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1. Introduction     

Recent years have witnessed growing interest in multi-robot system (MRS) research. To 
date, numerous research projects have been undertaken in various forms, such as robot 
soccer (Stone & Sutton, 2001), all-terrain operation (Mondada et al., 2003), box-pushing 
problems (Gerkey & Mataric, 2002), and many others. We can point out at least three 
advantages of an MRS over traditional single-robot systems (Stone & Veloso, 2000). The first 
is parallel processing, performed by autonomous and asynchronous robots in the system. The 
second is robustness, realized by redundancy: the system has more robots than required. The 
third is scalability in the sense that a robot can be added or removed from the system easily. 
From the viewpoint of complex adaptive systems, it is important to coordinate cooperative 
behavior to solve a given task because a task is given simply to a robot group without 
sufficiently detailed specifications to solve it. The most popular approach to realize 
coordination is providing strategies for effective cooperation in advance in the form of 
behavior rules, roles, or communication protocols. 
However, it is practically impossible to give hand-crafted behavior rules for all possible 
situations that a robot will encounter. This means that the performance is context-sensitive. 
One approach to this problem is giving the ability of acquiring cooperative behavior 
through experience to each robot by autonomous role development and assignment so that 
an MRS has the potential for system-level robustness. 
We consider that a key factor would be how to give an on-line autonomous specialization 
mechanism to an MRS. This study introduces an approach that uses reinforcement learning 
(RL) to achieve autonomous specialization. To date, RL has not often been applied to an 
MRS because of the following two reasons. The first is that RL generates quite sensitive 
results for segmentation of the state space and the action space. When segmentation is 
inappropriate, RL often fails. Even if RL obtains a successful result, the achieved behavior 
might not be sufficiently robust. The second is that the RL theory is constructed on the 
assumption of a static environment (Sutton & Barto, 1998). Therefore, RL in a simple form 
can yield good results only when the environment is sufficiently static or stable for a robot 
to be able to assume that it is static. 
We must therefore apply RL carefully to an MRS, so that learning robots cope with the 
dynamics in their environment resulting from the moves of other robots that are learning 
simultaneously. 
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To overcome these problems, we apply a novel RL algorithm that has a mechanism for 
segmenting continuous state space and continuous action space autonomously and 
simultaneously. We call this Bayesian-discrimination-function-based Reinforcement 
Learning (BRL). In addition, for supporting the stabilization of the dynamics in the learning 
problem for the RL, complementary information, i.e., the prediction of the other robots' 
postures at the next time step is provided to the BRL by a learning neural network.  
The remainder of this chapter is organized as follows: The target MRS is introduced in the 
second section. The third and fourth sections explain our design concept and our 
reinforcement learning controller details. The fourth section proposes an extended BRL for 
improving the robustness. The fifth section shows results of our experiments. Conclusions 
are given in the final section.  

2. Task: cooperative carrying problem 

Our target problem is a simple MRS composed of three autonomous robots, as shown in Fig. 
1. This problem is called the cooperative carrying problem (CCP), and involves requiring the 
MRS to carry a triangular board from the start to the goal. A robot is connected to the 
different corners of the load so that it can rotate freely.  A potentiometer measures the angle 

between the load and the robot's direction θ. A robot can perceive the potentiometer 
measurements of the other robots, as well as its own. All three robots have the same 
 

 

Fig. 1. Cooperative carrying problem, CCP 
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specifications. Each robot has two distance sensors d and three light sensors l. The greater d 
/ l becomes, the nearer the distance to an obstacle or a light source. Each robot has two 
motors for rotating two omnidirectional wheels. A wheel provides powered drive in the 
direction it is pointing and passive coasting in an orthogonal direction at the same time. 
The difficulties in this task can be summarized as follows:  

• The robots have to cooperate with each other to move around. 
• They begin with no predefined behavior rule sets or roles. 
• They have no explicit communication functions. 
• They cannot perceive the other robots through the distance sensors because the sensors 

do not have sufficient range. 
• Each robot can perceive the goal (the location of the light source) only when the light is 

within the range of its light sensors. 

• Passive coasting of the omnidirectional wheels brings a dynamic and uncertain state 
transition. 

3. Reinforcement learning approach to CCP 

3.1 Reinforcement learning in continuous space:  

BRL: Overview 

Our approach, called BRL, updates the classification only when such an update is required. 
A set of production rules is defined using Bayesian discrimination method, which is a well-
known method of pattern classification (Dura & Hart, 1972). This method can assign an 
input, X, to the cluster, Ci, which has the largest posterior probability, max Pr(Ci|x). Here,  
Pr(Ci|x) indicates the probability calculated by Bayes' formula that a cluster, Ci, holds the 
observed input x. Therefore, using this technique, a robot can select the most similar rule to 
the current sensory input. The learning procedure is overviewed as follows: 
1. A robot perceives the current input data x. 
2. A robot selects the most similar rule from a rule set by using the Bayesian 

discrimination method. If a robot selects a rule, it executes the corresponding action a. 
Otherwise, a robot executes an action randomly. 

3. A robot is transferred to the next state and receives a reward r. 
4. The utilities of all rules are updated according to r. The rules for which the utilities are 

below a certain threshold are removed. 
5. The robot produces a new rule as the combination of the current input data and the 

executed action if a robot executed an action randomly. This executed rule is stored in 
the rule set. 

6. Parameters of all the rules are updated by the interval estimation technique if a robot 
receives no penalty. Otherwise, a robot only updates the parameters of the selected rule. 

7. Go to (1). 

Rule Representation 

The BRL operates on a set of rules R. A rule rl ∈ R is defined as rl:=< v, u, a, f, Σ, Φ>. In this 
expression, the state vector associated with rl is v = {v1,…,vnd}T, where nd is the number of 
inputs. The utility of rl is represented as u. The action vector is a = {a1,…,ana}T, where na is the 
number of actuators. The prior probability is denoted as f. The covariance matrix is Σ = diag 

{σ1,…,σnd}. The sample set associated with rl is Φ ={φ1,..., φns}T, where ns is the number of 
samples. 
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Action Selection 

A rule in R is selected to minimize the risk of misclassification of the current input. The 

posterior probability Pr(Ci|x) is calculated as the risk of misclassification for each cluster; it 

is calculated by Bayes’ Theorem: 
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For finding the minimal risk, it is sufficient to calculate the posterior probability because all 

clusters have a common factor of 1/Pr(x). The probability density function of the i-th rule's 
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The estimated value of gi, the risk of misclassification of the input data x into the other 

clusters, is calculated as the following: 
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After calculating gi for all the rules, the winner rule, rlw, is selected as that which has the 

minimal value of gi. As mentioned in the learning procedure, the action in the rlw is 

performed if gi is lower than a threshold gth. Otherwise, a random action is performed. 

Temporal Credit Assignment 

The respective utilities of the rules are updated using the following four strategies after the 

action is performed. 

1. Direct payoff distribution: The direct payoff P is given to the winner rule. Two types of 

payoff are obtainable: reward (P>0) and punishment (P<0). The payoff is spread back 

along the sequence of the rules that triggered its actions with the discount rate γ. 
2. “Bucket brigade” like strategy: The current winner rule, rlw, hands over part of its utility 

Δu to the previous winner only when Δu is positive. 

3. Taxation: A firing rule reduces its utility as uw ← (1 - cf) uw. 

4. Evaporation: All rules reduce their utilities at the evaporation rate η < 1 when the robot 

reaches the goal: uw ← ηuw. A rule that has smaller utility than the threshold umin is 

removed from the rule set R. 

Updating Rule Set 

The update phase is performed except when action by rlw results in punishment. If a random 

action is taken (i.e. gw > gth), a new rule that is composed of the current sensory input, vc, and 

the executed action, ac, is added to R. Parameters for the new rule are defined as follows. 

 vc = x, Σc = σ02I, ac = aw, uc =  u0, fc = f0 (4) 
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In those equations, σ0, u0 and f0 are constants, I is a unit matrix. When the action in rlw is 

performed as (i.e. gw ≤ gth), all of its parameters are updated as follows. First, the sample set 

Φw is updated by adding the current sensory input to x. Then, the sample mean x = {x1,..., 

xns}T and the sample variance s2 = {s12,..., sns2 }T are estimated from the updated set Φw. The 
confidence intervals for X and s2 are also updated. Subsequently, BRL determines whether 

any component of v and Σ is out of the range of the confidence intervals. If any component 
is outside of that range, the updates are conducted: 

 vi ← vi + α(xi - vi) (5) 

 σi2 ← σi2 + α[si2 - σi2] (6) 

 fw ← fw + β(1 - fw) (7) 

where α and β are constants. For all other rules, the prior probabilities fi are updated as 
follows: 

 fi ← (1 - β)fi (8) 

3.2 Reducing the dynamics in an environment 

Related Work 

To date, numerous reports that are related to the RL approach and that are applied to an 

MRS have been published.  For instance, Tan (Tan, 1993), who examined the effects of 

sharing information, described that shared information is beneficial if it can be used 

efficiently. Asada et al. (Asada et al., 1999) and Ikenoue et al. (Ikenoue et al. 2002) proposed 

a vision-based RL method for acquiring cooperative behavior in a soccer-like game that 

includes two mobile robots: a shooter and a passer. To stabilize the learning process, Asada 

et al. introduced a method of global scheduling by limiting the number of learning agents to 

one and allowing the remaining agents to execute fixed policies that were acquired in the 

previous learning stage. Ikenoue et al. proposed a method of asynchronous policy renewal 

with one policy and one action value function. Elfwing et al. (Elfwing et al., 2004) added 

macro actions. Macro actions force an agent to execute the same primitive action for more 

than one time step to thereby stabilize learning and make action selection more predictable 

for other agents. Several studies have specifically addressed the internal model of other 

learning agents (Littman, 1994; Hu & Wellman, 1998; Nagayuki et al., 2000). In those 

models, agents learn through estimating others' actions, Q values, or policies. 

To the best of our knowledge, no RL approaches have displayed autonomous specialization. 
Therefore, robots need well-designed states, actions, strategies, or roles for acquiring 
cooperative behavior. Achieving all of these goals simultaneously is a practical 
impossibility. 

Our Approach 

In this study, we adopt a mechanism for predicting the near-future state based on time-series 
sensory information. As related work, a memory-based method (Moore & Atkenson, 1993) 
and a decision-tree (Suzuki et al., 1999) have been proposed for dealing with non-Markovian 
characteristics in an MRS environment. However, the state space is expanded according to the 
length of the time series information; in the worst case, it is expanded indefinitely. 
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We consider that the state space expansion should be as little as possible. 
Our research group has demonstrated that merely the nearest future state prediction is 
sufficient for stabilizing the dynamics in an RL space (Kawakami et al., 1999). In this study, 
although a continuous learning space is assumed, an identical approach is examined with a 
feed-forward neural network for predicting the average of the other robots' postures at the 
next time step. As shown in Fig. 2, BRL uses the output of the neural network as a sensory 
information input. 

4. Extended BRL 

4.1 Basic concept 
We have some RL approaches that provide learning in continuous action spaces. An actor-
critic algorithm built with function approximators has a continuous learning space and 
modifies actions adaptively (Doya, 2000; Peters & Schaal, 2008). This algorithm modifies 
policies based on TD-error at every time step. The REINFORCE algorithm theoretically also 
needs immediate reward  (Williams, 1992). These approaches are not useful for tasks such as 
the navigation problem shown in Sec. 2, because the robot gets a reward only when it 
reaches the goal. BRL, however, proves to be robust against a delayed reward.  
In the standard BRL, a robot performs a random search in its action space, and these 
random actions can produce unstable behavior. Therefore, reducing the chance of random 
actions may accelerate behavior acquisition and provide more robust behavior. Instead of 
performing a random action, BRL needs a function that determines action based on acquired 
knowledge. 
 

 

Fig. 2. Robot Controller   
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4.2 BRL with an adaptive action generator 
To improve the search efficiency in a action space, in this paper, we introduce an extended 
BRL by modifying the learning procedure, Step (2) in Sec. 3. In this extension, instead of a 
random action, the robot performs a knowledge-based action when it encounters a new 
environment. To do this, we set a new threshold, P'th (< Pth), and provide three cases for rule 
selection in Step (2) as follows:  

• gw  < gth: The robot selects the rule with gw and executes its corresponding action aw. 
• gth ≤ gw < g'th: The robot executes an action with parameters determined based on rlw 

and other rules with misclassification risks within this range as follows: 
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where nr is the number of referred rules, and N(0, σ) is a zero-centred Gaussian noise 
with variance σ. This action is regarded as an interpolation of previously-acquired 
knowledge. 

• g'th ≤ gw: The robot generates a random action. 
In this rule selection, the first and third cases are the same as the standard BRL. 

5. Experiments 

5.1 Settings 
Fig. 3 and 4 show the general views of the experimental environments for simulation and 
physical experiments, respectively. In the simulation runs, the field is a square surrounded 
by a wall. The physical robots are situated in a 3.6-meter-long and 2.4-meter-wide pathway. 
The task for the MRS is to move from the start to the goal (light source). All robots get a 

positive reward when one of them reaches the goal (l0 > thrgoal ∨ l1 > thrgoal  ∨ l2 >thrgoal). A 
robot gets a negative reward when it collides with a wall (d0 > thrd  ∨ d1 > thrd). We represent 
a  unit of time as a step. A step is a sequence that allows the three robots to get their own 
input information, make decisions by themselves, and execute their actions independently. 
When the MRS reaches the goal, or when it cannot reach the goal within 200 steps in 
simulations and 100 steps in physical experiments, it is put back to the start. This time span 
is called an episode. 
The settings of the robot controller are as follows. 

Prediction Mechanism (NN)  

The prediction mechanism attached is a three-layered feed-forward neural network that 
performs back propagation. The input of i-th robot is a short history of sensory information, 
Ii = {cosθit-2, sinθit-2, cosψit-2, sinψit-2, cosθit-1, sinθit-1, cosψit-1, sinψit-1, cosθit, sinθit, cosψit, sinψit}, 
where ψit = (θjt +θkt)/2 (i ≠ j ≠ k). The output is a prediction of the posture of the other robots 

at the next time step Oi = { cosψit+1, sinψit+1 }. The hidden layer has eight nodes. 

Behavior Learning Mechanism (BRL) 

The input is xi = { cosθit, sinθit, cosψit+1, sinψit+1, di0, di1, li0, li1, li2 }. The output is ai = { mirud, mith 
}, where mirud and mith are the motor commands for the rudder and the throttle respectively. 
σ in Eq.(9) is 0.05. For the standard BRL, Pth = {0.012, 0.01}. For the extended BRL, Pth = 0.012 
and  P'th= 0.01. The other parameters are shown in Table. 1. These values are the same as the 
recommended values in our journal (Yasuda et al., 2005). 
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Fig. 3. Experimental environment (simulation) 
 

 

Fig. 4. Experimental environment (physical experiment) 

5.2 Results: simulations 
Fig. 5 shows the averages and the deviations of steps that the MRS takes by the end of each 

episode. In the early stages, the MRS requires a lot of trial and error and takes many steps to 

finish the episode. After such a trial and error process, the behavior of MRS becomes more 

stable and it takes fewer steps. An MRS with the standard BRL stably achieves the task 

within nearly constant steps after the 250th episode, and the extended BRL accomplishes 

this in 200 episodes. This means that, in terms of learning speed, the extended BRL 

outperforms the standard one.  
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Parameter Value 

nrlmax maximum size of the rules 100 

nsmax maximum size of the samples  50 

P payoff (reward) 25.0 

P payoff (punishment) -0.05u 

u0 initial utility 10.0 

umin threshold for extinction 9.2 

cf cost for an action 0.01 

γ distribution rate of utility 0.9 

κ utility spread rate  0.15 

η evaporation rate 0.98 

f0 initial prior probability 0.001 

σ0 initial variance 0.05 

α in eq (6) 0.001 

β in eqs (7) and (8) 0.0001 

Table 1. BRL parameters 

 

 

Fig. 5. Mean learning history for 50 simulations (three robots) 

For the 50 independent runs, the MRS achieved different globally stable behavior as shown 
in Fig. 6. However, we found a common point that robots always achieved cooperative 
behavior by developing team play organised by a leader, a sub-leader and a follower. This 
implies that acquiring cooperative behavior always involved autonomous specialization. 
The extended BRL displayed higher adaptability, and yielded autonomous specialization 
faster than the standard BRL. 
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Fig. 6. Typical behavior in the early stage and acquired stable behavior (three robots) 

Discussion 

There is no significant difference in results in the learning performance of the BRLs for a 
three-robot CCP; therefore, we tested four- and five-robot CCP performance for more 
dynamic and complicated problems. The four robots use a square load, and the five robots 

have a pentagonal load. In these CCPs, ψ is the average of the angles between two 
neighbouring robots and the load. The other controller settings are the same as those for the 
three-robot CCP. 
Figs. 7 and 8 show the average and the deviations of steps an MRS takes by the end of each 
episode. As the number of robots increases, we can find that the extended BRL provides 
increasingly better results than the standard BRL, although it requires more episodes before 
obtaining stable behavior as shown in Figs. 9 and 10. The extended BRL has a function for 
coordinating behavior as well as reducing the number of random actions that can result in 
unstable behavior. These results show that the extended BRL has a higher learning ability 
and is less dependent on the number of robots in the MRS. This implies that the extended 
BRL might have more scalability, which is one of the advantages of MRS over single-robot 
systems. 
Although parameters that are more refined might provide better performance, parameter 

tuning is outside the scope, because BRL is designed for acquiring reasonable behavior as 

quickly as possible, rather than optimal behavior. In other words, the focal point of our MRS 

controller is not optimality but versatility. In fact, we obtain similar experimental results 

through experiments with an arm-type MRS similar to that in (Svinin et al., 2000) using the 

same parameter settings. 
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Fig. 7. Mean learning history for 50 simulations (four robots) 

 

 

Fig. 8. Mean learning history for 50 simulations (five robots) 
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Fig. 9. Typical behavior in the early stage and acquired stable behavior (four robots) 

 

    

Fig. 10. Typical behavior in the early stage and acquired stable behavior (five robots) 

5.3 Results: physical experiments 
We conducted five independent experimental runs for each BRL. The standard BRL 
provided two successful results and the extended BRL provided four. Figs. 11 and 12 
illustrate the best results of the physical experiments by the standard and the extende BRL, 
respectively. These figures illustrate the number of steps and punishments in each episode. 
Comparing these results shows that the extended BRL requires fewer episodes to learn 
behavior. The other successful results of the extended BRL show better performance than 
the best result of the standard BRL. The behavior of the extended BRL is also more stable 
than that of the standard, because the MRS with the standard BRL gets several punishments 
after learning goal-reaching behavior. 
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Fig. 11. Learning history: physical experiment (standard BRL) 

 

 
 

Fig. 12. Learning history: physical experiment (extended BRL) 

Figs. 13 and 14 show examples of the behavior of the extended BRL. In the early stages, 

robots have no knowledge and function by trial and error. During this process, robots often 

collide with a wall and become immovable (Fig. 13). Then, some robots reach the goal and 

develop appropriate input-output mappings (Fig. 14). Observing the acquired behavior and 

investigating rule parameters, we found that the robots developed cooperative behavior, 

based on autonomous specialization. 
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Fig. 13. An example of behavior in the early stage (extended BRL) 

 

Fig. 14. An example of acquired behavior after successful learning (extended BRL) 
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6. Conclusions 

We investigated the RL approach for the behavior acquisition of autonomous MRS. Our 
proposed RL technique, BRL, has a mechanism for autonomous segmentation of the 
continuous learning space, and proved effective for MRS through the emergence of 
autonomous specialization. For accelerated learning, we proposed an extension of BRL with 
a function to generate interpolated actions based on previously acquired rules. Results of the 
simulations and physical experiments showed that the MRS with an extended BRL did learn 
behavior faster than that with the standard BRL.  
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