 
aliphatic polyester served as backbone for clicking oligopeptide moities and poly(ethylene 

glycol) onto the backbone. The synthesis of other monomers of interest such as α-azide-ε-
caprolactone (Riva et al., 2005) and 3,6-dipropargyl-1,4-dioxane-2,5-dione (Jiang et al., 2008) 
and subsequent polymerization and grafting have also been reported in the literature, 

leading notably to poly(ethylene glycol)-graft-poly(ε-caprolactone) and –polylactides, 
respectively. Note that the reactive groups used for the grafting onto method can also be 
introduced by post-polymerization modification of a chloro-functionalized polyester 
backbone (Riva et al., 2005). 

2.3.4 Grafting through methods 

In this approach, a cyclic ester bearing a pendant macromolecular chain is synthesized and 

polymerized. Poly(ethylene glycol) chains end-capped by an ε-caprolactone unit have been 
synthesized by living anionic ring-opening polymerization of ethylene oxide initiated by the 
potassium alkoxide of 1,4-dioxaspiro[4,5]decan-8-ol, followed by derivatization of the acetal 
into a ketone and the Baeyer-Villiger oxidation of the ketone into a lactone (Rieger et al., 

2004). The polymerization of this monomer lead to poly(ethylene glycol)-graft-poly(ε-
caprolactone). This is represented in Fig. 19. Click chemistry can also be used for the 

synthesis of poly(ethylene glycol) macromonomers based on ε-caprolactone and lactide 
(Riva et al., 2005 and Jiang et al., 2008, respectively).  

3. Polycondensation (Fig. 20) 

The synthesis of polyesters can take place by polycondensation of diols with diacids (AA – 
BB) or by the polycondensation of hydroxyacids (AB), leading to the formation of water as 
by-product. The reaction often takes place under vacuum to remove the water formed. High 
molecular weights are generally difficult to achieve. The section begins with the description 
of melt/solid polycondensation, a strategy developed to obtain high molecular weight 
poly(lactid acid) and poly(glycolic acid). The introduction of functional groups into 
polyesters by polycondensation is rendered difficult by the sensitivity of the functional 
groups, often secondary alcohols, to the polymerization. The brief description of protection  
 

www.intechopen.com



Synthetic Strategies for Biomedical Polyesters Specialties   

 

503 

O

O

lithium
N,N'-diisopropylamide,

THF

Br

O

O

ε-caprolacone
Sn(OTf2) - EtOH

RT, 48h

O

O

OH

O

O n n

(1)

GRGDS - Resin

Br

O

OH

+ Br

O

O GRGDS

1. N,N'-
diisopropylcarbodiimide
1-hydroxybenzotriazole

2. cleavage - deprotection

NaN3

N3

O

GRGDS

(2)

O

O

OH

O

O n n

N N

N GRGDS

(1) + (2)

CuSO4.5H2O
Sodium ascorbate

 

Fig. 18. Synthesis of oligopeptide-graft-aliphatic polyester via click chemistry and grafting 
onto approach (Parrish et al., 2005) - GRDS is an oligopeptide sequence. 
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Fig. 19. Synthesis of poly(ethylene glycol)-graft-poly(ε-caprolactone) copolymers via the 
grafting through method (Rieger et al., 2004). EO = ethylene oxide. 
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Fig. 20. Polycondensation. FG represents a functional group. 

strategies used for this purpose is followed by recent advances in one-step strategies 
enabling the functionalization of polyesters by polycondensation without the need to 
protect the functional group, i.e enzymatic and Lewis acid catalysis. Note that these one-pot 
strategies lead to polyesters bearing multiple functional groups along the polymeric 
backbone. 

3.1 Melt and solid polycondensation 

The acid form of ε-caprolactone, 6-hydroxyhexanoic acid, is scarcely isolable, and thus, 

poly(ε-caprolactone) is rarely synthesized by polycondensation techniques. Lactic and 
glycolic acids are in turn naturally occurring products, and their polymers and copolymers 
can also be made via polycondensation. A major drawback is the removal of the water 
formed during the polymerization, leading often to modest number-average molecular 
weight. This drawback can be overcome via melt and solid polycondensation techniques.  
Melt polycondensation is conducted under reduced pressure at high temperature, starting 
from oligomers of the targeted polymer. One may distinguish melt polycondensation from 
solid polycondensation; in the former case, the polymerization is conducted at a 
temperature above the melting temperature of the polymer. For example, the melt 
polycondensation of oligo(L-lactic acid) was conducted using SnCl2 combined to protonic 
acids such as p-toluenesulfonic acid monohydrate or m-phosphoric acid (Moon et al., 2000). 
Weight average molecular weights up to 100 000 g/mol were obtained. The crystallization 
of the so-obtained poly(L-lactic acid) and subsequent solid polycondensation at temperature 
below the melting temperature lead to weight average molecular weights up to 500 000 
g/mol using similar catalytic systems (Moon et al., 2001). Melt/solid polycondensation can 
also be applied to oligo(glycolic acid) (Takahashi et al., 2000). 

3.2 Protected monomers 

The introduction of functional groups such as secondary hydroxyls is rendered difficult by 
the possible reaction of these groups with the acid functionality, leading to cross-linking and 
gelation. The strategy consists thus usually in the protection of secondary alcohols on a 
functional compound, or to the synthesis of monomers where the secondary hydroxyl 
functions are protected. There are numerous works dealing with the synthesis of new 
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monomers with protected functional groups, often starting from carbohydrate derivatives. 
For example, protected gluconic acid in the form of 2,4,3,5-di-O-methylene-D-gluconic acid 
can by polymerized with benzoyl chloride (Mehltretter & Mellies  1955). The same strategy 
can also be applied to AA-BB polycondensation (Metzke et al., 2003, among others). 

3.3 One step introduction of functional groups into polyesters  

The synthesis of linear polyesters via one step polycondensation of monomers bearing 
secondary pendant hydroxyl groups relies on the selectivity of specific catalysts toward 
primary alcohols. Using such catalysts, the acid functionality reacts with primary alcohols, 
but not with lateral secondary alcohols, avoiding cross-linking and gelation. This can be 
done by enzymatic and Lewis acid catalysis. 
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Fig. 21. Lipase catalyzed regioselective polycondensation between triols and divinyl adipate. 
R=1, glycerol, R=2, 1,2,4-butanetriol, and R=4, 1,2,6 trihydroxyhexane (Kline et al., 1998) 
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3.3.1 Enzymatic catalysis 

Enzymatic catalyzed polycondensation enables a one-step synthesis of hydroxyl pendant 
polyesters using renewable resources as the polyol monomer. Using Novozyme-435 lipase 
and Candida antartica lipase B, glycerol, 1,2,4-butanetriol and 1,2,6 trihydroxyhexane can be 
copolymerized with divinyl esters to yield low to high molecular weight linear 
hydroxypolyesters (Kline et al. 1998, Uyama et al. 2001 – Fig. 21). The reaction is 
regioselective, as the pendant hydroxyl groups in the polymer are mainly secondary. 
Glycerol can also be copolymerized with adipic acid and 1,8-octanetriol using Novozyme-
435, yielding a few intermolecular crosslinks in addition to hydroxyl pendant groups 
(Kumar et al. 2003). Carbohydrate polyols such as sorbitol (Fig. 22) and alditols were also 
successfully copolymerized with 1,8-octanediol and adipic acid using the aforementioned 
enzyme as catalyst (Kumar et al., 2003, Hu et al., 2006).  

3.3.2 Lewis acid catalysis 

Lewis acid catalyzed polyesterification is another type of chemistry enabling a one step 
synthesis of linear polyesters bearing pendant hydroxyl groups. Using trifluoromethane 
sulfonate salts (known as triflate - M(OSO2CF3)n), sorbitol and glycerol were successfully 
copolymerized with diacids (Takasu et al. 2007). Lewis acid catalysis is rather versatile as 
diacids bearing pendant hydroxyl groups such as tartaric and malic acids could also be 
copolymerized selectively with diols in bulk and under reduced pressure. The resulting 
polyesters had low to average molecular weights.  The procedures are represented in Fig. 23. 
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Fig. 22. Novozyme-435-catalyzed regioselective polymerization of sorbitol with adipic acid 
and 1,8-octanetriol (Kumar et al., 2003) 
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Fig. 23. Scandium triflate catalyzed regioselective polycondensation of dicarboxylic acids 
and diols having pendant hydroxyl groups (Takasu et al., 2007) 

4. Transesterification 

The principle of transesterification is presented in Fig. 24. The reaction can start from an 

ester and an alcohol, or from two ester groups. Transesterification commonly occurs in the 

molten state, producing first block copolymers and finally statistical copolymers.  

 

+

Transesterification

Polymer1 Polymer2 Mutliblock copolymer  

Fig. 24. Transesterification 

Transesterification of poly(D,L-lactide) and polyethylene glycol was reported in acetone, 

without catalysts, leading to copolymers with number-average molecular weights up to 

6000 g/mol (Piskin et al., 1995). The polymer precursors exhibit number average molecular 

weights between 2000 and 4000 g/mol. Additional purification steps are necessary in order 

to remove the remaining homopolymer. The resulting copolymer was shown to form 

micelles, poly(D,L-lactide) being the hydrophobic segment and polyethylene glycol the 

hydrophilic segment, and were further used as drug carriers. The composition of the 

copolymer can be simply changed by varying the ratio of polymer precursors. The 

molecular weight of the resulting copolymer can be significantly increased starting from 

precursors of higher molecular weight. Using succinic acid as chain extender for 

poylethylene glycol, poly(L-lactide) and poly(D,L-lactide) of high molecular weight and 

titanium isopropoxyde as transesterification catalyst, molecular weight up to 40 000 g/mol 

vs. polystyrene standards could be achieved (Mai et al. 2009). 
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5. Conclusion 

The synthetic strategies for the functionalization of polyesters are numerous, and result in a 
great diversity of polyesters specialties for potential biomedical applications. Various 
architectures can be synthesized, including statistical and block copolymers, as well as graft 
and star-shape copolymers. Ring-opening polymerization leads generally to higher 
molecular weights than polycondensation, and has been more studied. Enzymatic and 
organocatalyzed ring-opening polymerization are particularly interesting, as they enable 
one-pot regioselective end-functionalizations of polyesters by carbohydrate derivatives 
notably, without protection/deprotection steps. Regioselective polymerization can also be 
conducted by polycondensation, considering enzymatic and Lewis acid catalysis. This leads 
to a higher number of functionalities along the polymeric backbone, which can only be 
achieved by protection / deprotection strategies or derivatization considering ring-opening 
polymerization. Transesterification leads on the other side to interesting microstructures, 
and can be conducted without catalysts in certain conditions. 
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