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1. Introduction    

Control systems that have the ability, in the one hand, to detect incipient failures in sensors 

and/ or actuators and, in the other hand, to adapt quickly the control laws in order to 

preserve the specified performance in terms of production quality, safety, etc., are called 

fault-tolerant control systems (Blanke et al., 2001), (Blanke et al., 2006). This kind of systems 

have become increasingly important for manipulator robots, especially those performing in 

remote or dangerous zones, like outer space, underwater or nuclear environments. In this 

context, there is a growing need and interest in developing control systems that can operate 

in acceptable manners, even after the occurrence of failures, also being able to stop the 

process before irreparable damages arise (Bonivento et al., 2004). 

In this work, modeling, simulation and control of industrial fault tolerant robots by means of 

adaptive inertia is presented. This study, initially developed for robots with n Degrees Of 

Freedom (DOF), includes the calculation of adaptive inertia parameters; which is particularized 

for planar systems with two and three rotational joints. The modeling of these systems 

considers kinematic and dynamic aspects of robots, including the dynamics of actuators and 

position sensors that, by employing MatLab/ Simulink software, permits the simulation and 

results displaying of dynamic behavior of such systems in front of actuator failures. 

2. Fault tolerant controller: adaptive inertia 

The active fault tolerant control system proposed in this work is based on an adaptive 

control law, specifically: adaptive inertia (Lewis et al., 2004), (Siciliano & Khatib, 2008), 

(Ollero, 2001) then it is necessary to consider the manipulator dynamic model in the way 

expressed in equation (1) (Angeles, 2006), (Craig, 1986), (Spong et al., 2005), where the term 

corresponding to centrifugal and Coriolis forces is expressed through a matrix Vm. 

 ( ) ( ) ( ) ( ),q q q q q= + + +mτ M q V q G F$$ $$ $  (1) 

Position, speed and acceleration errors, in terms of manipulator link coordinates, are shown 

in equations (2), (3) and (4), respectively. 
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= −de q q

 (2) 

 

 = −de q q$ $ $  (3) 

 

 
= −de q q$$ $$ $$

 (4) 

 

Clearing link position q, its first and second derivative; from equations (2), (3) and (4), 

respectively we have: 

 
= −dq q e

 (5) 

 
= −dq q e$ $ $

 (6) 

 
= −dq q e$$ $$ $$

 (7) 

Next, we define error auxiliar signal r and its derivative ,r$  with respect to time, as shown in 

equations (8) and (9), respectively: 

 = +r Λe e$  (8) 

 = +r Λe e$ $ $$  (9) 

where: 

Λ : Definite positive diagonal matrix (n×n dimension). 

 

1

2

n

λ
λ

λ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Λ
D

 (10) 

Clearing the first and second derivatives from error in equations (8) and (9), respectively, we 

obtain: 

 = −e r Λe$  (11) 

 = −e r Λe$$ $ $  (12) 

Replacing equations (11) and (12) in equations (5), (6) and (7), we have: 

 = − +dq q r Λe$ $  (13) 

 = − +dq q r Λe$$ $$ $ $  (14) 

Replacing equations (13) and (14) in expression (1), we achieve: 
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 ( )( ) ( )( ) ( ) ( ),q q q q q= − + + − + + +d m dτ M q r Λe V q r Λe G F$$ $ $ $$ $  (15) 

Then: 

 ( )( ) ( )( ) ( ) ( ) ( ) ( ), ,q q q q q q q q= + + + + + − −d m d mτ M q Λe V q Λe G F M r V r$$ $ $ $$ $ $  (16) 

Making the following matching: 

 ( ) ( )( ) ( )( ) ( ) ( ),q q q q q⋅ = + + + + +d m dY φ M q Λe V q Λe G F$$ $ $$ $  (17) 

where: 

 ( )

11 12 1

21 22 2

1 2

, , , ,

n

n
d d d

n n nn

Y Y Y

Y Y Y
q q q q q

Y Y Y

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Y

A
A

$ $ $$
B B D B

A

 (18) 

( )⋅Y : Regression matrix (n×n dimension). 

φ : Parameter vector (n×n dimension). 

Equation (16) can be written in the following way: 

 ( ) ( ) ( ),q q q= ⋅ − − mτ Y φ M r V r$ $  (19) 

The control torque is given by: 

 ( ) ˆ= ⋅ + vτ Y φ K r  (20) 

where: 

vK : Definite positive diagonal matrix (n×n dimension). 

φ̂ : Parameter estimation vector (n×n dimension). 

The update rule is expressed by: 

 ( )ˆ T= − = ⋅φ φ ΓY r$ $#  (21) 

where: 

Γ : Definite positive diagonal matrix (n×n dimension). 

 

1

2

n

γ
γ

γ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Γ
D

 (22) 

Replacing equation (21) into equation (20), we have: 

 ( ) ( )T= ⋅ ⋅ +∫ vτ Y ΓY r K r  (23) 

Replacing equation (8) into equation (23), we have: 

 ( ) ( )( )T= ⋅ ⋅ + + +∫ V Vτ Y ΓY Λe e K Λe K e$ $  (24) 
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3. Applications 

3.1 Planar system with two rotational joints 
3.1.1 Vm matrix for 2 DOF 
To obtain the matrix of centrifugal and Coriolis forces in a planar system with two rotational 

joints, we must consider: 

 ( ) ( )mC q,q = V q,q q$ $ $  (25) 

 ( )T
m

1
V = M+U - U

2
$  (26) 

 ( )T ∂
= ⊗

∂
M

U I q
q

$  (27) 

where: 

⊗ : Kronecker product. 

Considering the expression given by (64) (Appendix A), and developing equations (26) and 

(27), we have: 

 
11 12

21 22

m m

m m

V V

V V

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
mV  (28) 

 ( ) [ ]T 1 0
=

0 1
1 2q q

⎡ ⎤
⊗ ⊗⎢ ⎥

⎣ ⎦
I q$ $ $  (29) 

 ( ) 0 0

0 0

1 2T

1 2

q q

q q

⎡ ⎤
⊗ = ⎢ ⎥

⎣ ⎦
I q

$ $
$

$ $
 (30) 

 
1

2

q

q

∂⎡ ⎤
⎢ ⎥∂∂ ⎢ ⎥=
⎢ ⎥∂∂
⎢ ⎥∂⎣ ⎦

M

M

Mq
 (31) 

 
( )

11 2 1 c2

12 2 1 c2

21 2 1

2 2

2 2

2 12

22

1

c

sin

sin

sin

0

m

m

m

m

V m l l

V m l l

V m l l

V

θ θ

θ θ

θ

θ

θ

= −

= − +

=
=

$

$

$$
 (32) 

3.1.2 Regression matrix for 2 DOF 
The regression matrix considering two degrees of freedom is expressed by: 

 
11 12

21 22

Y Y

Y Y

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
Y  (33) 
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Calculation of regression matrix is developed in Appendix B, resulting in the components 

we can see in equation (34): 

 
( ) ( ) ( )( )

( )

21zz
c1 1

1

2 22zz
1 1 c2 1 2 1 2 2 1

2

22zz
1 1

11

12

21

22

1

c2 1 2
2

1

2 22

0

A a

a A

I
l Q

m

I
l Q l Q Q y Q Q y Q Q

m

I
y Q y Q

Y

Y Q

Y

l Q
m

Y

θ

θ

θ θ

⎛ ⎞
+⎜ ⎟

⎝ ⎠
⎛ ⎞

+ + + + + − + +⎜ ⎟
⎝ ⎠

⎛ ⎞
+ + + +⎜ ⎟

⎝

=

⎠

=

=

=

$

$ $ $ $ $

$ $$

$

$

$$
 (34) 

3.2 Planar system with three rotational joints 
We will consider now the three first DOF of the robotic manipulator shown in figure 1. 

 

 

Fig. 1. Scheme of a redundant robotic manipulator of SCARA type 

3.2.1 Vm matrix for 3 DOF3 
From the development of expressions given by (26) and (27), considering three degrees of 

freedom, we get: 

 

11 12 13

21 22 23

31 32 33

=

m m m

m m m

m m m

V V V

V V V

V V V

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

mV  (35) 
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 ( ) [ ]1 2 3

1 0 0

0 1 0

0 0 1

T q q q

⎡ ⎤
⎢ ⎥⊗ = ⊗⎢ ⎥
⎢ ⎥⎣ ⎦

I q$ $ $ $  (36) 

 ( )
1 2 3

1 2 3

1 2 3

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

T

q q q

q q q

q q q

⎡ ⎤
⎢ ⎥⊗ = ⎢ ⎥
⎢ ⎥⎣ ⎦

I q

$ $ $
$ $ $ $

$ $ $
 (37) 

 

1

2

3

q

q

q

⎡ ⎤∂
⎢ ⎥∂⎢ ⎥
⎢ ⎥∂ ∂

= ⎢ ⎥
∂ ∂⎢ ⎥

⎢ ⎥∂
⎢ ⎥
∂⎢ ⎥⎣ ⎦

M

M M

q

M

 (38) 

The matrix of centrifugal and Coriolis forces for the three first degrees of freedom of the robot 

manipulator under study, can be expressed by means of equation (39) (see Appendix C):  

 

( ) ( )
( )( ) ( )
( )( )
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( )
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θ θ

θ θ
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θ

θ

− + + − − + +

+ +

−

= − + − +

=

= − +

= +

+ +

+ +

+

+ −

=

= −

=

=
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−
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$ $
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$

$

$

$

$

$

$

$

$

$

$

$

$ $

$

$

$

$

$

$  (39) 

3.2.2 Regression matrix for 3 DOF 
After obtaining the matrix of centrifugal and Coriolis forces Vm for the three first degrees of 

freedom under consideration, we proceed to calculate the corresponding regression matrix, 

whose form is expressed by means of equation (40): 

 
11 12 13

21 22 23

31 32 33

Y Y Y

Y Y Y

Y Y Y

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Y  (40) 

The components of the regression matrix are developed in Appendix D, and the results can 

be expressed by: 

 ( )2
1zz 1 c 11 11 I m l QY += $  (41) 
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 ( )( ) ( ) ( )2 2 2
1 2 2zz 2 1 c212 1 2zz 2 c22 2 21 2a A AQ Q I m l l Q I m l QY y y yθ θθ− + + + + + + + += +$$ $$ $  (42) 

 

( ) ( )( ) ( ) ( )( ( ) )
( ( )) ( )

( )

3 31 2 1 2 3

2 2 2 2 2
3zz 3 1 2 c3 1 3zz 3 2

1 1 12

c3

2
2 c

3
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2

2 2

b d c d

B C D B C D

C D

Q Q Q Q QY y y y y

y y y y y yI m l l l Q I m l

y

l

Q Qyl

θ θθ θθ θθ− + + + − + + +

+ +

= + + +

+

+

+ + + + + + + + +

+ +

$ $ $$ $$

$

$

$

$

 (43) 

 21 0Y =  (44) 

 ( )( ) ( )2 2
1 2zz 2 c2 1 2zz 2 c212 22 a AY y Q yI m l Q I m l Qθ + + + += +$ $ $  (45) 

 
( ) ( )( ( ) ) (

) ( ) ( )
2 2

1 2 1 3 3 3zz 31 2 c3

2 2 2
1 3zz 3 2 c3 2

2

3zz 3 c

1

3

323

32 2

b d c B

C D C C

Q Q Q Q Q I m l l

Q I m l l Q I m l

Y y y y y

y y y Qy

θ θ θθ+ + + + + + + + += − +

+ + + +++ ++

$$$

$ $

$

$
 (46) 

 31 0Y =  (47) 

 32 0Y =  (48) 

 
( )( ) ( ) (

) ( )
2 2

1 1 1 2 3zz 3 c3 1 3zz 3 c3

2
2 3zz 3 c3

3 1

3

23 d c C D

C

Q Q Q I m l Q IY y y y m l

I m l Qy Q

yθθ θ + + + + + + +

+

+ + +

+

= $$ $ $

$ $
 (49) 

3.2.3 Inverse kinematics  
When a failure arises in the robot manipulator, the fault tolerant controller must reconfigure 

itself, carrying out real-time calculation of the new inverse kinematics that is generated. In 

the case of adaptive inertia control, it is necessary to calculate, in addition to the new joint 

positions, the new joint speeds and accelerations.  

The new position of joint three is given by equation (50): 

 
22

3

2
3

3

2x + - -
arccos

2

v

v
N

l

l

l

l

y
γθ θ

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 (50) 

The new joint speed and acceleration is given by equations (55) and (56), respectively. 

 
22 2 2

3

32

v

v

x y
u

l

l

l

l

+ − −
=  (51) 

 ( )
3

1

v

u xx
l

y
l

y= +$ $ $  (52) 

 ( )2 2

3

1

v

u x y
ll

xx yy= + + +$$ $ $ $$ $$  (53) 
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 ( )3 arccosN u γθ θ= −  (54) 

 3
21

N

u

u
θ = −

−

$$  (55) 

 

( )
2

3 22 2
3

1 1
N

u

u u

u uθ = − −
− −

$$ $$$  (56) 

The new position of joint one is expressed by equation (57): 

 
( )
( )

3 3

1

3 3

sin
arctan arctan

cos

N

Nv

N

y

l

l

lx

γ
β

γ

θ θ

θ
θ

θ
θ

⎛ ⎞+⎛ ⎞ ⎜ ⎟= − −⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
 (57) 

The new joint speed and acceleration is given by equations (62) and (63), respectively. 

 
( )
( )

3

3

3

3

sin
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N

v Nl
v

l

l
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 ( )1 arctan arctanN

y
v

x
βθ θ⎛ ⎞= − −⎜ ⎟

⎝ ⎠
 (61) 
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1
N

xy xy v

x y v
θ

−
−

+ +
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2
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11
N

xy x y xy x yxy xyvv v
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θ
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= − + +
+ ++ +

$ $ $ $$$ $$$ $$$$  (63) 

3.2.4 Simulation curves 
To obtain the different simulation curves for the proposed control system, by employing 

MatLab/ Simulink software, we use the simulation diagrams presented in figure 2 and 

figure 3. The resulting curves are shown next:  
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Fig. 2. Schematic diagram showing the block: adaptive inertia 

 

 

Fig. 3. Schematic diagram showing fault tolerant control stage: adaptive inertia 

3.2.5 Results  
After establishing the control laws by adaptive inertia to build fault tolerant control, we 

proceed to test such controller by means of the developed simulation tools. The obtained 

results are as follows: 

Figures 4 and 5 show the test desired joint trajectory, along with the real obtained trajectory; 

and the test desired Cartesian trajectory along with the real obtained Cartesian trajectory. In 

absence of failures, we can see a good tracking of the desired trajectory. 
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Fig. 4. Joint trajectory: desired and real 
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Fig. 5. Cartesian trajectory: desired and real 

In figure 6 we can see the torques applied on each manipulator joint. 
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Fig. 6. Torques applied 

We can notice that the greater applied torque, corresponding to joint 1, experiences 

saturation due to limitations inherent to the actuator.   
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Fig. 7. Joint trajectory: real (failure in actuator Nº 2) 

Figure 7 shows manipulator real joint trajectory when actuator 2 is blocked at 0.5 sec from 

starting trajectory, and figure 8 shows a superposition of real and desired joint trajectories. 
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Fig. 8. Joint trajectory: desired and real (failure in actuator Nº 2) 

The real Cartesian trajectory suffers a remarkable deviation when failure arises in actuator 2 

of the manipulator, as evidenced in figure 9. 
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Fig. 9. Cartesian trajectory: desired and real (failure in actuator Nº 2) 
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In figure 10 we can see torques applied to the robot when the controller has not corrected 

the fault yet (classic adaptive inertia controller: without fault tolerance). 
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Fig. 10. Torques applied (failure in actuator Nº 2) 
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Fig. 11. Joint trajectory: desired, initial and after to failure (actuator Nº 2) 
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Fig. 12. Joint trajectory: desired, initial and real with fault control 
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Fig. 13. Joint trajectory: desired, after the fault and real with fault control 

In figure 11 we can see desired joint trajectories: initial and after to failure; in the last case, 

we can notice the increase in torques corresponding to joints 1 and 3, in order to compensate 

the failure in actuator 2.   
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Fig. 14. Cartesian trajectory: desired and real with fault control 
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Fig. 15. Torques applied with fault correction 

Figures 12 and 13 show desired, initial and real joint trajectories; and desired, after failure 

and real, respectively, with the application of fault tolerant control by employing adaptive 

inertia. 
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The effectiveness of fault tolerant control by adaptive inertia is evidenced in figure 14, 

where we can see the desired joint trajectory along with the real joint trajectory. We can 

notice a remarkable improvement in the desired trajectory tracking, in comparison with the 

performance under adaptive inertia classic control. 

In figure 15 we notice an increase in needed torques applied to joints 1 and 3, in order to 

follow the desired trajectory in presence of a failure in actuator 2. 

The obtained simulation curves show the better performance of the fault tolerant adaptive 

inertia controller when a failure arises (figure 14), in comparison with the classic adaptive 

inertia controller (figure 9). We can notice the influence of actuators as non-infinite torque 

generators in trajectory following when significant changes in joint position and speed are 

produced.    

4. Conclusions  

In this work we exposed the modeling and development of a fault tolerant controller by 

adaptive inertia, and the simulation of an industrial-type 3 DOF robot, including the 

application of a failure in an actuator. We presented the adaptive inertia parameter 

calculation, considering the manipulator kinematic and dynamic aspects. From the obtained 

results, we concluded that in absence of failures the classic adaptive inertia controller has a 

good tracking of the desired trajectory, as seen in figures 4 and 5. The greater torque applied 

to the manipulator, corresponding to joint 1, experiences saturation due to limitations 

inherent to the actuator, provided for the inclusion of its dynamics in the model. Classic 

adaptive inertia control, in presence of a failure (blocking) in actuator 2, experiences a 

detriment in its performance; in other words, the real Cartesian trajectory suffers a notorious 

deviation when a failure has been applied to the manipulator; this situation is evident in fig. 

8, and in this context the torques applied to the robot decrease significantly, as shown in fig. 

10. Fault tolerant control by adaptive inertia is effective in the occurrence of a fault: the real 

joint trajectory approaches to the desired joint trajectory, what is evident in figure 14. In 

order to compensate the immobility of failure in actuator 2 it is necessary an increase in 

torques corresponding to joints 1 and 3 (figure 15). We can notice the influence of actuators 

as generators of non-infinite torques in trajectory tracking when significant changes in joint 

position/ speed occur. Concluding, fault tolerant control by adaptive inertia has a better 

performance in desired trajectory tracking, when compared with classic adaptive inertia 

control.  
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6. Further developments 

Thanks to the development of this work, from the implemented simulation tools and the 

obtained results, fault tolerant control systems essays are being currently carried out, in 

order to apply them to actual robotic systems, with and without link redundancy, like the 

SCARA-type robots shown in figure 16 and figure 17, respectively. 
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Fig. 16. SCARA-type redundant robot, DIE-USACH 

 

 

Fig. 17. SCARA-type robot, DIE-USACH 
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8. Appendices 

8.1 Appendix A: inertia matrix for 2 DOF 
The inertia matrix considering two degrees of freedom is given by equation (64): 
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 (64) 

8.2 Appendix B: regression matrix for 2 DOF 
The regression matrix considering two degrees of freedom, is expressed by equation (33). 

Defining relationships (65) to (68) as: 

 11 1 1dQ q eλ= +$  (65) 

 22 2 2dQ q eλ= +$  (66) 

 1 11 1dq eQ λ= +$$ $$  (67) 

 2 22 2dq eQ λ= +$$ $$  (68) 

The components of the matrix given by equation (33) can be calculated by means of 

expressions (69) to (70): 

 
2 2 2

11 1 12 211 1 12 2 1
11
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m m
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V Q V QM Q M Q G
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m m m= = =
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 (69) 
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where: 

 
0
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With these considerations, the resulting regression matrix components are:   
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Defining relationships (78) and (79) as: 

 1 c2 2sinay l l θ=  (78) 

 1 c2 2cosAy l l θ=  (79) 

The components Y12 and Y22 of the regression matrix can be expressed by: 

 ( ) ( ) ( )( )2 22zz
12 1 1 c2 1 2 22 1

2
11 2 22A a

I
Y l Q l Q Q y Q Q y Q Q
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8.3 Appendix C: Vm matrix for 3 DOF 
The Vm Matrix for 3 DOF is expressed by: 

 ( ) ( )( )11 2 1 c2 3 1 2 3 2 c2 2 2 2 23 33 3 33 31 csin sin sin sinmV m l l m l l m l l m l lθ θ θ θθ θ θθθ −= − + − + +$$ $$  (82) 

 ( ( ))2 1 c2 321 3 1 c3 3 22 21 3 32 c1 332sin si sin sin nmV m lm l l m l l m l llθ θ θ θθθ θ+ ++ −= $ $  (83) 

 ( ) ( )3 2 c 213 33 13 3 31 2 1csin sinmV m l l m l lθ θθ θθ θ+ ++= $$ $  (84) 

( )( ) ( )( )12 2 1 c2 3 1 22 2 3 2 c3 3 13 3 321 2 2 31c3sin sin sin sinmV m l l m l l m l l m l lθ θ θ θ θθ θθ θθ θ= − + − − ++ + +$ $$ $$ $  (85) 
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 22 3 2 c 3 33 sinmV m l l θ θ= − $  (86) 

 ( )1 232 c 33 2 3 sinmV m l l θ θθ= +$ $  (87) 

 ( ( ))( )13 3 2 c3 3 1 2 3213c33sin sinmV m l l m l lθ θ θθ θθ += − + + +$ $$  (88) 

 ( )13 33 22 3 2 c3 sinmV m l l θ θθ θ= − + +$ $$  (89) 

 33 0mV =  (90) 

Defining the following relationships: 

 2 1 2 2c sinac m l l θ=  (91) 

 3 1 22 sinbc m l l θ=  (92) 

 3 2 3 3c sincc m l l θ=  (93) 

 ( )3 1 c3 2 3sindc m l l θ θ+=  (94) 

Replacing expressions (91) to (94) into equations (82) to (89), we arrive to: 

 ( ) ( )3211 32m a b c dV c c c cθ θθ θ= − + − +− $ $$ $  (95) 

 ( ) 1 321m a b d cV c c c cθ θ= + + −$ $  (96) 

 ( )2131 1c dm c cV θ θθ+ += $$ $  (97) 

 ( )( ) ( )1 1212 23 3m a b c dV c c c cθ θ θθ θθ= − + + − − + +$ $ $$ $$  (98) 

 322m cV c θ= − $  (99) 

 ( )1 232m cV c θθ= +$ $  (100) 

 ( )( )3113 2m c dV c c θθ θ+ += − +$ $$  (101) 

 ( )3223 1m cV c θ θ θ= − + +$ $$  (102) 

 33 0mV =  (103) 

8.4 Appendix D: Regression matrix for 3 DOF 
Defining relationships (104) and (105), and considering the relationships defined by means 

of  equations (65) to (68), we have: 
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 21 0Y =  (118) 
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Defining relationships (124) to (129), and considering the relationships defined in (78) and 

(79), we have: 

 1 2 2sinby l l θ=  (124) 

 2 c3 3sincy l l θ=  (125) 

 ( )c 321 3 sindy l l θ θ+=  (126) 

 1 2 2cosBy l l θ=  (127) 

 2 c3 3cosCy l l θ=  (128) 

 ( )c 321 3 cosDy l l θ θ+=  (129) 
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