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1. Introduction    

In their beginnings, control systems were developed out of a full knowledge of the 
mathematical model of the process to be controlled. Nowadays, however, the trend for 
advanced control systems points to the fact that they can be developed without a previous 
knowledge of the mathematical model of the system to be controlled, hence leading to 
advantages and drawbacks at the moment of their application (Craig, 2006). Amongst the 
most remarkable disadvantages we have the fact that the higher accuracy we ask the 
controller, the more response delay we have (Ogata, 1996). That is why, if we can get a good 
enough system description, control systems can be simplified, enhancing their accuracy as 
well as their speed (Pierro et al., 2008). 
Advanced control techniques allow us an accurate control from a system predictor model, as 
the case of adaptive control techniques by reference model, studied in this chapter. An adaptive 
control system is a controller capable of modifying system's adjustable parameters generating 
an acting signal, in order to keep optimum performance independently from environmental 
modifications. Adaptive control can be represented through the following block diagram:  
 

Process

Identifier

Adaptive 
controller

Sensor

Adjustable
controller

Adaptation 
criteria

Ref Output

+
-

 
Fig. 1. Adaptive control block diagram 
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In the scheme we can notice the need of adaptive control for a model that allows to describe 
the system behavior.  
There are several techniques for modeling a system when we have not information about 
the model, as well as techniques that allows to estimate interesting parameters in a model, 
approximating it to a specific system. These techniques are known as system identification 
techniques, which allows to create or approximate specific mathematic models in order to 
describe, predict or simulate a system (Ljung, 1999).  
In the utilization of system identification methods we have to consider the dynamic nature 
of the system, since there are identification structures for models with linear and non-linear 
dynamics. Generally speaking, the knowledge of the system's dynamics is a previous or 
given information, or, in its absence, we can suspect the kind of structure that will describe 
in a better way the studied system. When starting any identification process, it is necessary 
to take three basic steps (Ljung, 1999): 
1. To carry out an experiment in order to obtain a data set. 
2. To choose a model to be adjusted. 
3. To select from a set of candidate models a rule by which candidate models can be 

assessed using the data. 
Henceforth, we follow with model estimation; as a general rule, those estimated models use 
to result acceptable after several iterations, where we must verify if the obtained model is 
the right one. 
 

Choose 
model 

set
Data

Choose 
criterion of fit

Calculate model

Model 
validation Not fitting, check

Fitting, use

Initial knowledge

Experiment
design

 
 

Fig. 2. System identification loop 

In this chapter we will review many system identification techniques and adaptive control 
techniques; both kinds will be applied in the identification and control of a SCARA 
industrial manipulator. In order to do that, we will obtain a model efficiently representing 
the dynamics of a SCARA robot, through Hammerstein-Wiener Models. Those models will 
be verified by implementing several trajectory experiments applied on the system. This 
identification is carried out in the aim to implement Model Reference Adaptive Control 
(MRAC), improving in this way the general behavior of the system. 
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2. Linear system identification 

During the modeling process there arise great problems concerning the choice of modelling 
methods, amongst others. It is here where studies on system identification are centered, 
basically looking to answer the question How to create the model for a specific system from 
measured data? 
Concerning systems identification, when we talk about a system, we mean a process having 
inputs and outputs. Observed variables are simply known as outputs. Inputs that can be 
managed are known as inputs, and other inputs –that only can be measured- are known as 
measurable perturbations and, finally, there are inputs that cannot be measured, known as 
non measurable perturbations (Ljung, 1999). In this way, by means of mathematic methods, 
systems identification tries to model the global behavior of the studied system.  
The most important identification techniques are divided into two major groups: linear 
identification techniques, and non-linear identification techniques. This classification of 
identification techniques is made because in the real field there are systems that can be 
approximated to linear or non-linear models.  
The most popular system identification linear models family is the Black Box models group. 
This family of structures covers a total of 32 models. Black Box models base their 
identification capabilities in parameter adjustment of the polynomials that compose them. 
Those models are composed by 5 polynomials; depending on which polynomials are 
employed, it is the model at which the system is approximated to.  
The BlackBox model is described in (1). 

 
B(q) C(q)

A(q)y(t)= u(t)+ e(t)
F(q) D(q)

 (1) 

Those polynomials are polynomials in q, that is an operator employed to specify that we are 
working with a discrete system, since the operator is q=z, corresponding to the operator of 
the z transform. In this way, the polynomials are defined in (2). 

 

-1 -na
0 1 na

-1 -nb
0 1 nb

-1 -nc
0 1 nc

-1 -nd
0 1 nd

-1 -nf
0 1 nf

A(q)=a +a q + +a q

B(q)=b +b q + +b q

C(q)=c +c q + +c q

D(q)=d +d q + +d q

F(q)=f +f q + +f q

A

A

A

A

A

 (2) 

Through the adjustment of each one of the parameters, we achieve the approximation to the 
studied system. Those adjustable parameters use to be denoted as shown in (3). 

 0 na 0 nb 0 nfθ=[a ...a     b ...b     f ...f ]  (3) 

In some cases we observe that system dynamics has delays from input u(t) to output y(t) of 
nk samples, therefore, some coefficients of the B(q) polynomial are managed as zero (4). 

 -nk -nk-nb-1 -nk
nk nk+nb-1B(q)=b q +...+b q =q B'(q)  (4) 

In this way, the generalized model for the case with delays is shown in (5). 
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 -nk

B'(q) C(q)
A(q)y(t)=q u(t)+ e(t)

F(q) D(q)
 (5) 

For the sake of simplicity, it is usual to employ nk=1 and the expression shown in (1). 
Nevertheless, we could always arrive to a general form including the delays by replacing 
u(t) for u(t-nk+1). 
In order to identify the parameters of the model proposed in (1) we employ a predictor with 
the form:   

 
D(q)B(q) D(q)A(q)

y(t|θ)= u(t)+ 1- y(t)
C(q)F(q) C(q)

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (6) 

This predictor is compared with the system real output and the error is minimized using 
some mathematic algorithm, commonly the least square method. 
A practical summary of linear Black Box models appears in the scheme shown in fig. 3.  
 

 

Fig. 3. General structure of linear Black-Box models 

As already mentioned, depending on which polynomials are employed in expression (1) a 
different structure will be chosen. Generally speaking, the most employed structures for 
systems identification are summarized in table 1.  
 

Employed Polynomials Name of the model structure 

B FIR (Finite Impulse Response) 

AB ARX 

ABC ARMAX 

AC ARMA 

ABD ARARX 

ABCD ARARMAX 

BF OE (Output Error) 

BFCD BJ (Box-Jenkins) 

Table 1. Most popular linear Black-Box models, as a special case of (1) 

The model choice will rely on what is intended to be modeled. We will illustrate this 
situation through an example.  

2.1 Example of model selection 

Lets consider a DC servomotor having only viscous friction, described in fig. 4.  

www.intechopen.com



Comparison of Identification Techniques for a 
6-DOF Real Robot and Development of an Intelligent Controller   

 

565 

 

Controller
Direct current 

motor

Sensor

+
-

Ref PositionE Va

 

Fig. 4. Servomotor block diagram 

The model of a DC motor in the domain of Laplace (Nyzen, 1999) is given by (7): 

 3 2
a m e m

m

1
V (s)= JLs +(JR+fL)s +(fR+k k )s Θ (s)

nk
⎡ ⎤
⎣ ⎦  (7) 

where: 
Va :  DC motor input voltage. 
R, L, ke :  Electric parameters of the equivalent circuit. 
km :  Motor characteristic torque constant. 
n :  Geartrain ratio. 
F :  Viscous friction constant. 
It is important to remark that in the model shown in (7) it is included the phenomenon of  
friction in the joint driven by the servomotor, but only considering the linear part 
representing such phenomenon, without including the non-linear parts present in classic 
friction models, like the static friction one (Makkar, 2005). 
Assuming an ideal sensor and a proportional integral controller, as shown in (8):  

 I
a p

k
V (s)=k 1+ E(s)

s

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (8) 

Linking equations (7) and (8) we have the equation that models the position with respect to 
the servomotor input voltage:  

 4 3 2
1 2 3 41 5 4 5(r s +r s +r s +r s+r )Θ(s)=(r s+r )U(s)  (9) 

where: 

1
a

2
a

m e
3

a

4 p

5 p I

JL
r =

nk

(JR+fL)
r =

nk

(fR+k k )
r =

nk

r =k

r =k k

 

Using Euler's backward method, shown in (10), we can discretize (9), having:  
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-11-z

s=
T

 (10) 

where: 
T: Sample time. 

 -4 -3 -2 -1 -13 61 2 4 7

5 5 5 5 5 5

r rr r r r
z + z + z + z +1 Θ(z)= z + U(z)

r r r r r r

⎡ ⎤ ⎡ ⎤′ ′′ ′ ′ ′
⎢ ⎥ ⎢ ⎥′ ′ ′ ′ ′ ′⎣ ⎦ ⎣ ⎦

 (11) 

where: 

1 3
a

2 3 2
a a

m e
3 3 2

aa a

4 p3 2
a a

5 p

JL
r =

nk T

3JL (JR+fL)
r = +

nk T nk T

(fR+k k )-3JL 2(JR+fL)
r = - -

nk Tnk T nk T

JL (JR+fL)
r = + +k

nk T nk T

r =k

′

′

′

′

′

 

The model (11) can be represented and approximated through a linear Black-Box model of 
the ARX kind. This model only has A and B polynomials, therefore it can be a good linear 
approximation for a simplified servomotor, considering an A polynomial of order 3 and a B 
polynomial of order 1, as shown in (12) (Santander et al., 2010). 

 -3 -2 -1
3 2 1A q +A q +A q +1 y(t)=B(q)u(t)+e(t)⎡ ⎤

⎣ ⎦  (12) 

Assuming zero error, the model in (12) can be simply written as:  

 -3 -2 -1
3 2 1A q +A q +A q +1 y(t)=B(q)u(t)⎡ ⎤

⎣ ⎦  (13) 

2.2 Choice of excitation signal 

In order to obtain a model describing in an efficient way a given system, we must take into 

account the applied excitation signal, since it will permit a better tracking of the behavior we 

desire to describe.  

Lets consider again the example of a servomotor, in (13) it is clear that it can be described 

with an ARX model, but the choice of the signal that can capture in a better way its 

dynamics it's not a trivial issue, generally depending of the system behavior, and without 

clear rules to follow. For this example we carry out the identification process using three 

different excitation signals: PRBS (Pseudo Random Binary Signal), RBS (Random Binary 

Signal), and GCPS (Growing Constant Pulses Signal) (Santander et al., 2010). 

Using excitation signals we can get the adjustment of A and B polynomials for each one of 
the cases presented in fig. 5, those models are then validated using a smooth trajectory –as 
shown in fig.6- and model errors are calculated using (14). Results are summarized in 
table 2.  
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(a) PRBS excitation 
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b) RBS excitation 

0 1 2 3 4 5 6 7 8 9 10
-30

-20

-10

0

10

20

30

Time (s)

P
o

si
ti

o
n

 (
d
eg

)

Servomotor Data - GCPS

 

 

Motor Position

Reference Signal

 

c) GCPS excitation 

Fig. 5. HITEC HS-475HB servomotor data, with PRBS, RBS and GCPS excitations, 
respectively 
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Fig. 6. Servomotor response when applying a smooth trajectory 

 

n 2
i ii=1

n 2
ii=1

(o -p )
error%=

o

∑
∑

 (12) 

where: 
oi:  Motor observed values. 
pi:  Predicted or identified values. 
 

Signal error % 

PRBS 193.611% 

RBS 29.968% 

GCPS 16.475% 

Table 2. Approximated ARX models verification results 

We must remark that, for the specific case of the studied servomotor, the best excitation 
signal for servomotor identification is GCPS (Santander et al., 2010). 

3. Wiener-Hammerstein models 

The main objective of this chapter is the control of a SCARA robot, therefore we will focus 
on finding models that describe efficiently the dynamic behavior of robotic manipulators. It 
is important to notice that robot dynamic models are highly non-linear, due to the different 
coupling of their links, and also because of opposition to their movement, that is, friction. 
That is why approximation with linear methods is not enough for a SCARA robot, and 
therefore it is necessary to explore other options providing an efficient modeling of the 
robot. Amongst current and most valid options applied to robots, we find studies carried 
out for parameter estimation of direct dynamic models, using the non-linear function 
obtained by means of Lagrange-Euler or Newton-Euler methods (Gautier et al., 2008), 
(Olsen & Petersen, 2001). Even if the models obtained for describing robot dynamics are 
highly accurate, they require a vast amount of calculations and measurement of robot 
interesting variables, at least the measurement of torque applied on each robot link. But 
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what happens when the studied system have not sensors for torque measurement? It is 
necessary the implementation of such system? Next we will review a modeling option that 
does not require this kind of sensors.  
There is a great variety of methods for non-linear identification, covering many different 
points of view. Up to date, the application of any method is totally arbitrary: some methods 
that work with very good predictions in some cases, are completely useless in other cases. 
The non-linear identification techniques we will review now are the Wiener-Hammerstein 
models. 
It is common to find systems whose dynamics can be properly described by linear systems, 
although having static nonlinearities from the input and/or output. These nonlinearities can 
be caused by phenomena like saturation, or others. In the studied case, the SCARA robot 
actuators are DC motors subject to friction forces, with highly non-linear characteristics, so it 
is a good option to apply this kind of models.  
We talk about Hammerstein models when the static nonlinearity is found in the input, and 
Wiener models when the static nonlinearity is in the output, as shown here:  
 

f Linear model

Linear model f

u(t)

u(t) z(t)

y(t)

y(t)=f(z(t))

f(u(t))

 

Fig. 7. Upper diagram: Hammerstein Model, Lower diagram: Wiener Model 

 

Linear model 
set selection

2 phases 
experiment

Data 
acquisition

Fitting 
criterion 
selection

Calculate linear model (Phase 1)

Not Fitting, check
Ok

Prior knowledge

MSEARX & ARMAX

Nonlinear fitting using FNN (Phase 2)

Model validation using new data set

 
Fig. 8. System identification loop for Hammerstein-Wiener models 
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Function f presented in the model can be parameterized in terms of the physical parameters 
that compose it, like saturation level, or also in terms of another non-linear functions. In this 
way, if we assume a linear model G, the output predictor will be:  

 ˆ( | , ) ( , ) ( ( ), )y t G q f u tθ η θ η=  (14) 

For the case of modeling of the linear part we can use Black Box linear models, described in 
the previous section. The non-linear function employed for modeling can be any non-linear 
function that models and contributes to the improvement of the model. The most employed 
ones are: neural networks, fuzzy functions, tree partitioning, and others.  
It is important to have in mind the kind of signal employed for function adjustment, since it 
must capture the system's nonlinear dynamics. It is advisable to employ a set of at least 10 
chained independent trajectories for such identification (Gautier et al., 2008). 
For the identification through Hammerstein-Wiener models we created a scheme that 
particularizes the general scheme of identification loop shown in fig. 2; in this scheme, 
Hammerstein-Wiener models are considered as the predetermined models to be employed. 

4. Adaptive control 

System identification and parameter estimation are vital steps in most control applications, 
as well as adaptive controllers by reference models and self-tuning controllers (Kasim, 2003). 
Adaptive control techniques can be divided mainly in two groups: Adaptive controllers by 
reference models (MRAC) and Self-tuning regulators (STR) (Rodríguez & Lopéz, 1996). The 
MRACs try to find, for a defined input signal, a closed-loop behavior given by the reference 
model. The STRs try to reach optimum control, subject to a kind of controller, getting 
information about the process and its signals. The advantages of the MRACs lie in their 
quick adaptation to a defined input, and in the simplicity of the stability treatment using 
non-linear systems stability theory. The STRs have the advantage of adapting to any case, 
particularly to non-measurable perturbations, having at the same time a modular structure, 
making it possible block programming. In the proposed work we decided to develop 
adaptive control by model of reference.  
The most popular scheme of adaptive control is shown in fig. 9.  
 

 

Process

Reference model

Adaptation 
mechanism

Adjustable 
controller

Ref Output

+
-

-

+

 

Fig. 9. MRAC scheme 
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One of the most important parts shown in the scheme in fig. 9 is the adaptation law. 
Generally speaking, adaptation laws employ Lyapunov’s stability theory and Popov's 
hyperstability theory.  

4.1 Adaptive control design 
The method presented below is based in the utilization of sensibility models, so parameters 
can be adapted in the right way. The method deduction starts by setting the actuation index. 
Given a reference model Gref and an adjustable system Gadj(û), which we desire to follow 
the model for getting zero or minimum error in case or perturbations, we define: 

 21
J= e dt  ;  e= -

2
m ay y∫  (15) 

where: 
ym: Motor observed values. 
ya: Predicted or identified values. 
û: Adjustable parameters. 
By using the optimization rule by gradient, we obtain the adaptation rule: 

 
J

ˆΔu(e,t)=-Kgrad(J)=-K
û

∂
∂

 (16) 

The variation of the adjustable parameter with respect to time will be: 

 
ˆ

û= K
û

u J

dt t

∂ ∂ ∂⎛ ⎞= − ⎜ ⎟∂ ∂⎝ ⎠
$  (17) 

Assuming a slow variation of the adaptation law: 

 2û J 1 e
û= -K K e Ke

ˆ ˆ ˆdt u t u 2 u

∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= = − = −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
$  (18) 

The adaptation rule presented in 18, is known as the MIT adaptation rule (Whitetaker et al., 
1958). 

 m a a(y -y ) ye

ˆ ˆ ˆu u u

∂ ∂∂
= =

∂ ∂ ∂
 (19) 

The partial derivative of ya with respect to û is the sensibility of the adjustable system with 
respect to the parameter. In this case, the sensibility function is proportional to ym, leading 19 to: 

 û=-Keym
$  (20) 

This rule has been very popular, although having some disadvantages we should take in 
consideration: 

• When adjusting several parameters, it is required a great number of sensibility functions. 
• The adaptation gain controls the adaptation speed: if it’s too high, it can cause system 

unstability, and if it’s too low, the adaptation will be slow.  
• To obtain a good behavior between speed and stability, studies must be carried out 

through simulation. 

www.intechopen.com



 Multi-Robot Systems, Trends and Development 

 

572 

5. Description of SCARA robot model 

Next, we will make a brief description of the system on which identification and adaptive 
control techniques previously explained will be theoretically and practically applied. This 
system is a SCARA (Selective Compliant Assembly Robot Arm) robot with 6 DOF (Degree 
Of Freedom), whose construction is a cheap solution for design and implementation of this 
kind of systems, and that was developed by students of the Department of Electric 
Engineering of the Universidad de Santiago de Chile, for teaching and research purposes. 
 

   

Fig. 10. Real employed SCARA system 

The first three joints of this system are driven by DC motors controlled by signals provided 
by an interface implemented through the utilization of MatLab/Simulink software, and the 
other three joints are driven by servomotors. The SCARA system has an encoder in each one 
of the main joints, letting angular position readings for the first two rotational joints, and 
linear position readings for its prismatic joint, permitting the positioning of objects in space. 
The employed encoders were specifically designed and manufactured for this particular 
purpose. The last three actuators, located in the end of the robot’s kinematic open chain, 
permit the driving of a clamp able to orientate objects in space. This clamp is endowed with 
pressure sensors in the tips.  
It is important to remark that this robot, besides the non-linearities inherent to this kind of 
system, poses additional control challenges, due to mechanical building imperfections. One 
of the most important problems is the difference between absolute values of the torques 
required for rotate in either way each one of the first two joints, because of mechanical 
imperfections in the employed gear trains. Due to this, the rotation speeds to the left or right 
of those joints are not equal to the absolute values of the applied torques. That is why this 
system poses additional control challenges, compared with other SCARA robots currently 
available in the market, since for achieving a good performance, in theoretical and practical 
ways, it is necessary to investigate, develop and implement control algorithms allowing to 
obtain better intelligent controllers.   

6. Hammerstein-Wiener models applied to the SCARA system 

For the application of identification techniques it is necessary to gather data that capture the 
robot dynamics, requiring the concatenation of at least 10 different trajectories, so the 

www.intechopen.com



Comparison of Identification Techniques for a 
6-DOF Real Robot and Development of an Intelligent Controller   

 

573 

identification process can be developed with a proper and sufficient amount of information. 
That is why excitation trajectories are generated and applied combining different dynamics, 
in order to obtain a good identification of the studied system (Janot et al., 2007), (Gautier et 
al., 2008), (Olsen & Petersen, 2001). The trajectories employed in this process are generated 
out of an interpolation or third degree, being known the final and initial position, and the 
initial and final times of the two first joints of the studied system. We look for capturing the 
non-linear dynamics of the robot, considering its total work range, from -135° to 135° for 
each joint. In order to capture the dynamics of the system’s non-linear behavior, sudden 
changes in rotation way and speed are produced, and for doing that, 10 different trajectories 
are concatenated, as shown in fig. 11.   
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a) Trajectory applied in joint 1 
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b) Trajectory applied in joint 2 

Fig. 11. Trajectories applied in joints 1 and 2, respectively 

The major dynamic complexities of this robot are found in its two first joints, therefore, the 
process of parameter identification is carried out on these joints only. 

6.1 Linear models 
Using data from the application of trajectories for both joints, black-box linear models for 
describing the system dynamics are proposed. In this regard, the following scheme is used: 
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Fig. 12. Linear model adjustment scheme 
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a) Actuation signal of joint 1 

0 10 20 30 40 50 60
-600

-400

-200

0

200

400

600

Time (s)

A
ct

u
a

ti
o

n

Actuation Signal of Joint 2

 

 

Actuation of Joint 2

 

b) Actuation signal of joint 2 

Fig. 13. SCARA robot actuator signals applied 
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The actuator signals applied to the SCARA robot for the trajectories shown in fig. 11 are 

used as input for adjusting the parameters of the polynomials in different linear models. The 

actuator signals are shown in fig. 13. 

To select the most appropriate linear model for the identification of the different joints of the 

system under study, the model used in Example 2.1 can’t be used, since it is highly complex 

and there is too much parameters uncertainty. Model selection and order of polynomials is 

done by selecting the simulation tests that best fits. Keep in mind that the linear model fit 

doesn’t need to be too accurate, since this is used as part of a nonlinear model named 

Hammerstein-Wiener model. 
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a) Linear model performance for joint 1 
 
 

0 10 20 30 40 50 60
-150

-100

-50

0

50

100

150

Time (s)

P
o

si
ti

o
n

 (
d

eg
)

Linear Model of Second Joint

 

 

Linear Model Response

Position of Joint 2

 
 

b)  Linear model performance for joint 2 

 

Fig. 14. Linear models performance for joints 1 and 2, respectively 

To create linear models, actuator signals in both joints are used as inputs, and the joint 

position as a reference signal. For joint 1, the linear model that best fits is an ARMAX with A 
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polynomial of order 3, the B polynomials of orders 4 and 2 respectively, and finally a C 

polynomial of order 2. The fitting percentage is 52.82%. For joint 2, the linear model that best 

fits is an ARX, with A polynomial of order 4, and B polynomials of order 5. The percentage 

fit of this model is 41.41%. Both models used a first order delay for the first actuator entry 

and a second order delay for the second actuator. The responses of both models are shown 

in the figure 14. 

6.2 Hammerstein-Wiener models 

From the previous linear models, the proposed nonlinear model can be completed. The 

realization of this model uses the following scheme: 

 

 

SCARA robot  
system

Actuator signals Positions

Linear 
model

+

-
FNN

Z-1

 

Fig. 15. Hammerstein-Wiener models fitting scheme 

The nonlinear functions used are three-layered Feed forward Neural Networks (FNN). The 

FNN training results that correct the Hammerstein-Wiener model are shown below: 
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a) Hammerstein-Wiener model response for both joint 1 
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b) Hammerstein-Wiener model response for both joint 2 

Fig. 16. Hammerstein-Wiener model response for both joints  

6.3 Model implementation 

The implementation of the obtained models is performed using MatLab/Simulink software, 
due to its simplicity in creating simulations, and in the fact that the studied robot is 
controlled through an interface created in it. The model implemented is the following: 
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Fig. 17. Implemented model in MatLab/Simulink 

www.intechopen.com



 Multi-Robot Systems, Trends and Development 

 

578 

The specific identification model is shown in figure 18. 
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Fig. 18. Hammerstein-Wiener Model 

6.4 Model validation 

To ensure that the model obtained is a good representation of the joints of the SCARA 
system, another experiment is performed using a path different from that used for fitting, 
which allows evaluating the system behavior. The validation, implementing 3 different 
experiments, was carried out on-line. The scheme implemented in MatLab/Simulink used 
for controlling the SCARA robot and verifying the created model is shown below: 
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Fig. 19. Implemented control system  

For the first verification experiment, we applied a trajectory to the first joint, keeping fixed 
the second joint.  
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Fig. 20. Joint 1 verification; experiment 1 
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Fig. 21. Joint 2 verification; experiment 1 

For the second experiment, we applied different trajectories to both joints, the verifications 
are shown next: 
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Fig. 22. Joint 1 verification; experiment 2 
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Fig. 23. Joint 2 verification; experiment 2 

Finally, in order to carry out a most exigent test to the created model, we applied a PRBS 
signal as reference for the robot to be followed in its second joint, and a normal trajectory in 
the first joint. The results are shown below:  
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Fig. 24. Joint 1 verification; experiment 3 
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Fig. 25. Joint 2 verification; experiment 3 
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7. MRAC implementation 

For the implementation of MRAC we will employ the sensibility theory presented in eq. 20. 
The implementation of such controller, using MatLab/Simulink software, is shown below: 
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Fig. 26. MRAC Implementation 

For the implementation of the sensibility theory we created three adaptation law blocks. 
Adaptive control makes parameter adjustment of a classic PID controller, as shown in the 
next figure:   
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Fig. 27. Adaptive Controller 

The adaptation laws were built accordingly to (Espinoza, 2009), and are shown in the figure 
below:  
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Fig. 28. Adaptive law 

7.1 Results 

Applying a step of 50° for the first joint and of -50° for the second joint, we obtain the 
following response of the system with adaptive controller: 
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Fig. 29. Response to step, joint 1 
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Fig. 30. Response to step, joint 2 

Finally, we apply a trajectory for verifying the result obtained with the implemented 
controller. 
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Fig. 31. Response of joint 1 to a trajectory 
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Fig. 32. Response of joint 2 to a trajectory 
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Fig. 33. Actuation signals of joint 1 
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Fig. 34. Actuation signals of joint 2 

8. Conclusions 

Through the application of Hammerstein-Wiener models we can identify efficiently the 
dynamics of a real manipulator robot. For the application of those models, it is only 
necessary to know the position output of each joint and the robot’s actuation signal.  
We propose a new particular identification loop for Hammerstein-Wiener models, shown 
schematically in fig. 8, where we consider ARX or ARMAX linear models and a non-linear 
part composed by FNN. It is important to notice that for non-linear cases, the choice of 
linear model and the FNN configuration is obtained thanks to experimental developments, 
choosing the models better describing the studied system, from a set of identified models.  
From the verification carried out for the obtained Hammerstein-Wiener models, we 
conclude that those models can capture the non-linear dynamics of the system; nevertheless, 
those models present little errors when more exigent trajectories are applied to the system, 
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as in the case of PRBS trajectory (see fig. 25), due to the fact that the dynamics of the first 
two links is coupled, therefore, sudden movements in a joint cause unidentified 
perturbations in the adjacent joint. 
An adaptive controller has been successfully implemented in a real system. Although we 
can notice some flaws in the identified model of the real robotic system, the adaptive 
controller follows closely the behavior of the model (see figs. 28 and 29). A remarkable 
aspect is that actuation signals obtained employing the adaptive controller are smoother 
than the ones obtained with the Gain Scheduling controller implemented first in the robotic 
system, both for the applied trajectories (see figs. 31 and 32), and their respective actuation 
signals (see figs. 33 and 34). The smoothing of actuation signals in both joints, as the case 
obtained in this work, leads to a decrease of oscillations in the joints, lower material fatigue 
and, therefore, a lower energy consumption for the robotic system.  
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