
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

14

Multi-robot Path Planning

Pavel Surynek
Charles University in Prague

Czech Republic

1. Introduction

This chapter is devoted to a problem of path planning for multiple robots (Ryan, 2008; Surynek,
2010a). Consider a group of mobile robots that can move in some environment (for example
in the 2-dimensional plane with obstacles). Each robot of the group is given an initial and a
goal position in the environment. The question of our interest is how to determine a
sequence of motions for each robot of the group such that all the robots reach their goal
positions starting from the initial ones. Physical limitations must be respected by robots:
robots must not collide with each other and they must avoid obstacles in the environment
during their movements.
The problem of multi-robot path planning is motivated by many practical tasks. Various

problems of navigating a group of mobile robots can be formulated as multi-robot path

planning. However, the primary motivations for the problem are tasks of moving certain

entities within an environment with a limited free space. Hence, the formulation of the

problem is not limited to the case where robots are actually represented by mobile robots.

The constraint of limited free space represents a key aspect that makes the problem

interesting and non-trivial. It is quite intuitive to see that the problem becomes easier with a

lot of free space in the environment. The interaction between robots (which corresponds to

the probability of collisions) is low in such a case. Thus, it is possible to plan movements of

each robot relatively independently with respect to other robots. Then the problem reduces

almost to the series of simple single source path finding (Cormen et al., 2001) for each robot;

potentially with finding alternative paths if a collision still occurs.

On the other hand, if there is limited free space in the environment the problem becomes

harder. Consider the situation where the space occupied by robots is comparable to the free

space or even the situation where robots occupy larger space than the space that remains

unoccupied in the environment. The interaction between robots (that is, the probability of

collisions) is so high in such a case that finding a path for each robot independently no

longer works. Therefore, different methods must be used.

One of the aims of this chapter is to explain solving methods for these cases. Notice, that it is
desirable to reason about the case with limited free space since practical tasks typically has
this property. Such real-life examples include rearranging of shipping containers in
warehouses (a robot is represented by a shipping container – see Fig. 1) or coordination of
vehicles in dense traffic (robot = vehicle). Additionally, our reasoning should not be limited
to physical entities only. A robot may be represented by a virtual entity or by a piece of
commodity too. Thus, many tasks such as planning of data transfer between communication

14

www.intechopen.com

Multi-Robot Systems, Trends and Development 268

nodes with limited storage capacity (robot = data packet), commodity transportation in the
commodity transportation network (robot = certain amount of commodity), or even the
motion planning of large groups of virtual agents in the computer-generated imagery can be
expressed as the problem of multi-robot path planning.

Fig. 1. An illustration of shipping container rearranging. This problem can be formulated as
path planning for multiple robots where robots are represented by containers.

We would like also to emphasize that an approach to solving tasks of multi-robot path
planning presented in this chapter is substantially different from the multi-agent approach
where the final plan is constructed in a distributed manner through communication
between individual agents. A robot in our case is not regarded as an autonomous agent with
communication ability. The plan for individual robots is constructed by the centralized
mechanism (that is represented by a solving method in our case), which is capable of
observing the whole environment and all the robots. The individual robots merely execute
the centrally created plan.

2. Formal abstraction

When dealing with the problem of multi-robot path planning it will soon turn out to be
necessary to work with the problem at the highly abstract level. Nevertheless, even with the
high abstraction the problem remains computationally hard. Let us now introduce abstract
formulations of the problem where the environment is modeled as a graph. Vertices of the
graph represent locations in the environment. Time is modeled as a structure of discrete time
steps isomorphic to the structure of natural numbers (including zero). Robots are placed in
vertices of the graph while there is at most one robot in each vertex. Robots can move between
neighboring vertices in a single step. That is, an edge represents an unobstructed way between
locations in the environment represented by connected vertices that can be travelled by a robot
in a single time step. At least one vertex is left unoccupied to allow robots to move. An initial
and a goal arrangement of robots are also given to specify the task.
There are two different approaches to the dynamicity of the problem. One approach is that a
move is allowed to a currently unoccupied vertex only – this variant of the problem is
known as coordinating pebble motion on a graph (Wilson, 1974; Kornhauser et al., 1984) .
Another approach is to allow moves into currently vacated vertices. This allows a group of
robots to move like a train where only the leading robot must move into an unoccupied
vertex; the other robots directly follow it. As this variant of the problem is closer to the

268 Multi-Robot Systems, Trends and Development

www.intechopen.com

Multi-robot Path Planning 269

reality of how robots are required to move, it is called multi-robot path planning (Surynek,
2010a). Following definitions describes both variants of the problem formally.
Definition 1. (problem of pebble motion on a graph). Let 罫 噺 岫撃┸ 継岻 be an undirected graph.
Next, let 鶏 噺 岶喧違怠┸ 喧違態┸ ┼ ┸ 喧違禎岼 where 航 隼 】撃】 be a set of pebbles. The graph models an

environment in which the pebbles are moving. An initial arrangement of the pebbles is

defined by a uniquely invertible function 鯨牒待┺ 鶏 募 撃 (that is 鯨牒待岫喧岻 塙 鯨牒待岫圏岻 for every 喧┸ 圏 樺 鶏 樺 with 喧 塙 圏). A goal arrangement of the pebbles is defined by another uniquely
invertible function 鯨牒袋┺ 鶏 募 撃 (that is 鯨牒袋岫喧岻 塙 鯨牒袋岫圏岻 for 喧┸ 圏 樺 鶏 with 喧 塙 圏). A problem of

pebble motion on a graph is the task to find a number 行 and a sequence 質牒 噺 岷鯨牒待┸ 鯨牒怠┸ ┼ ┸ 鯨牒締峅
where 鯨牒賃┺ 鶏 募 撃 is a uniquely invertible function for every 倦 噺 な┸に┸┼ ┸ 行. Additionally, the
following conditions must hold for the sequence 質牒:

i. 鯨牒締 噺 鯨牒袋; that is, all the pebble reaches their destination vertices.

ii. Either 鯨牒賃岫喧岻 噺 鯨牒賃袋怠岫喧岻 or 岶鯨牒賃岫喧岻┸ 鯨牒賃袋怠岫喧岻岼 樺 継 for every 喧 樺 鶏 and 倦 噺 な┸に┸┼ ┸ 行 伐 な; that
is, a pebble can either stay in a vertex or move into the neighboring vertex between each
two successive time steps.

iii. If 鯨牒賃岫喧岻 塙 鯨牒賃袋怠岫喧岻 (that is, the pebble 喧 moves between time steps 倦 and 倦 髪 な) then 鯨牒賃岫圏岻 塙 鯨牒賃袋怠岫喧岻 褐圏 樺 鶏 such that 圏 塙 喧; must hold for every "喧 樺 鶏 and 倦 噺 な┸に┸ ┼ ┸ 行 伐な; that is, a pebble can move into an unoccupied neighboring vertex only. This
constraint together with unique invertibility of functions forming 質牒 implies that no
two pebbles can enter the same target vertex at the same time step.

The instance of the problem of pebble motion on a graph is formally a quadruple ┉ 噺岫罫┸ 鶏┸ 鯨牒待┸ 鯨牒袋岻. Sometimes, the solution of the problem ┉ will be denoted as 質牒岫┉岻 噺岷鯨牒待┸ 鯨牒怠┸ ┼ ┸ 鯨牒締峅. ｦ

Fig. 2. An illustration of problems of pebble motion on a graph and multi-robot path planning.
Both problems are illustrated on the same graph with the same initial and goal positions.

The task is to move pebbles/robots from their initial positions specified by 鯨牒待【鯨眺待 to the goal
positions specified by 鯨牒袋【鯨眺袋. A solution of the makespan 6 (行 噺 は) is shown for the problem
of pebble motion on a graph and a solution of the makespan 4 (耕 噺 ね) is shown for the
problem of multi-robot path planning. Notice the differences in parallelism between both
solutions.

傘皿宋 噺 傘三宋

行 噺 は

Solution of the problem of pebble motion

on a graph 銭 with 皿 噺 岶層拍┸ 匝拍┸ 惣拍岼 傘皿宋 士拍層 士拍匝 士拍惣

な博 に博 ぬ博
Solution of the problem of path planning for

multiple robots 鮮 with 三 噺 岶層拍┸ 匝拍┸ 惣拍岼

鮮 噺 岫罫┸ 迎┸ 鯨眺待┸ 鯨眺袋岻 銭 噺 岫罫┸ 鶏┸ 鯨牒待┸ 鯨牒袋岻 傘皿袋 噺 傘三袋 士拍層

士拍匝 士拍惣

士拍想

士拍捜 士拍掃

士拍挿

士拍掻 士拍操

層拍

匝拍

惣拍

士拍層

士拍匝 士拍惣

士拍想

士拍捜 士拍掃

士拍挿

士拍掻 士拍操

層拍

匝拍

惣拍

耕 噺 ね 皿 傘皿層 懸違替 懸違態 懸違戴
傘皿匝 懸違胎 懸違怠 懸違戴

傘皿惣 懸違腿 懸違替 懸違態
傘皿想 懸違苔 懸違胎 懸違怠

傘皿捜 懸違苔 懸違腿 懸違替
傘皿掃 噺 傘皿袋 士拍操 士拍掻 士拍挿

な博 に博 ぬ博
三 傘三宋 士拍層 士拍匝 士拍惣

傘三層 懸違替 懸違怠 懸違態
傘三匝 懸違胎 懸違替 懸違怠

傘三惣 懸違腿 懸違胎 懸違替
傘三想 噺 傘三袋 士拍操 士拍掻 士拍挿

269Multi-robot Path Planning

www.intechopen.com

Multi-Robot Systems, Trends and Development 270

The notation with a stripe above the symbol is used to distinguish a constant from a variable

(for example, 喧 樺 鶏 is a variable while 喧違態 is a constant; sometimes a constant parameterized

by a variable or by an expression will be used – for example 喧違沈 denotes a constant

parameterized by an index 件 樺 桶; the parameterization by an expression will be clear from

the context).

When speaking about a move at time step 倦, it is referred to the time step of commencing

the move (exactly, the move is performed between time steps 倦 and 倦 髪 な). A problem of

multi-robot path planning is a relaxation of the problem of pebble motion on a graph. The

condition that the target vertex of a pebble/robot must be vacated in the previous time step

is relaxed. Thus, the motion of a robot entering the target vertex that is simultaneously

vacated by another robot is allowed in multi-robot path planning. However, there must be

some leading robot initiating such chain of moves by moving into an unoccupied vertex.

Definition 2 (problem of multi-robot path planning). Again, let 罫 噺 岫撃┸ 継岻 be an undirected

graph. Now a set of robots 迎 噺 岶堅違怠┸ 堅違態┸ ┼ ┸ 堅違程岼 where 荒 隼 】撃】 is given instead of the set of

pebbles. Similarly, the graph models an environment in which the robots are moving. The

initial arrangement of the robots is defined by a uniquely invertible function 鯨眺待┺ 迎 募 撃

(that is 鯨眺待岫堅岻 塙 鯨眺待岫嫌岻 for 褐堅┸ 嫌 樺 迎 with 堅 塙 嫌). The goal arrangement of the robots is defined

by another uniquely invertible function 鯨眺袋┺ 迎 募 撃 (that is 鯨眺袋岫堅岻 塙 鯨眺袋岫嫌岻 for 褐堅┸ 嫌 樺 迎 with 堅 塙 嫌). A problem of multi-robot path planning is the task to find a number 耕 and a

sequence 質眺 噺 岷鯨眺待┸ 鯨眺怠┸ ┼ ┸ 鯨眺抵峅 where 鯨眺賃┺ 迎 募 撃 is a uniquely invertible function for every 倦 噺 な┸に┸┼ ┸ 耕. The following conditions must hold for the sequence 質眺:

i. 鯨眺抵 噺 鯨眺袋; that is, all the robots reaches their destination vertices.

ii. Either 鯨眺賃岫堅岻 噺 鯨牒賃袋怠岫堅岻 or 岶鯨眺賃岫堅岻┸ 鯨眺賃袋怠岫堅岻岼 樺 継 for every 堅 樺 迎 and 倦 噺 な┸に┸┼ ┸ 耕 伐 な; that
is, a robot can either stay in a vertex or move to the neighboring vertex at each time step.

iii. If 鯨眺賃岫堅岻 塙 鯨眺賃袋怠岫堅岻 (that is, the robot 堅 moves between time steps 倦 and 倦 髪 な) and 鯨眺賃岫嫌岻 塙 鯨眺賃袋怠岫堅岻 褐嫌 樺 迎 such that 嫌 塙 堅 (that is, no other robot 嫌 occupies the target
vertex at time step 倦), then the move of 堅 at the time step 倦 is called to be allowed (that
is, the robot 堅 moves into an unoccupied neighboring vertex – a leading robot). If 鯨眺賃岫堅岻 塙 鯨眺賃袋怠岫堅岻 and there is 嫌 樺 迎 such that 嫌 塙 堅 巻 鯨眺賃岫嫌岻 噺 鯨眺賃袋怠岫堅岻 巻 鯨眺賃岫嫌岻 塙 鯨眺賃袋怠岫嫌岻
(that is, the robot 堅 moves into a vertex that is being left by the robot 嫌) and the move of 嫌 at the time step 倦 is allowed, then the move of 堅 at the time step 倦 is also allowed. All
the moves of robots at all the time steps must be allowed. And analogically, this
condition together with the requirement on unique invertibility of functions forming 質眺
implies that no two robots can enter the same target vertex at the same time step.

The instance of the problem of multi-robot path planning is formally a quadruple み 噺岫罫┸ 迎┸ 鯨眺待┸ 鯨眺袋岻. The solution of the problem み will be sometimes denoted as 質眺岫み岻 噺岷鯨眺待┸ 鯨眺怠┸ ┼ ┸ 鯨眺抵峅. ｦ
The numbers 行 and 耕 are called makespan of the solution of pebble motion on a graph and

multi-robot path planning respectively. The makespan needs to be distinguished from the

size of the solution, which is the total number of moves performed by pebbles/robots.

3. Properties of problems and complexity issues

Let us now summarize several basic properties of the solutions of instances of problems of
pebble motion on graphs and multi-robot path planning.

270 Multi-Robot Systems, Trends and Development

www.intechopen.com

Multi-robot Path Planning 271

Notice that a solution of the problem of pebble motion on a graph as well as a solution of the
problem of multi-robot path planning allows a pebble/robot to stay in a vertex for more
than a single time step. It is also possible that a pebble/robot visits the same vertex several
times within the solution. Hence, a sequence of moves for a single pebble/robot does not
necessarily form a simple path in the input graph. Notice further that both problems
intrinsically allow parallel movements of pebbles/robots. That is, more than one
pebble/robot can perform a move in a single time step. However, multi-robot path planning
allows higher motion parallelism due to its weaker requirements on robot movements (the
target vertex is required to be unoccupied only for the leading robot in the previous time
step – see Fig. 2). More than one unoccupied vertex is necessary to obtain parallelism in the
problem of pebble motion on a graph. On the other hand, it is sufficient to have a single
unoccupied vertex to obtain parallelism within the solution of multi-robot path planning
problem (consider for example robots moving around a cycle).
The following proposition puts in relation the solution of an instance of multi-robot path
planning and the solution of the corresponding instance of pebble motion on a graph (the
instance of multi-robot path planning problem consists of the same graph, the set of robots
is represented by the set of pebbles, and the initial/goal positions of robots are the same as
in the case of pebbles). As the proof is easy, it is left as an exercise.

Proposition 1 (problem correspondence). Let ┉ 噺 岫罫┸ 鶏┸ 鯨牒待┸ 鯨牒袋岻 be an instance of the problem

of pebble motion on a graph and let 質牒岫┉岻 噺 岷鯨牒待┸ 鯨牒怠┸ ┼ ┸ 鯨牒締峅 be its solution. Then 質眺岫┋岻 噺質牒岫┉岻 is a solution of an instance of the problem of path planning for multiple robots

┋ 噺 岫罫┸ 鶏┸ 鯨牒待┸ 鯨牒袋岻. ̈
There is a variety of modifications of the defined problems. A natural additional

requirement is to produce solutions with makespan as small as possible (that is, the

numbers 行 or 耕 respectively are required to be as small as possible). Unfortunately, this

requirement makes the problem of pebble motion on a graph intractable. It is shown in

(Ratner & Warmuth, 1986) that the optimization variant of a special case of the problem of

pebble motion on a graph is 軽鶏-hard (Garey & Johnson, 1979). The restriction forming the

special case adopted in (Ratner & Warmuth, 1986) works with a graph that can be

embedded in plane as a square grid and where there is a single unoccupied vertex - this case

is known as 軽 抜 軽 puzzle (also known as 軽態 伐 な puzzle). Hence, the general optimization

variant of the problem of pebble motion on a graph is 軽鶏-hard as well.

A restriction of both types of problems on bi-connected graphs (West, 2000) (for the precise

definitions see Section 4.1) represents important subclass with respect to the existence of a

solution. Hence, it is a reasonable question what is the complexity of these classes of

problems. Since the grid graph forming the mentioned 軽 抜 軽 puzzle is bi-connected, the

immediate answer is that the optimization variant of the problem of pebble motion on a bi-

connected graph with a single unoccupied vertex is again 軽鶏-hard.

However, it is not possible to simply make any similar statement about the complexity of

the optimization variant of multi-robot path planning based on the above facts. The

situation here is complicated by the inherent parallelism, which can reduce the makespan of

the solution significantly. Constructions used for the 軽 抜軽 puzzle in (Ratner & Warmuth,

1986) thus no longer work. It has been shown recently in (Surynek, 2010a) that the

optimization variant of multi-robot path planning is NP-hard as well. As the proof of this

result is technically complicated and not all the details fit into the conference paper

(Surynek, 2010a) we refer the reader to technical report (Surynek, 2010b) for further reading.

271Multi-robot Path Planning

www.intechopen.com

Multi-Robot Systems, Trends and Development 272

Observe that above difficult cases of the problem of pebble motion on a graph have a single
unoccupied vertex. This fact may raise the question how the situation is changed when there
are more than one unoccupied vertices. More unoccupied vertices may simplify the
problem. Unfortunately, it is not the case. The pebble motion problem on a general graph
with the fixed number of unoccupied vertices is still 軽鶏-hard since multiple copies of the 軽 抜軽 puzzle can be used to add as many unoccupied vertices as needed.
Without the requirement on the optimality of the makespan of solutions the situation is
much easier; the problem of pebble motion on a graph is in the P class as it is shown in
(Wilson, 1974; Kornhauser et al., 1984). Due to Proposition 1, the problem of path planning
for multiple robots is in the P class as well. Moreover, it is shown in (Kornhauser et al., 1984)
that a solution of the size of 悉岫】撃】戴岻 can be generated for ┉ 噺 岫罫 噺 岫撃┸ 継岻┸ 鶏┸ 鯨牒待┸ 鯨牒袋岻. Hence,
it provides us a polynomial upper bound on size of the oracle in the content to guess in non-
deterministic model. Thus, it is possible to conclude that decision versions of optimization
variants of both pebble motion on a graph as well as of multi-robot path planning are NP-
complete problems (Garey & Johnson, 1979). By the decision version it is meant a yes/no
question whether there is a solution of ┉【み of the makespan smaller than the given bound.
As constructions proving the membership of the problem of pebble motion on a graph into
the P class used in (Wilson, 1974; Kornhauser et al., 1984) generate solutions that are too
long, we will show an alternative solving algorithm proposed in (Surynek, 2009a, 2009b).

4. Solving algorithm

This section is devoted to a sub-optimal algorithm for solving problems of motion on a
graph in polynomial time. The algorithm presented in the following text is designed for the
problem of pebble motion on a graph. As we have Proposition 1, algorithm for pebble
motion on a graph applies also for multi-robot path planning. However, the practice of
solving multi-robot path planning problems using algorithms for pebble motion on a graph
does not reflect the possibility of higher parallelism in multi-robot path planning.
Particularly, parallelism in the form of the “train like” movement of a queue of robots is
never produced in this way. This drawback can be augmented by a post-processing step
that increases parallelism which is discussed in Section 5.
The BIBOX algorithm that will be presented below comes from (Surynek, 2009a). The input
instance of the problem of pebble motion on a graph should consist of a so called non-trivial
bi-connected graph with exactly two unoccupied vertices. Overcoming some of these
assumptions is discussed in Section 4.4.

4.1 Graph-theoretical preliminaries

Several notions from graph theory (Tarjan, 1972; West, 2000) are introduced in this section.
Following definitions establish the notion of bi-connectivity upon that the BIBOX algorithm
is built. Several useful properties of bi-connected graph will be also discussed.
Definition 3 (connected graph). An undirected graph 罫 噺 岫撃┸ 継岻 is connected if 】撃】 半 に for
any two vertices 憲┸ 懸 樺 撃 such that 憲 塙 懸 there is an undirected path consisting of edges
from 継 connecting 憲 and 懸. ｦ

Definition 4 (bi-connected graph, non-trivial). An undirected graph 罫 噺 岫撃┸ 継岻 is bi-

connected if 】撃】 半 ぬ and the graph 罫t 噺 岫撃t┸ 継t岻, where 撃嫗 噺 撃 栢 岶懸岼 and 継嫗 噺 岶岶憲┸ 拳岼】憲┸ 拳 樺撃 巻 憲 塙 懸 巻 拳 塙 懸岼, is connected for every 懸 樺 撃. A bi-connected graph not isomorphic to a

cycle will be called non-trivial bi-connected graph. ｦ

272 Multi-Robot Systems, Trends and Development

www.intechopen.com

Multi-robot Path Planning 273

Observe that, if a graph is bi-connected, then every two distinct vertices are connected by at
least two vertex disjoint paths (equivalently, there is a cycle containing both vertices; only
internal vertices of paths are considered when speaking about vertex disjoint paths - vertex
disjoint paths can intersect in their start points and endpoints). If a graph is not bi-connected
then it is either disconnected or there exists a vertex which removal partitions the graph into
at least two connected components – this vertex is called an articulation point. Several
examples of bi-connected graphs are shown in Fig. 3.

Fig. 3. Examples of bi-connected graphs. Three bi-connected graphs 罫怠, "罫態, and 罫戴 and their
handle decompositions are shown using colors (handles 茎胎 and 茎腿 of the decomposition of 罫態 consist of a single edge).

Bi-connected graphs have an important property, which is exploited within the algorithm.
Each bi-connected graph can be constructed from a cycle by an operation of adding a handle
to the graph. Consider a graph 罫 噺 岫撃┸ 継岻; the new handle with respect to 罫 is a sequence 詣 噺 岷憲┸拳怠┸ 拳態┸ ┼ ┸ 拳鎮 ┸ 懸峅 where 健 樺 桶待, 憲┸ 懸 樺 撃 (called connection vertices) and 拳沈 鞄 撃 for 件 噺 な┸に┸┼ ┸ 健 (拳沈 are new vertices). The result of the addition of the handle 詣 to the graph 罫 is
a new graph" 罫嫗 噺 岫撃嫗┸ 継嫗岻 where 撃嫗 噺 撃 姦 岶拳怠┸ 拳態┸ ┼ ┸ 拳鎮岼 and either 継嫗 噺 継 姦 岶岶憲┸ 懸岼岼" in the
case of 健 噺 ど of 継嫗 噺 継 姦 岶岶憲┸ 拳怠岼┸ 岶拳怠┸ 拳態岼┸ ┼ ┸ 岶拳鎮貸怠┸ 拳鎮岼┸" 岶拳鎮 ┸ 懸岼岼 in the case of 健 半 ど. Let the
sequence of handles together with the initial cycle be called a handle decomposition of the
given graph. See Fig. 3 for examples.
Lemma 1 (handle decomposition) (Tarjan, 1972). Any bi-connected 罫 噺 岫撃┸ 継岻 graph can be
obtained from a cycle by a sequence of operations of adding a handle. Moreover, the
corresponding handle decomposition of the graph 罫 can be effectively found in the worst
case time of 悉岫】撃】 髪 】継】岻 and worst case space of 悉岫】撃】 髪 】継】岻. ̈
An important property of the construction of a bi-connected graph according to its handle
decomposition is that the currently constructed graph is bi-connected at any stage of the
construction. This property is substantially exploited in the design of the BIBOX algorithm.

察宋 殺層
殺匝

殺惣

察宋 殺層 殺匝殺惣殺想
殺捜殺掃

札層岫 岻

札匝岫 岻 札惣岫 岻
察宋茎胎茎腿

273Multi-robot Path Planning

www.intechopen.com

Multi-Robot Systems, Trends and Development 274

The BIBOX algorithm is presented using a pseudo-code as Algorithm 1 (the algorithm is
illustrated with pictures for easier understanding). The algorithm starts with the last handle
of the handle decomposition and proceeds to the original cycle. Pebbles, which goal
positions are within the last handle, are moved to their goal positions within this handle.
The instance of the problem now reduces to the instance of the same type indeed on a
smaller bi-connected graph. That is, the last handle is not considered any more since its
pebbles do not need to move any more. This process is repeated until the original cycle of
the decomposition remains.

Let ┉ 噺 岫罫 噺 岫撃┸ 継岻┸ 鶏┸ 鯨牒待┸ 鯨牒袋岻 be an instance of the pebble motion problem. The following
notation is used in the formalization of the algorithm. The handle decomposition of the
graph 罫 is formally a sequence 鴫 噺 岷系待┸ 茎怠┸ 茎態┸ ┼ ┸ 茎鳥峅, where 系待 is the initial cycle and 茎頂 is a
handle for 潔 噺 な┸に┸ ┼ ┸ 穴. The order of handle additions in construction of 罫 corresponds to
their positions in the sequence (that is, 茎怠 is added to 系待 first; and 茎鳥 is added as the last to
the currently constructed graph). A handle 茎頂 噺 岷憲頂 ┸ 拳怠頂 ┸ 拳態頂 ┸ ┼ ┸ 拳朕日頂 ┸ 懸頂峅 for 潔 樺 岶な┸に┸┼ ┸ 穴岼 can

be assigned a cycle 系岫茎沈岻 if the input graph 罫 is connected. The cycle 系岫茎頂岻 consists of the
sequence of vertices on a path connecting 懸頂 and 憲頂 in a graph before the addition of 茎頂
followed by vertices 拳怠頂 ┸ 拳態頂 ┸ ┼ ┸ 拳朕日頂 . Specially, it is defined that 系岫系待岻 噺 系待. The following

lemma is important for the design of the algorithm.
Lemma 2 (two paths existence). Let 罫 噺 岫撃┸ 継岻 be a bi-connected graph and let 憲怠┸ 憲態 樺 撃
and 懸怠┸ 懸態 樺 撃, where 憲怠┸ 憲態┸ 懸怠┸ 懸態 are pair-wise distinct, be two pairs of vertices. Then either
the first or the second of the following claims holds:
a. There exist two vertex disjoint paths 砿 and 鋼 such that they connect 憲怠 with 懸怠 and 憲態

with 懸態 in 罫 respectively.
b. There exist two vertex disjoint paths 砿 and 鋼 such that they connect 憲怠 with 懸態 and 憲態

with 懸怠 in 罫 respectively. ̈
Notice that the above lemma states that individual vertices in the input pair of vertices are
indifferent with respect to connecting by vertex disjoint paths.
Proof. The idea of the proof is to proceed inductively according to the size of the handle

decomposition of the graph 罫 噺 岫撃┸ 継岻. Let 鴫 噺 岷系待┸ 茎怠┸ 茎態┸ ┼ ┸ 茎鳥峅 be a handle decomposition

of the graph 罫. A function 潔鴫┺ 撃 募 桶待 is defined as follows: 潔鴫岫懸岻 噺 ど if 懸 樺 系待 and 潔鴫岫懸岻 噺潔 if 懸 樺 茎頂 for some 潔 樺 岶な┸に┸┼ ┸ 穴岼 (懸 is one of the internal vertices of the handle 詣頂).

Observe, that 潔鴫 is a correctly defined function.

A given 4-tuple of vertices 岫憲怠┸ 憲態┸ 懸怠┸ 懸態岻 is assigned a 4-tuple of integers defined using the

function 潔鴫: 岫潔鴫岫憲怠岻┸ 潔鴫岫憲態岻┸ 潔鴫岫懸怠岻┸ 潔鴫岫懸態岻岻. The mathematical induction will proceed

according to the lexicographic ordering of the 4-tupules assigned using the function 潔鴫

sorted in descending order. Several cases must be distinguished.

Case (i): Let the 4-tuple of vertices 岫憲怠┸ 憲態┸ 懸怠┸ 懸態岻 is assigned a 4-tuple of numbers 岫な┸な┸な┸な岻,
that is, all the vertices 憲怠┸ 憲態┸ 懸怠┸ 懸態 are located within the initial cycle 系待. Then the following

juxtapositions of vertices 憲怠, 憲態, 懸怠, and 懸態 within 系待 with respect to the positive orientation

of the cycle can occur: 岫憲怠┸ 懸怠┸ 懸態┸ 憲態岻, 岫憲怠┸ 懸態┸ 懸怠┸ 憲態岻, 岫懸怠┸ 憲怠┸ 懸態┸ 憲態岻, 岫懸怠┸ 懸態┸ 憲怠┸ 憲態岻, 岫懸態┸ 憲怠┸ 懸怠┸ 憲態岻, and 岫懸態┸ 懸怠┸ 憲怠┸ 憲態岻 (vertices are listed according to the positive orientation of

the cycle; there is in total ね┿ 噺 にね candidates for juxtapositions of ね vertices; however, the

remaining juxtapositions are isomorphic to the listed ones using a rotation along the cycle).

In all the cases either the claim (a) or the claim (b) holds. See Fig. 4 for detailed case analysis

– for example in the juxtaposition 岫憲怠┸ 懸怠┸ 懸態┸ 憲態岻, 憲怠 should be connected in positive

orientation with 懸怠 and 憲態 should be connected in negative orientation with 懸態.

274 Multi-Robot Systems, Trends and Development

www.intechopen.com

Multi-robot Path Planning 275

Fig. 4. An illustration of the existence of two vertex disjoint paths connecting two pairs of vertices
in a bi-connected graph. The figure illustrates the case analysis from the proof of Lemma 2
which states that there exist two vertex disjoint paths 砿 and 鋼 connecting a pair of vertices 憲怠 and 憲態 with a pair of vertices 懸怠 and 懸態 in a bi-connected graph 罫. The proof proceeds as
mathematical induction according to the size of the handle decomposition of the graph 罫.

Case (ii): Let the 4-tuple of vertices 岫憲怠┸ 憲態┸ 懸怠┸ 懸態岻 is assigned a sorted 4-tuple 岫系┸ 潔態┸ 潔戴┸ 潔替岻
where 系 伴 潔態 巻 系 伴 潔戴 巻 系 伴 潔替. Using the interchangeability of vertices 憲怠, 憲態, 懸怠, 懸態, it is
possible to suppose that 潔鴫岫憲怠岻 噺 系 without loss of generality. Let 茎寵 噺 岷憲寵 ┸ 拳怠寵 ┸ 拳態寵 ┸ ┼ ┸ 拳鎮頓寵 ┸ 懸寵峅, then there exists a path 講 connecting 憲怠 and 憲寵 consisting of the

internal vertices of 詣寵. Since the sorted 4-tuple 岫潔鴫岫憲寵岻┸ 潔鴫岫憲態岻┸ 潔鴫岫懸怠岻┸ 潔鴫岫懸態岻岻 is
lexicographically strictly less than 岫系┸ 潔態┸ 潔戴┸ 潔替岻, the induction hypothesis implies that the

札嫗 士層

士匝

四層

四匝

岫四層┸ 士層┸ 士匝┸ 四匝岻

察宋

士匝

士層

四層

四匝

岫四層┸ 士匝┸ 士層┸ 四匝岻

察宋

砿 噺 憲怠 快 懸怠 鋼 噺 憲態 快 懸態

砿 噺 憲怠 快 懸態鋼 噺 憲態 快 懸怠
四層

士匝

士層

四匝

岫士層┸ 四層┸ 士匝┸ 四匝岻

察宋

士匝

四層

士層

四匝

岫士層┸ 士匝┸ 四層┸ 四匝岻

察宋

砿 噺 憲怠 快 懸怠 鋼 噺 憲態 快 懸態

砿 噺 憲怠 快 懸態 鋼 噺 憲態 快 懸怠
四層

士層

士匝

四匝

岫士匝┸ 四層┸ 士層┸ 四匝岻

察宋

砿 噺 憲怠 快 懸怠 鋼 噺 憲態 快 懸態

士層

四層

士匝

四匝

岫士匝┸ 士層┸ 四層┸ 四匝岻

察宋

砿 噺 憲怠 快 懸怠 鋼 噺 憲態 快 懸態

四層

四察 士察 士層

四匝
士匝

札嫗
四層

四察 士察 士層

士匝

四匝

札嫗
四層 四察 士察 士層 四匝 士匝

士層

札嫗
士層 四察 士察

士匝

四層 四匝 殺察

殺察

殺察

殺察

Case (i) Case (ii)

Case (iii)

Case (iv)

講 噺 憲怠 快 憲寵 砿嫗 噺 憲寵 快 懸怠 鋼嫗 噺 憲態 快 懸態 砿 噺 講┻ 砿嫗 鋼 噺 鋼嫗
砿 噺 憲怠 快 懸怠 鋼 噺 憲態 快 懸態

講 噺 憲怠 快 憲寵 閤 噺 憲態 快 懸寵 砿嫗 噺 憲寵 快 懸怠 鋼嫗 噺 懸寵 快 懸態 砿 噺 講┻ 砿嫗 鋼 噺 閤┻ 鋼嫗
砿 噺 憲怠 快 懸怠 閤 噺 憲態 快 懸寵 鋼嫗 噺 懸寵 快 懸態
 鋼 噺 閤┻ 鋼嫗

275Multi-robot Path Planning

www.intechopen.com

Multi-Robot Systems, Trends and Development 276

lemma holds for the 4-tuple of vertices 憲寵 , 憲態, 懸怠, 懸態 and the graph 罫 without the internal
vertices of the handle 茎寵 ; let this smaller graph be denoted as 罫嫗. That is either (a) or (b)
holds in 罫嫗┻ Without loss of generality, suppose that (a) holds. Then there exist vertex

disjoint paths 砿嫗 and 鋼嫗 connecting 憲寵 with 懸怠 and 憲態 with 懸態 in 罫嫗 respectively. The path 講

is vertex disjoint with 鋼嫗 and it shares exactly one vertex 憲寵 with 砿. Let 砿 be a path formed

by the concatenation of 講 with 砿嫗 (the vertex 憲寵 is used only once) and let 鋼 噺 鋼嫗. Then 砿
and 鋼 are vertex disjoint paths substantiating the claim (a) for 4-tuple of vertices 憲怠, 憲態, 懸怠, 懸態 in 罫. See Fig. 4 for detailed illustration of the case.
Case (iii): The next case is that the 4-tuple of vertices 岫憲怠┸ 憲態┸ 懸怠┸ 懸態岻 is assigned a sorted 4-
tuple 岫系┸ 系┸ 潔戴┸ 潔替岻 where 系 伴 潔戴 巻 系 伴 潔替. Again using the interchangeability of vertices only
some of all the case are interesting. The first case is that 潔鴫岫憲怠岻 噺 系 and 潔鴫岫懸怠岻 噺 系 (that is, a
pair of vertices to connect is within the handle 茎寵) and the second case is that 潔鴫岫憲怠岻 噺 系
and 潔鴫岫憲態岻 噺 系 (that is, one vertex of a pair to connect is within the handle and the other is
outside the internal vertices of the handle). In the first case, it is sufficient to construct a path 砿 connecting 憲怠 and 懸怠 consisting of the internal vertices of 茎寵 and a path 鋼 connecting 憲態
and 懸態 in 罫嫗 (罫嫗 is a connected graph). The constructed paths 砿 and 鋼 are vertex disjoint and
hence they substantiate the claim (a) of the lemma. In the second case, it is necessary to
distinguish between two juxtapositions of 憲怠 and 憲態 within 茎寵 with respect to the positive
orientation of the handle: 岫憲怠┸ 憲態岻 and 岫憲態┸ 憲怠岻. In the case of juxtaposition 岫憲怠┸ 憲態岻, a path 講

connecting 憲怠 and 憲寵 and a path 閤 connecting 憲態 and 懸寵 are constructed (with the exception

of 憲寵 and 懸寵 only the internal vertices of 詣寵 are used). The second juxtaposition just

interchanges 憲怠 and 憲態. The sorted 4-tuple 岫潔鴫岫憲寵岻┸ 潔鴫岫懸寵岻┸ 潔鴫岫懸怠岻┸ 潔鴫岫懸態岻岻 is
lexicographically strictly less than 岫系┸ 系┸ 潔戴┸ 潔替岻, hence the lemma holds for the 4-tuple of

vertices 憲寵 , 懸寵 , 懸怠, 懸態 in the graph 罫嫗. Without loss of generality suppose that the case (a)

holds; that is, there exists a path 砿嫗 that connects 憲寵 with 懸怠 in 罫嫗 and a path 鋼嫗 that connects 懸寵 with 懸態 in 罫嫗 while 砿嫗 and 鋼嫗 are vertex disjoint. Observe, that 講 and 閤 are vertex disjoint
as well. It is sufficient to set a path 砿 to be a concatenation of 講 and 砿嫗 and a path 鋼 to be a
concatenation of 閤 and 鋼嫗. Then 砿 and 鋼 are the paths substantiating the claim (a) of the
lemma for the 4-tuple of vertices 憲怠, 憲態, 懸怠, 懸態 in 罫. Again, see Fig. 4 for the detailed
illustration of the case.
Case (iv): Let the 4-tuple of vertices 岫憲怠┸ 憲態┸ 懸怠┸ 懸態岻 is assigned a sorted 4-tuple 岫系┸ 系┸ 系┸ 潔替岻
where 系 伴 潔替. Without loss of generality, suppose that 潔鴫岫懸態岻 噺 潔替. Then the following

interesting juxtapositions of vertices 憲怠, 憲態, and 懸怠 within the handle 詣寵 with respect to the

positive orientation can occur: 岫懸怠┸ 憲怠┸ 憲態岻, 岫憲怠┸ 懸怠┸ 憲態岻, and 岫憲怠┸ 憲態┸ 懸怠岻 (interchangeability of 憲怠

and 憲態 is used to rule out the second half of juxtapositions). All the cases can be treated in the

same way, thus it is sufficient to show only one case – for example the case of 岫懸怠┸ 憲怠┸ 憲態岻. Let 砿

be a path connecting 懸怠 and 憲怠 consisting of the internal vertices of the handle 茎寵 . Next, let 閤

be a path connecting 憲態 with 懸寵 that uses internal vertices of the handle 茎寵 and the vertex 懸寵 .

Let 鋼嫗 be a path connecting 懸寵 and 懸態 in 罫嫗 (such a path exists since 罫嫗 is a connected graph).

Observe, that 砿 is vertex disjoint with 閤 as well as with 鋼嫗. Thus, if 鋼 is set to be a

concatenation of 閤 and 鋼嫗, then 砿 and 鋼 substantiate the claim (a) of the lemma for the 4-tuple

of vertices 憲怠, 憲態, 懸怠, 懸態 and the graph 罫. Again, see Fig.4 for illustration of the case.

Case (v): The last case occurs if a sorted 4-tuple 岫系┸ 系┸ 系┸ 系岻 where 系 伴 な is assigned to the 4-

tuple of vertices 岫憲怠┸ 憲態┸ 懸怠┸ 懸態岻. This case reduces to the case with all the vertices of the input

4-tuple located within the original cycle of the handle decomposition. However, instead of

the original cycle a cycle 系岫茎寵岻 should be used. ̈

276 Multi-Robot Systems, Trends and Development

www.intechopen.com

Multi-robot Path Planning 277

4.2 Pseudo-code of the BIBOX algorithm

Several primitives are introduced to express the BIBOX algorithm in an easier way. Except

functions 鯨牒待 and 鯨牒袋 there is a function 鯨牒┺ 鶏 募 撃 that represents the current arrangement of

pebbles in the graph. Additionally, there are functions も牒待 ┺ 撃 募 鶏 姦 岶吃岼, も牒袋┺ 撃 募 鶏 姦 岶吃岼,
and も牒┺ 撃 募 鶏 姦 岶吃岼 which are generalized inverses of 鯨牒待, 鯨牒袋, and 鯨牒 respectively with the

symbol 吃 is used to represent an unoccupied vertex (that is, 岫褐喧 樺 鶏岻も牒岫鯨牒岫喧岻岻 噺 喧 and も牒岫吃岻 噺吃 if 岫褐喧 樺 鶏岻鯨牒岫喧岻 塙 懸). Next, each undirected cycle appearing in the handle

decomposition of the input graph is assigned a fixed orientation. Let 系 be an undirected

cycle (a set of vertices of the cycle), then the orientation of 系 is expressed by functions 券結捲建皆

and 喧堅結懸皆 where 券結捲建皆岫系┸ 懸岻 for 懸 樺 系 is the vertex following 懸 (with respect to positive

orientation) in the cycle 系 and 喧堅結懸皆岫系┸ 懸岻 is the vertex preceding 懸 (with respect to positive

orientation). The orientation of a cycle given by 券結捲建皆 and 喧堅結懸皆 is respected as well when

vertices of the cycle are explicitly enumerated in the code. Auxiliary operations Lock"岫隙岻 and

Unlock岫隙岻 locks or unlocks a set of vertices 隙. Each vertex of the input graph is either locked

or unlocked. The state of a vertex is used to determine whether a pebble can move into a

vertex. Typically, a pebble is not allowed to enter a locked vertex (see the pseudo-code for

details). Finally, there is assumed a potentially infinite sequence of functions 鯨牒待┸ 鯨牒怠┸ 鯨牒態┸ ┼

which finite prefix is used to form a solution. Actually, these variables are not needed to be

stored in the memory; the output solution can be directly printed to the output. For

convenience, several variables such as those representing handle decomposition are global;

that is, they are shared among all the functions and procedures in the pseudo-code.

It is assumed that for the number of pebbles it holds that 】撃】 噺 航 伐 に, where 】鶏】 噺 航 (that is,

there are exactly two unoccupied vertices in the graph 罫). Furthermore, it is required for the

successful progression of the algorithm that the unoccupied vertices within the goal

arrangement are located in the first two vertices of the original cycle (according to the

positive orientation) of the handle decomposition. This requirement is treated by a function

Transform-Goal and a procedure Finish-Solution. The function Transform-Goal determines two

vertex disjoint paths from unoccupied vertices in the goal arrangement to first two vertices

in the original cycle of the handle decomposition. Since the unoccupied vertices are

indifferent, it does not matter what unoccupied vertex is associated with the first or with the

second vertex of the initial cycle. Thus, preconditions of Lemma 2 are satisfied and hence the

existence of mentioned two vertex disjoint paths is ensured.

The goal arrangement is changed by the function Transform-Goal so that finally unoccupied

vertices are located in the original cycle. This is done by shifting pebbles within the goal

arrangement along the two determined paths. After the modified instance is solved, the

function Finish-Solution moves unoccupied vertices back to their goal positions given by the

original unmodified goal arrangement. This final placement of unoccupied vertices is done

by shifting pebbles along the two paths determined by the function Transform-Goal in the

opposite direction.

Several upper level primitives are exploited by the BIBOX algorithm. It is possible to make

any vertex unoccupied in a connected graph (especially in a bi-connected graph). The

process of making a given vertex unoccupied is implemented by a procedure Make-

Unoccupied. Let 懸 be a vertex to be made unoccupied. A path 剛 connecting 懸 and some of the

unoccupied vertices avoiding the locked vertices is found. Then pebbles along the path 剛

are shifted using swapping pebbles towards the currently unoccupied vertex.

277Multi-robot Path Planning

www.intechopen.com

Multi-Robot Systems, Trends and Development 278

An operation of swapping pebbles itself is implemented using a procedure Swap-Pebbles-
Unoccupied. The procedure moves a pebble into a neighboring unoccupied vertex and the

next member 鯨牒締 of the output solution sequence is constructed together with the update of

functions 鯨牒 and も牒 according to the new arrangement of pebbles.

Algorithm 1. The BIBOX algorithm. It solves a given pebble motion problem on a non-trivial

bi-connected graph with exactly two unoccupied vertices. The algorithm proceeds
inductively according to the handle decomposition of the graph of the input instance. The
two unoccupied vertices are necessary for arranging pebbles within the original cycle of the
handle decomposition.

function BIBOX-Solve岫罫 噺 岫撃┸ 継岻┸ 鶏┸ 鯨牒待┸ 鯨牒袋岻 : pair

/* Top level function of the BIBOX algorithm; solves
a given problem of pebble motion on a graph.
Parameters: 罫 - a graph modeling the environment, 鶏 - a set of pebbles, 鯨牒待 - a initial arrangement of pebbles, 鯨牒袋 - a goal arrangement of pebbles. */

1: let 鴫 噺 岷系待┸ 茎怠┸ 茎態┸ ┼ ┸ 茎鳥峅 be a handle decomposition of 罫
2: 岫鯨牒袋┸ 砿┸ 鋼岻 華 Transform-Goal岫罫┸ 鶏┸ 鯨牒袋岻
3: 鯨牒 華 鯨牒待
4: 行 華 な
5: for 潔 噺 穴┸ 穴 伐 な┸┼ ┸な do
6: if 】茎頂】 伴 に then
7: Solve-Regular-Handle岫潔岻
8: Solve-Original-Cycle
9: Finish-Solution岫砿┸ 鋼岻
10: return 岫行┸ 岷鯨牒待┸ 鯨牒怠┸ ┼ ┸ 鯨牒締峅岻

procedure Solve-Regular-Handle岫潔岻
/* Places pebbles which destinations are within a
handle 茎頂; pebbles placed in the handle 茎頂 are finally
locked so they cannot move any more.
Parameters: 潔 – the index of a handle */

1: let 岷憲珍 ┸ 拳怠珍 ┸ 拳態珍 ┸ ┼ ┸ 拳朕迩珍 ┸ 懸珍峅 噺 茎珍 褐倹 樺 岶な┸に┸ ┼ ┸ 穴岼
/* Both unoccupied vertices must be located
outside the currently solved handle. */

2: let 拳┸ 権 樺 撃 栢 笈 岫茎珍鳥珍退頂 栢 岶憲珍 ┸ 懸珍岼岻 such that 拳 塙 権

3: Make-Unoccupied岫拳岻
4: Lock"岫岶拳岼岻
5: Make-Unoccupied岫権岻
6: Unlock"岫岶拳岼岻
7: for 件 噺 月頂 ┸ 月頂 伐 な┸┼ ┸な do
8: Lock岫茎頂 栢 岶憲頂 ┸ 懸頂岼岻

 /* A pebble to be placed is outside the handle 茎頂. */
9: if 鯨牒岫┎牒袋岫拳沈頂岻岻 鞄 岫茎頂 栢 岶憲頂 ┸ 懸頂岼) then
10: Move-Pebble岫┎牒袋岫拳沈頂岻┸ 憲頂岻
11: Lock岫岶憲頂岼岻

Handle decomposition 錫 噺 岷系待┸ 茎怠┸ 茎態峅 "茎怠

茎態 "系岫茎態岻

"系岫茎怠岻 系待
札 噺 岫撃┸ 継岻

Pebble 喧 噺 も沢袋岫拳沈頂岻 is

outside 茎頂; move 喧 to 憲頂.

"茎怠

"系岫茎態岻

"系岫茎怠岻 系待士算 四算

使
茎頂 噺 茎態

Bi-connected
remainder

札嫗

Pebble 喧 噺 も沢袋岫拳沈頂岻 is inside 茎頂; move 喧 outside 系岫茎頂岻.

"茎怠

"系岫茎態岻

"系岫茎怠岻 系待士算 四算

使 茎頂 噺 茎態

Bi-connected
remainder 姿

札嫗

278 Multi-Robot Systems, Trends and Development

www.intechopen.com

Multi-robot Path Planning 279

12: Make-Unoccupied岫懸頂岻
13: Unlock岫茎頂岻
14: Rotate-Cycle+岫系岫茎頂岻岻

/* A pebble to be placed is inside the handle 茎頂. */
15: else
16: Make-Unoccupied岫憲頂岻
17: Unlock岫茎頂岻
18: 貢 華 ど

19: while 鯨牒岫┎牒袋岫拳沈頂岻岻 塙 懸頂 do

20: Rotate-Cycle+岫系岫茎頂岻岻
21: 貢 華 貢 髪 な
22: Lock岫茎頂 栢 岶憲頂 ┸ 懸頂岼岻
23: let 検 樺 撃 栢 岫笈 岫茎珍 栢 岶憲珍 ┸ 懸珍岼岻 姦鳥珍退頂袋怠 系岫茎頂岻岻
24: Move-Pebble岫┎牒袋岫拳沈頂岻┸ 検岻
25: Lock"岫岶検岼岻
26: Make-Unoccupied岫憲頂岻
27: Unlock岫茎頂岻
28: while 貢 伴 ど do
29: Rotate-Cycle/岫系岫茎頂岻岻
30: 貢 華 貢 伐 な
31: Unlock岫岶検岼岻
32: Lock岫茎頂 栢 岶憲頂 ┸ 懸頂岼岻
33: Move-Pebble岫┎牒袋岫拳沈頂岻┸ 憲頂岻
34: Lock"岫岶憲頂岼岻
35: Make-Unoccupied岫懸頂岻
36: Unlock岫茎頂岻
37: Rotate-Cycle+岫系岫茎頂岻岻
38: Lock岫茎頂 栢 岶憲頂 ┸ 懸頂岼岻

procedure Solve-Original-Cycle
/* Places pebbles which destinations are within the original
cycle;it is assumed that unoccupied vertices of the goal
arrangement of pebbles are located within the original cycle. */

1: let 憲 樺 系待 and 懸 樺 撃 栢 系待 such that 岶憲┸ 懸岼 樺 継
2: let 岷拳怠待┸ 拳態待┸ ┼ ┸ 拳鎮待峅 噺 系待

/* According to the assumption on the goal arrangement
it holds that ┎牒袋岫拳怠待岻 噺吃 and ┎牒袋岫拳態待岻 噺吃. */

3: for 件 噺 ぬ┸ね┸ ┼ ┸ 健 do
4: Make-Unoccupied岫拳怠待)
5: Lock岫岶拳怠待岼)
6: Make-Unoccupied岫拳態待)
7: Unlock岫岶拳怠待岼)
8: if ┎牒袋岫拳沈待岻 塙 も牒岫拳沈待岻 then
9: Exchange-Pebbles"岫┎牒袋岫拳沈待岻┸ も牒岫拳沈待岻┸ 憲┸ 懸岻
10: Make-Unoccupied岫拳怠待)
11: Lock岫岶拳怠待岼)
12: Make-Unoccupied岫拳態待)
13: Unlock岫岶拳怠待岼)

Pebble 喧 噺 も沢袋岫拳沈頂岻 outside 系岫茎頂岻; 系岫茎頂岻 rotated back;
move 喧 into connection 憲頂.

"茎怠

"系岫茎態岻

"系岫茎怠岻 系待士算 四算
使

茎頂 噺 茎態

Bi-connected
remainder 姿

札嫗

Pebble 喧 噺 も沢袋岫拳沈頂岻 in 憲頂;
rotate 系岫茎頂岻 once forward.

"茎怠

"系岫茎態岻

"系岫茎怠岻 系待士算 四算 使

茎頂 噺 茎態

Bi-connected
remainder

札嫗

Move 拳怠待 and 拳態待 are made
unoccupied.

"茎怠

"系岫茎態岻

"系岫茎怠岻

系待始層宋
茎態

始匝宋 始惣宋 始想宋

始捜宋 始掃宋 始挿宋

279Multi-robot Path Planning

www.intechopen.com

Multi-Robot Systems, Trends and Development 280

procedure Exchange-Pebbles岫喧┸ 圏┸ 憲┸ 懸岻
/* Exchanges a pair of pebbles within the initial
cycle of the handle decomposition.
Parameters: 喧┸ 圏 - a pair of pebbles to be exchanged, 憲┸ 懸 - a pair of neighboring vertices where 懸 is used as a storage space. */

1: 堅 華 ┎牒岫懸岻
2: Make-Unoccupied岫憲岻
3: Swap-Pebbles-Unoccupied岫懸┸ 憲岻
4: while 鯨牒岫喧岻 塙 憲 do
5: Rotate-Cycle+岫系待岻
6: Swap-Pebbles-Unoccupied岫憲┸ 懸岻
7: Lock"岫岶憲岼岻
8: Make-Unoccupied岫券結捲建皆岫系待┸ 憲岻岻
9: Unlock"岫岶憲岼岻

/* Subsequent rotation must use 憲
as the unoccupied vertex. */

10: Lock岫系待 栢 岶憲岼岻
11: 貢 華 ど
12: while 鯨牒岫圏岻 塙 券結捲建皆岫系待┸ 憲岻 do
13: Rotate-Cycle+岫系待岻
14: 貢 華 貢 髪 な
15: Swap-Pebbles-Unoccupied岫懸┸ 憲岻
16: Unlock"岫系待 栢 岶憲岼岻
17: Make-Unoccupied岫喧堅結懸皆岫系待┸ 憲岻岻
18: Swap-Pebbles-Unoccupied岫憲┸ 喧堅結懸皆岫系待┸ 憲岻岻
19: Swap-Pebbles-Unoccupied岫券結捲建皆岫系待┸ 憲岻┸ 憲岻
20: Swap-Pebbles-Unoccupied岫憲┸ 懸岻
21: Unlock岫岶憲岼岻
22: Lock岫系待 栢 岶憲岼岻
23: while 貢 伴 ど do
24: Rotate-Cycle/岫系待岻
25: 貢 華 貢 伐 な
26: Swap-Pebbles-Unoccupied岫懸┸ 憲岻
27: while 鯨牒岫堅岻 塙 憲 do
28: Rotate-Cycle+岫系待岻
29: Swap-Pebbles-Unoccupied岫憲┸ 懸岻
30: Unlock岫系待岻

procedure Make-Unoccupied岫懸岻
/* Makes a vertex 懸 unoccupied while locked
vertices remain untouched.
Parameters: 懸 - a vertex to be made unoccupied. */

1: let 憲 樺 撃 such that も牒岫憲岻 噺吃 and 憲 is not locked
2: let 剛 噺 岷憲 噺 拳怠┸ 拳態┸ ┼ ┸拳珍 噺 懸峅 be a (shortest) path
3: connecting 憲 and 懸 in 罫 not containing locked vertices
4: for 件 噺 な┸に┸ ┼ ┸ 倹 伐 な do
5: Swap-Pebbles-Unoccupied岫拳沈袋怠┸ 拳沈岻

Move 喧 into 懸; rotate 系待
forward such that 圏 appears
in 憲袋.

"茎怠

"系岫茎態岻

"系岫茎怠岻

系待
士四 使

茎態

憲貸 噺 喧堅結懸皆岫系待┸ 憲岻 憲袋 噺 券結捲建皆岫系待┸ 憲岻
刺四貸 四袋

Exchange 喧 and 圏 (喧

appears in 憲貸).

"茎怠

"系岫茎態岻

"系岫茎怠岻 系待
士四 使

茎態

憲貸 噺 喧堅結懸皆岫系待┸ 憲岻 憲袋 噺 券結捲建皆岫系待┸ 憲岻
刺 四貸 四袋

Rotate 系待 back; move 圏

from 懸 to 憲.

"茎怠

"系岫茎態岻

"系岫茎怠岻 系待
士四使

茎態

憲貸 噺 喧堅結懸皆岫系待┸ 憲岻 憲袋 噺 券結捲建皆岫系待┸ 憲岻 刺 四貸 四袋

Vertex 拳 is locked; 憲 is
unoccupied; pebbles are
shifted along cycle 系岫茎怠岻 to
make 懸 unoccupied.

"茎怠

"系岫茎態岻

"系岫茎怠岻

系待 士

茎態

四 始

280 Multi-Robot Systems, Trends and Development

www.intechopen.com

Multi-robot Path Planning 281

procedure Move-Pebble岫喧┸ 懸岻
/* Moves a pebble 喧 into a vertex 懸 avoiding locked vertices.
Parameters: 喧 - a pebble to move, 懸 - a target vertex.*/
/* complexity issues impose special selection of 砿 */

1: let 砿 噺 岷鯨牒岫喧岻 噺 拳怠釘┸ 拳態釘┸ ┼ ┸ 拳珍梅釘 噺 懸峅 be a path
2: connecting 鯨牒岫喧岻 and 懸 in 罫 not containing
3: locked vertices such that an alternative vertex
4: disjoint path 鋼 噺 岷鯨牒岫喧岻 噺 拳怠鼎┸ 拳態鼎┸ ┼ ┸拳珍楳鼎 噺 懸峅
5: not containing locked vertices exists
6: for 件 噺 な┸に┸ ┼ ┸ 倹釘 伐 な do
7: Lock"岫岶拳沈釘岼岻
8: Make-Unoccupied岫拳沈袋怠釘 岻
9: Unlock岫岶拳沈釘岼岻
10: Swap-Pebbles-Unoccupied岫拳沈釘 ┸ 拳沈袋怠釘 岻

procedure Rotate-Cycle+岫系岻
/* Rotates pebbles in a cycle 系 in the positive direction;
the vertex locking mechanism allows to select which one of
unoccupied vertices should be used. At least one unlocked
unoccupied vertex must be located in 系.
Parameters: 系 - a cycle to rotate. */

1: let 拳 樺 系 such that ┎牒岫拳岻 噺吃 and 拳 is not locked
2: for 件 噺 な┸に┸ ┼ ┸ 】系】 do
3: Swap-Pebbles-Unoccupied岫喧堅結懸皆岫系┸ 拳岻┸ 拳)
4: 拳 華 喧堅結懸皆岫系┸ 拳岻

procedure Rotate-Cycle(岫系岻
/* Rotates pebbles in the cycle 系 in the negative direction;
again an unoccupied vertex to use can be selected by the
vertex locking mechanism. At least one unlocked
unoccupied vertex must be located in 系.
Parameters: 系 - a cycle to rotate. */

1: let 拳 樺 系 such that ┎牒岫拳岻 噺吃 and 拳 is not locked
2: for 件 噺 な┸に┸ ┼ ┸ 】系】 do
3: Swap-Pebbles-Unoccupied岫券結捲建皆岫系┸ 拳岻┸ 拳)
4: 拳 華 券結捲建皆岫系┸ 拳岻

procedure Swap-Pebbles-Unoccupied岫憲┸ 懸岻
/* Swaps pebbles in vertices 憲 and 懸;
vertex 懸 is supposed to be unoccupied.
Parameters: 憲┸ 懸 – vertices in which pebbles
are swapped. */

1: 鯨牒岫も牒岫憲岻岻 華 懸
2: も牒岫懸岻 華 も牒岫憲岻
3: も牒岫憲岻 華吃
4: 鯨牒締 華 鯨牒
5: 行 華 行 髪 な

Pebble 喧 is moved to 懸
through cycles 系岫茎態岻, 系待,
and 系岫茎怠岻.

"茎怠

"系岫茎態岻

"系岫茎怠岻

系待
士

使

茎態

Vertex 拳 is unoccupied; 系岫茎態岻 is rotated in the
positive direction.

"茎怠

系 噺 系岫茎態岻

"系岫茎怠岻 系待 始
始袋

茎態

系

拳袋 噺 券結捲建皆岫系┸ 懸岻 拳貸 噺 喧堅結懸皆岫系┸ 懸岻

始貸

Vertex 拳 is unoccupied; 系岫茎態岻 is rotated in the
negative direction.

"茎怠

系 噺 系岫茎態岻

"系岫茎怠岻 系待 始
始袋

茎態

系

拳袋 噺 券結捲建皆岫系┸ 懸岻 拳貸 噺 喧堅結懸皆岫系┸ 懸岻

始貸

281Multi-robot Path Planning

www.intechopen.com

Multi-Robot Systems, Trends and Development 282

The next important process is moving a pebble into a given target vertex. This is
implemented by a procedure Move-Pebble. Let a pebble 喧 is moved to a vertex 懸. A path 砿 is
found such that is connects vertices 鯨牒岫喧岻 (which is a vertex currently occupied by 喧) and 懸
and there exists an alternative vertex disjoint path 鋼 connecting the same pair of vertices.
The existence of the alternative is ensured by Lemma 2. Indeed, the proof of Lemma 2
provides the construction such a path. Parameters of the lemma should be set as follows: 憲怠
is 鯨牒岫喧岻, 憲態 is a neighboring vertex to 憲怠 in the same bi-connected component, 懸怠 is 懸, and 懸態
is a neighboring vertex to 懸怠 in the same bi-connected component (it can be determined
which of the neighboring vertices belong into the same bi-connected component from the
knowledge of the handle decomposition). Vertex disjoint paths 砿嫗 and 鋼嫗 resulting from
Lemma 2 together with edges 岶憲怠┸ 憲態岼 and 岶懸怠┸ 懸態岼 form the required 砿 and 鋼. In case (a): 砿 噺 砿嫗 and 鋼 噺 岷憲怠峅┻ 鋼┻ 岷憲態峅; in case (b): 砿 噺 岷憲怠峅┻ 鋼嫗 and 鋼 噺 砿嫗┻ 岷憲態峅.
Subsequently, edges of 砿 are traversed in the following way. The first vertex of the edge is
locked so paths to be searched must avoid this vertex. An invariant holds, that 喧 is located
in the first vertex of the edge at the beginning of each traversal step and thus it cannot move.
Then the second vertex of the edge is made unoccupied (the alternative path 鋼 is used for
this task); the first vertex of the edge is unlocked and the pebble 喧 is moved to the second
vertex of the edge which is now unoccupied.
The last basic operation exploited by the algorithm is a rotation of pebbles along a cycle.
This operation is implemented by procedures Rotate-Cycle+ and Rotate-Cycle(. The former
rotates pebbles in the positive direction and the latter rotates pebbles in the negative
direction. It supposed the at least one vertex in the given input cycle is unoccupied. The
rotation is done using an unlocked unoccupied vertex located in the cycle.
During movement of an unoccupied vertex and during movement of a pebble to another
vertex, the arrangement of pebbles located in vertices that are locked is preserved while the
arrangement of pebbles located in unlocked vertices is generally not preserved. This
behavior helps to control finished parts of the goal arrangement. On the other hand, moving
pebbles must be done in a precise way so that required unlocked paths always exist.
The process of placing pebbles according to the given goal arrangement will be described
now using the primitives discussed above. Pebbles, which goal positions are within the
currently solved handle, are placed in a stack like manner. This process is carried out by a
procedure Solve-Regular-Handle (iteration through the handle is at lines 7-37). Let 茎頂 噺岷憲頂 ┸ 拳怠頂 ┸ 拳態頂 ┸ ┼ ┸ 拳朕迩頂 ┸ 懸頂峅 for 潔 樺 岶な┸に┸┼ ┸ 穴岼 be a current handle. Suppose that a pebble which

goal position is in 拳沈頂 for 件 樺 岶な┸に┸┼ ┸ 月頂岼, that is a pebble ┎牒袋岫拳沈頂岻, is processed in the current

iteration. Inductively suppose that pebbles ┎牒袋岫拳朕迩頂 岻,"┎牒袋岫拳朕迩貸怠頂 岻,…,"┎牒袋岫拳沈袋怠頂 岻 are located in

vertices 拳朕迩貸沈貸怠頂 , 拳朕迩貸沈貸態頂 ,…,"拳怠頂 respectively. An analogical situation for the next pebble

┎牒袋岫拳沈袋怠頂 岻 must be produced at the end of the iteration.

The pebble ┎牒袋岫拳沈頂岻 is moved to the vertex 憲頂 and then the cycle 系岫茎頂岻 is positively rotated

once which causes that the pebble ┎牒袋岫拳沈頂岻 moves to 拳怠頂 and pebbles

┎牒袋岫拳朕迩頂 岻,"┎牒袋岫拳朕迩貸怠頂 岻,…,"┎牒袋岫拳沈袋怠頂 岻 plunge in the cycle so that they are located in 拳朕迩貸沈頂 , 拳朕迩貸沈貸怠頂 ,…,"拳態頂. The described process represents one iteration of stacking pebbles into the

handle 茎頂. However, the process is not that easy. At least, two major cases must be
distinguished within this process. In both cases, the first step is that internal vertices of the
handle 茎頂 are locked (line 8 of Solve-Regular-Handle).

If the pebble ┎牒袋岫拳沈頂岻 is not located in the internal vertices of the handle 茎頂 (line 9-14 of Solve-
Regular-Handle), it is just moved to 憲頂. This is possible since an invariant holds that both

282 Multi-Robot Systems, Trends and Development

www.intechopen.com

Multi-robot Path Planning 283

unoccupied vertices are located outside the internal vertices of the handle and the graph
without the internal vertices of the handle is connected. This holds at the beginning, since
both unoccupied vertices are explicitly moved outside the handle 茎頂 (lines 2-6 of Solve-
Regular-Handle) and it is preserved through all the iterations. Observe that these movements

do not affect pebbles already stacked in the handle. The pebble ┎牒袋岫拳朕迩頂 岻 is fixed in 憲頂 by

locking 憲頂 and then an unoccupied vertex is moved to 懸頂 which makes the rotation of the
cycle 系岫茎頂岻 possible. The positive rotation of 系岫茎頂岻 finishes the iteration.

If the pebble ┎牒袋岫拳沈頂岻 is already located in some of the internal vertices of the handle 茎頂
(lines 15-37 of Solve-Regular-Handle), the above process is reused but it must be preceded by

getting the pebble ┎牒袋岫拳朕迩頂 岻 outside the handle. Notice, that it is not possible for the pebble

┎牒袋岫拳沈頂岻 to intermix with already stacked pebbles ┎牒袋岫拳朕迩頂 岻,"┎牒袋岫拳朕迩貸怠頂 岻,…,"┎牒袋岫拳沈袋怠頂 岻. The

vertex 憲頂 is made unoccupied and the cycle 系岫茎頂岻 is positively rotated until the pebble

┎牒袋岫拳沈頂岻 gets outside the internal nodes of 茎頂; that is, ┎牒袋岫拳沈頂岻 appears in 懸頂. This series of
rotations preserves the order of the already stacked pebbles. To restore the situation
however, the cycle must be rotated back the same number of times. A vertex 拳 outside the
already finished part of the graph (that is outside 系岫茎頂岻 and outside 茎珍 for 倹 伴 潔) is selected;

the pebble ┎牒袋岫拳沈頂岻 is moved into 拳 and it is fixed there by locking. The vertex 憲頂 is made
unoccupied again since the preceding process may move some pebble into it (this is possible
since 拳 alone cannot rule out the existence of a path from an unoccupied vertex to 憲頂 in the
bi-connected graph; there is always an alternative path). The cycle is rotated back so that

inductively supposed placement of ┎牒袋岫拳朕迩頂 岻,"┎牒袋岫拳朕迩貸怠頂 岻,…,"┎牒袋岫拳沈袋怠頂 岻 is restored. The

situation is now the same as in the previous case with ┎牒袋岫拳沈頂岻 outside the handle.
After the last iteration within the handle 茎頂 it holds that the pebbles

┎牒袋岫拳朕迩頂 岻,"┎牒袋岫拳朕迩貸怠頂 岻,…,"┎牒袋岫拳怠頂岻 are located in vertices 拳朕迩頂 , 拳朕迩貸怠頂 ,…,"拳怠頂 respectively.

Moreover it holds that unoccupied vertices are both outside the internal vertices of 茎頂. Thus,
the solving process can continue with the next handle in the same way while the already
solved handles remain unaffected by subsequent steps. Notice, that only one unoccupied
vertex is sufficient for stacking pebbles into handles.
The initial cycle 系待 of the handle decomposition must be treated in a different way. Here, the
second unoccupied vertex is utilized. An arrangement of pebbles within 系待 can be regarded
as a permutation. The task is to obtain the right permutation corresponding to the goal
arrangement. This can be achieved by exchanging several pairs of pebbles. More precisely, if
a pebble residing in a vertex of 系待 differs from a pebble that should reside in this vertex in
the goal arrangement, this pair of pebbles is exchanged. The process is implemented by a
procedure Solve-Original-Cycle and by auxiliary procedure Exchange-Pebbles for exchanging a
pair of pebbles.
The procedure Exchange-Pebbles expects that first two vertices of the initial cycle are
unoccupied in the current arrangement. However, the function generally does not preserve
this property. Hence, the vacancy of the first two vertices of the initial cycle must be
repeatedly restored (lines 4-7 and 10-13 of Solve-Original-Cycle). The process of exchanging a
pair of pebbles 喧 and 圏 itself exploits a pair of vertices 憲 and 懸 which are connected by an
edge and 憲 樺 系待 巻 懸 鞄 系待. The vertex 懸 is used as a storage place. The need of two
unoccupied vertices is imposed by the fact that a pebble from 系待 to be stored in 懸 must be
rotated into 憲 first. During this process, some vertex of the cycle must be unoccupied to
make the rotation possible and the vertex 懸 must be unoccupied as well to make storing
possible.

283Multi-robot Path Planning

www.intechopen.com

Multi-Robot Systems, Trends and Development 284

When exchanging the pair o pebbles 喧 and 圏 it is necessary to preserve ordering of the
remaining pebbles. First, a pebble occupying the vertex 懸 is moved into the cycle 系待 in order
to make 懸 vacant (lines 1-3 of Exchange-Pebbles). Then the cycle is rotated until the pebble 喧
appears in 憲 (since there was a pebble in 憲 at the beginning of the rotation, there is always
some pebble in 憲 after all the rotations) and the pebble 喧 is stored in 懸 (lines 4-6 of Exchange-
Pebbles). Next, the cycle 系待 is rotated positively so that 圏 appears in 券結捲建皆岫系待┸ 憲岻 (the next
vertex to 憲 with respect to the positive orientation) while the number of rotations is
recorded (lines 7-14 of Exchange-Pebbles). However, the second unoccupied vertex must not
interfere with counting of rotations, thus it is located 券結捲建皆岫系待┸ 憲岻 at the beginning (that is,
outside the sequence of pebbles between 喧 and 圏 which length is being counted in fact) and
then moved to 喧堅結懸皆岫系待┸ 憲岻 in the positive direction (the movement of the second
unoccupied in the negative direction is not possible here, since 憲 is locked at the moment).
At this moment, pebbles 喧 and 圏 are exchanged using two unoccupied vertices so that
ordering of 喧 in the cycle 系待 is the same as of 圏 before the exchange (lines 15-20 of Exchange-
Pebbles). Then, the cycle is rotated in the negative direction recorded number of times so that
place within the cycle where 喧 was originally ordered appears in 憲; thus 圏 is ordered here
(lines 21-26 of Exchange-Pebbles). Finally, the pebble that was located in 懸 before the
exchange of pebbles 喧 and 圏 has been commenced is put back into 懸 (lines 27-30 of Exchange-
Pebbles). Since the process of exchange of a pair of pebbles is quite complicated, the detailed
case analysis is given within the proof of correctness of the process in (Surynek, 2010c).

4.3 Summary of properties of the BIBOX algorithm

Several theoretical properties of the BIBOX algorithm regarding the time and space
complexity are summarized in the following propositions. Propositions are presented
without proofs. The detailed proofs can be found in (Surynek, 2010c). Nevertheless, it can
be briefly stated that the algorithm is polynomial in all the aspects.
Proposition 2 (BIBOX - soundness and completeness). The BIBOX algorithm is sound and
complete. That is, the algorithm always terminates and produces a solution of a given input

instance of the problem of pebble motion on a graph ┉ 噺 岫罫 噺 岫撃┸ 継岻┸ 鶏┸ 鯨牒待┸ 鯨牒袋岻. ̈
Proposition 3 (BIBOX – worst case time complexity). The worst case time complexity of the
BIBOX algorithm is 悉岫】撃】戴岻 with respect to an input instance of the problem pebble motion

on a graph ┉ 噺 岫罫 噺 岫撃┸ 継岻┸ 鶏┸ 鯨牒待┸ 鯨牒袋岻. ̈
Proposition 4 (BIBOX – makespan of the solution). The makespan of a solution in the worst
case produced by the BIBOX algorithm (that is, the number 行) for an input instance of the

problem of pebble motion on a graph ┉ 噺 岫罫 噺 岫撃┸ 継岻┸ 鶏┸ 鯨牒待┸ 鯨牒袋岻 is 悉岫】撃】戴岻. ̈
Proposition 5 (BIBOX – worst case space complexity). The worst case space complexity of
the BIBOX algorithm is 悉岫】撃】 髪 】継】岻 with respect to an input instance of the problem pebble

motion on a graph ┉ 噺 岫罫 噺 岫撃┸ 継岻┸ 鶏┸ 鯨牒待┸ 鯨牒袋岻. ̈

4.4 Extensions and the real-life Implementation
The natural question is how to apply the BIBOX algorithm if there are more than two
unoccupied vertices in input instance (that is, 航 伐 に 判 】撃】). The algorithm can be used
directly if the graph is filled by dummy pebbles. The instance with dummy pebbles is
solved by the algorithm as it is and finally movements of dummy pebbles are filtered out
from the solution in an additional post-processing step. An adaptation of the solving
algorithm for sparse instances of the pebble motion problem is out of scope of this chapter.
Nevertheless, a straightforward adaptation is to replace the non-deterministic selection of an

284 Multi-Robot Systems, Trends and Development

www.intechopen.com

Multi-robot Path Planning 285

unlocked unoccupied vertex (such as that at line 1 of Make-Unoccupied) by the selection of
the most promising one. For example, an unlocked unoccupied vertex that is nearest to the
vertex that is to be made unoccupied can be selected.
Some further optimizations should be used in the real-life implementation to reduce the
makespan of the produced solution. Various preconditions are explicitly enforced in order
to make the presented pseudo-code simpler (for example, the precondition of having first
two vertices of the initial cycle of the handle decomposition unoccupied before a pair of
vertices is exchanged within the cycle - lines 4-6 of Solve-Original-Cycle). This approach
should be avoided and a lazier approach should be adopted in the real-life implementation
(in the case of exchanging pebbles, locations of unoccupied vertices should be detected
implicitly in subsequent steps by more sophisticated branching of the code).
The real-life implementation of procedures Solve-Regular-Handle and Solve-Original-Cycle
should use opportunistic selection of vertices to store pebbles (vertex 検 - line 23 of Solve-
Regular-Handle and vertices 憲, 懸 - line 1 of Solve-Original-Cycle). The nearest vertex to the
target pebble should be always selected. Moreover, selection of these vertices within the
procedure Solve-Original-Cycle should be done not only at the beginning but also in every
iteration of its main loop.

5. Improving makespan by increasing parallelism

This section is devoted to a method for increasing parallelism of solutions. In fact, this
method represents a major technique how to utilize parallelism allowed by the definition of
the problem of multi-robot path planning. The presented algorithm does not utilize the
possibility of parallel movements. It solves the problem of pebble motion on a graph in fact.
The method presented below is intended as a post-processing technique that should be
applied on a solution produced by the BIBOX algorithm.

Definition 5 (sequential solution). A solution 質眺岫┋岻 噺 岷鯨眺待┸ 鯨眺怠┸ ┼ ┸ 鯨眺抵峅 of multi-robot path
planning problem ┋ 噺 岫罫 噺 岫撃┸ 継岻┸ 迎 噺 岶堅違怠┸ 堅違態┸ ┼ ┸ 堅違程岼┸ 鯨眺待┸ 鯨眺袋岻 is called sequential (耕 is the
length of the solution) if for each 倦 噺 な┸に┸ ┼ ┸ 耕 伐 な there exists 倹 樺 岶な┸に┸ ┼ ┸ 荒岼 such that 鯨眺賃岫堅違珍岻 塙 鯨眺賃袋怠岫堅違珍岻 and 鯨眺賃岫堅違鎮岻 塙 鯨眺賃袋怠岫堅違鎮岻 for each 健 噺 な┸に┸┼ ┸ 荒 巻 健 塙 倹 (at time step 倦 a robot 堅違珍
is moved; all the other robots do not move at the time step). ｦ
A move of a robot 堅 from a vertex 憲 to a vertex 懸 will be denoted using the notation 堅┺ 憲 蝦 懸.
The sequential solution of multi-robot path planning problem can be equivalently
represented as a sequence of moves of the form 堅┺ 憲 蝦 懸. That is, a sequence 質眺既岫┋岻 噺岷堅怠┺ 憲怠 蝦 懸怠┸ 堅態┺ 憲態 蝦 懸態┸ ┼ ┸ 堅抵┺ 憲抵 蝦 懸抵峅 determines sequential solution (堅沈 are variables with

the domain 岶堅違怠┸ 堅違態┸ ┼ ┸ 堅違程岼; 堅違沈 are constants). Notice, that 憲賃 塙 懸賃 for each 倦 噺 な┸に┸┼ ┸ 耕 which is
ensured by the definition of the sequential solution. In other words, a solution is sequential
if there is just one move at each step. This, however, may prolong makespan significantly,
which is not desirable.
Suppose a sequential solution 質眺既岫み岻 噺 岷堅怠┺ 憲怠 蝦 懸怠┸ 堅態┺ 憲態 蝦 懸態┸ ┼ ┸ 堅抵┺ 憲抵 蝦 懸抵峅 of an instance

of multi-robot path planning み 噺 岫罫 噺 岫撃┸ 継岻┸ 迎 噺 岶堅違怠┸ 堅違態┸ ┼ ┸ 堅違程岼┸ 鯨眺待┸ 鯨眺袋岻. This form of the
solution of the problem will be more convenient for reasoning about the possible
parallelism. The following definitions refer will to 質眺既岫み岻.
Definition 6 (interfering moves). A move 堅朕┺ 憲朕 蝦 懸朕; 月 樺 岶な┸に┸ ┼ ┸ 耕 伐 な岼 is interfering with a
move 堅賃┺ 憲賃 蝦 懸賃; 倦 樺 岶な┸に┸┼ ┸ 耕 伐 な岼 if 】岶憲朕┸ 懸朕岼 堪 岶憲賃 ┸ 懸賃岼】 半 な. ｦ
Typically, interfering moves cannot be executed in parallel. However, the situation is not so
straightforward. Following definitions are trying to capture which pairs of interfering
moves can be undoubtedly executed in parallel and which not.

285Multi-robot Path Planning

www.intechopen.com

Multi-Robot Systems, Trends and Development 286

Definition 7 (potentially concurrent moves). A move 堅賃┺ 憲賃 蝦 懸賃; 倦 樺 岶な┸に┸┼ ┸ 耕岼 is
potentially concurrent with a move 堅朕┺ 憲朕 蝦 懸朕; 月 樺 岶な┸に┸ ┼ ┸ 耕岼 with 月 隼 倦 if 堅朕 塙 堅賃, 憲朕 噺懸倦巻懸月Œ憲倦, and there is no other move 堅屋┺憲屋}懸屋 in 質迎既┋ such that 月隼屋隼倦 interfering with 堅朕┺ 憲朕 蝦 懸朕 or 堅賃┺ 憲賃 蝦 懸賃. The notation is that 堅朕┺ 憲朕 蝦 懸朕 棋 堅賃┺ 憲賃 蝦 懸賃. ｦ
The definition captures the fact that although the moves are interfering they can be executed

at the same time step according to the definition of a solution of the instance of multi-robot

path planning problem. The relation of potential concurrence is anti-reflexive due to the

requirement on different robots involved (堅朕 塙 堅賃) and anti-symmetric due to the ordering of

moves within the sequential solution (月 隼 倦).

Definition 8 (trivially dependent moves). A move 堅賃┺ 憲賃 蝦 懸賃; "倦 樺 岶な┸に┸┼ ┸ 耕岼 is trivially

dependent on a move 堅朕┺ 憲朕 蝦 懸朕; 月 樺 岶な┸に┸┼ ┸ 耕岼 with 月 隼 倦 if these moves are interfering, 堅朕 噺 堅賃 or 憲朕 塙 懸賃 喚 懸朕 噺 憲賃, and there is no other move 堅屋┺ 憲屋 蝦 懸屋 in 質眺既岫┋岻 such that 月 隼 屋 隼 倦 interfering with 堅朕┺ 憲朕 蝦 懸朕 or 堅賃┺ 憲賃 蝦 懸賃. The notation is that 堅朕┺ 憲朕 蝦懸朕 既 堅賃┺ 憲賃 蝦 懸賃. ｦ

The definition captures the fact that trivially dependent moves cannot be executed at the

same time step. Notice, that the condition 堅朕 噺 堅賃 or 憲朕 塙 懸賃 喚 懸朕 噺 憲賃 is the negation of the

condition 堅朕 塙 堅賃 and 憲朕 噺 懸賃 巻 懸朕 塙 憲賃 from the definition of the potential concurrence.

Observe that, when 】岶憲朕 ┸ 懸朕岼 堪 岶憲賃 ┸ 懸賃岼】 半 な (interfering moves), the condition 憲朕 塙 懸賃 喚懸朕 噺 憲賃 can be equivalently expressed as a disjunction of several cases as follows: 岫憲朕 塙 憲賃 巻懸朕 噺 懸賃岻 or 岫憲朕 噺 憲賃 巻 懸朕 塙 懸賃岻 or 岫憲朕 噺 憲賃 巻 懸朕 噺 懸賃岻 or 岫憲朕 噺 懸賃 巻 懸朕 噺 憲賃岻 or 岫憲朕 塙 懸賃 巻懸朕 噺 憲賃岻 (original and target vertices of each move are different; thus, each of the

conjunctions defines the situation unambiguously with respect to involved vertices).

Observe, that none of the cases is actually possible if 堅朕 噺 堅賃 and with no middle move 堅屋┺ 憲屋 蝦 懸屋 allowed. The relation of trivial dependence of moves is reflexive and anti-

symmetric due to the ordering of moves within the sequential solution (月 隼 倦).

The notions of potential concurrence and trivial dependence are to be used as building
blocks of a process that constructs parallel solution of the instance of the problem of multi-
robot path planning.
Proposition 6 (execution order). Let each move of a sequential solution 質眺既岫┋岻 is assigned a
time step of its execution by a function 建┺笈 質眺既岫┋岻 募 岶な┸に┸ ┼ ┸ 耕 伐 な岼. Let 建 satisfies the
following constraint: if 堅朕┺ 憲朕 蝦 懸朕 既 堅賃┺ 憲賃 蝦 懸賃"then 建岫堅朕┺ 憲朕 蝦 懸朕岻 隼 建岫堅賃┺ 憲賃 蝦 懸賃岻 and if 堅朕┺ 憲朕 蝦 懸朕 棋 堅賃┺ 憲賃 蝦 懸賃 then 建岫堅朕┺ 憲朕 蝦 懸朕岻 判 建岫堅賃┺ 憲賃 蝦 懸賃岻. Then a standard (parallel)
solution 質眺岫┋岻 constructed from 質眺既岫┋岻 using the function 建 forms a (correct) solution of ┋
(sequence of arrangements of robots in 質眺岫┋岻 reflects changes induced by moves at time
steps determined by the function 建). ̈
Proof. The proof will proceed by induction according to the length of the sequential solution 質眺既岫┋岻. If the sequence 質眺既岫┋岻 consists of a single element, the proposition holds. Suppose
that 質眺既岫┋岻 噺 岷堅怠┺ 憲怠 蝦 懸怠┸ 堅態┺ 憲態 蝦 懸態┸ ┼ ┸ 堅抵┺ 憲抵 蝦 懸抵峅 is of non-trivial length. From induction

hypothesis, the proposition holds for the sequence of moves 質眺既岫み嫗岻 噺 岷堅怠┺ 憲怠 蝦 懸怠┸ 堅態┺ 憲態 蝦懸態┸ ┼ ┸ 堅抵貸怠┺ 憲抵貸怠 蝦 懸抵貸怠峅. In other words, there is a function 建嫗┺ 笈 質眺既岫み嫗岻 募 岶な┸に┸ ┼ ┸ 耕 伐 な岼
such that it determines a correct parallel solution of an instance み嫗 which is almost the same
as ┋ except the goal arrangement which differs by the last move 堅抵┺ 憲抵 蝦 懸抵.

If there is some move 堅沈┺ 憲沈 蝦 懸沈 with な 判 件 判 耕 such that 堅抵┺ 憲抵 蝦 懸抵 is trivially dependent on

it, then 建 should satisfy that 建岫堅沈┺ 憲沈 蝦 懸沈岻 隼 建岫堅抵┺ 憲抵 蝦 懸抵岻. Properties of trivial dependency

ensure that execution of 堅抵┺ 憲抵 蝦 懸抵 after 堅沈┺ 憲沈 蝦 懸沈 does not violate correctness of the

solution.

286 Multi-Robot Systems, Trends and Development

www.intechopen.com

Multi-robot Path Planning 287

If there is some move 堅珍┺ 憲珍 蝦 懸珍 with な 判 倹 判 耕 such that 堅抵┺ 憲抵 蝦 懸抵 is potentially concurrent

with it, then 建 should satisfy that 建岫堅珍┺ 憲珍 蝦 懸珍岻 判 建岫堅抵┺ 憲抵 蝦 懸抵岻. The relation of potential

concurrence ensures that execution of 堅抵┺ 憲抵 蝦 懸抵 at the same time step or after the time step

with 堅沈┺ 憲沈 蝦 懸沈 does not violate correctness of the solution.
Let 建岫堅朕┺ 憲朕 蝦 懸朕岻 噺 建嫗岫堅朕┺ 憲朕 蝦 懸朕岻"for 月 噺 な┸に┸┼ ┸ 耕 伐 な. The function will be defined for the
last element of 質眺既岫┋岻 specially to satisfy above inequalities with respect to all the trivially
dependent and potentially concurrent moves with respect to 堅抵┺ 憲抵 蝦 懸抵. Let 建既嫗 噺Œ̇®輸岶建旺岫堅件┺憲件蝦懸件岻】" 堅件┺憲件蝦懸件既堅耕┺憲耕蝦懸耕巻件樺岶な┸に┸┼┸耕伐な岼岼 be the time step assigned to the last
trivially dependent move. Similarly, let 建棋嫗 噺 Œ̇®"岶建嫗岫堅珍┺ 憲珍 蝦 懸珍岻】"堅珍┺ 憲珍 蝦 懸棚 棋 堅抵┺ 憲抵 蝦 懸抵 巻倹 樺 岶な┸に┸ ┼ ┸ 耕 伐 な岼岼 be the time step assigned to the last potentially concurrent move. Let 建岫堅抵┺ 憲抵 蝦 懸抵岻 半 Œ̇®"岶建既嫗 髪 な┸ 建棋嫗 岼. The function 建 defined as above satisfies the proposition. ̈

The parallelized solution will be constructed according to Propopsition 6. To obtain small
makespan and high parallelism of the solution, low execution times for execution should be
assigned to the individual moves. Thus, it is recommended to assign the time step for the

execution of the newly added move in the proposition as follows: 建岫堅抵┺ 憲抵 蝦 懸抵岻 噺 Œ̇®"岶建既t 髪な┸ 建棋t 岼.
The process is formalized in pseudo-code as Algorithm 2. The method described above is
also known as critical path method in different contexts (Russel & Norvig, 2003). The
algorithm consists of three functions: Increase-Parallelism, Earliest-Execution-Time"既, and
Earliest-Execution-Time"棋. The main framework of the algorithm is represented by the
function Increase-Parallelism. The function successively includes moves into the constructed
parallel solution while trivial dependency and potential concurrence with respect to already
included moves is calculated. The function is build over the array step which is indexed by
time steps. The cell step岷建峅 contains a set of moves that are to be executed at the time step 建.
Functions Earliest-Execution-Time"既 and Earliest-Execution-Time"棋 calculates earliest execution
time for the newly included move with respect to already included trivially dependent
moves and potentially concurrent moves.

Algorithm 2. The parallelism increasing algorithm. The algorithm produces a parallelized
solution of an instance of multi-robot path planning problem from the given sequential
solution. The idea of the algorithm is inspired by the critical path method (Russel & Norvig,
2003).
function Increase-Parallelism岫質眺既岫み岻┸ 鯨眺待岻 : pair

/* A function for producing standard solution of
multi-robot path planning problem instance from the
sequential one.
Parameters: 質眺既岫み岻 - a sequential solution of み,
 鯨眺待 - a initial arrangement of robots. */

1: let 質眺既岫み岻 噺 岷堅怠┺ 憲怠 蝦 懸怠┸ 堅態┺ 憲態 蝦 懸態┸ ┼ ┸ 堅抵┺ 憲抵 蝦 懸抵峅
2: step岷な峅 華 岶堅怠┺ 憲怠 蝦 懸怠岼
3: 降 華 な
4: for 倦 噺 に┸ぬ┸ ┼ ┸ 耕 伐 な do
5: 建既嫗 華 Earliest-Execution-Time"既岫堅賃┺ 憲賃 蝦 懸賃岻
6: 建棋嫗 華 Earliest-Execution-Time"棋岫堅賃┺ 憲賃 蝦 懸賃岻
7: 建 華 Œ̇®"岶建既嫗 髪 な┸ 建棋嫗 岼
8: step岷建峅 華 step岷建峅 姦 岶堅怠┺ 憲怠 蝦 懸怠岼

287Multi-robot Path Planning

www.intechopen.com

Multi-Robot Systems, Trends and Development 288

9: 降 華 Œ̇®"岶降┸ 建岼
10: 鯨眺 華 鯨眺待
11: 耕 華 な
12: for 件 噺 な┸に┸ ┼ ┸ 降 do
13: for each 岫堅┺ 憲 蝦 懸岻 樺 step岷件峅 do
14: 鯨眺岫堅岻 華 懸
15: 鯨眺沈 華 鯨眺
16: return 岫降┸ 岷鯨眺待┸ 鯨眺怠┸ ┼ ┸ 鯨眺摘峅岻

function Earliest-Execution-Time"既岫堅賃┺ 憲賃 蝦 懸賃┸ 降岻 : integer
/* Calculates earliest execution time for a given move
with respect to the relation of trivial dependency.
Parameters: 堅賃┺ 憲賃 蝦 懸賃 - a move for that

a time step is calculated, 降 – currently last time step. */
1: for 件 噺 降┸降 伐 な┸┼ ┸な do
2: for each 岫堅┺ 憲 蝦 懸岻 樺 step岷件峅 do
3: if 堅┺ 憲 蝦 懸 既 堅賃┺ 憲賃 蝦 懸賃 then
4: return 倦
5: return な

function Earliest-Execution-Time"棋岫堅賃┺ 憲賃 蝦 懸賃┸ 降岻 : integer
/* Calculates earliest execution time for a given move
with respect to the relation of potential concurrence.
Parameters: 堅賃┺ 憲賃 蝦 懸賃 - a move for that

a time step is calculated, 降 – currently last time step. */
1: for 件 噺 降┸降 伐 な┸┼ ┸な do
2: for each 岫堅┺ 憲 蝦 懸岻 樺 step岷件峅 do
3: if 堅┺ 憲 蝦 懸 棋 堅賃┺ 憲賃 蝦 懸賃 then
4: return 倦
5: return な

Proposition 7 (increasing parallelism). The algorithm for increasing parallelism has the
worst case time complexity of 悉岫】質眺既岫┋岻】態岻 for the input sequential solution 質眺既岫┋岻 噺岷堅怠┺ 憲怠 蝦 懸怠┸ 堅態┺ 憲態 蝦 懸態┸ ┼ ┸ 堅抵┺ 憲抵 蝦 懸抵峅. The worst case space complexity of the algorithm is 悉岫】質眺既岫┋岻】岻. ̈
Proof. Each call of Earliest-Execution-Time"既 and Earliest-Execution-Time"棋 requires time of 悉岫】質眺既岫┋岻】岻. Both functions are called 】質眺既岫┋岻】 times, thus the overall worst case time
complexity is 悉岫】質眺既岫┋岻】態岻. A space of the size 悉岫】質眺既岫┋岻】岻 is required to store the input
sequential solution 質眺既岫┋岻. A space of the same size is necessary for storing the array step. ̈

6. Discussion and conclusions

The graph theoretical abstraction of the problem of path planning for multiple robots has
been introduced in this chapter. The abstraction consists in modeling the environment
where robots are moving as an undirected graph with vertices standing for locations and
edges representing an unblocked way from one location to another. At most one robot is
placed in each vertex and at least one vertex remains unoccupied to allow robots to move.

288 Multi-Robot Systems, Trends and Development

www.intechopen.com

Multi-robot Path Planning 289

The solving algorithm called BIBOX has been shown. It can be used to solve instances of the
problem over bi-connected graphs with at least two unoccupied vertices. The algorithm
produces a solution of the cubic makespan with respect to the number of vertices of the
input graph. The technique how to increase the parallelism and consequently the makespan
of solutions has been also presented. A more sophisticated algorithm called BIBOX-┠ has
been developed in (Surynek, 2010c). It is again designed for solving multi-robot path
planning over bi-connected graphs. Contrary to the BIBOX algorithm, it suffices with just
one unoccupied vertex.
There are still some open questions for the future work. The method represented by the
BIBOX algorithm is suitable for instances with relatively small number of unoccupied
vertices where there is high probability of collisions. On the other hand there exists methods
suitable for instances with lot of unoccupied space (Wang & Botea, 2008; Wang, 2009). These
methods are based on search for shortest paths between initial and goal positions of
individual robots. Eventual collisions between robots are resolved by search for alternative
paths. The interesting question is under what circumstances one or the other of these two
approaches is more advantageous.
Another interesting question regarding the complexity of the optimization variant of the
multi-robot path planning problem is whether it is possible to construct a solution with the
makespan constant time worse than the optimum in pseudo-polynomial time (= polynomial
time with respect to the size of the input and the given constant).

7. References

Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; Stein, C. (2001). Introduction to Algorithms,
Second Edition. The MIT Press, ISBN 978-0-262-03293-3.

Garey, M. R.; Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP
Completeness. W. H. Freeman & Co., ISBN: 978-0716710455.

Kornhauser, D.; Miller, G. L.; Spirakis, P. G. (1984). Coordinating Pebble Motion on Graphs, the
Diameter of Permutation Groups, and Applications. Proceedings of the 25th Annual
Symposium on Foundations of Computer Science (FOCS 1984), pp. 241-250, West
Palm Beach, FL, USA, IEEE Press, 1984.

Ratner, D.; Warmuth, M. K. (1986). Finding a Shortest Solution for the N×N Extension of the 15-
PUZZLE Is Intractable. Proceedings of the 5th National Conference on Artificial
Intelligence (AAAI 1986), pp. 168-172, Philadelphia, PA, USA, Morgan Kaufmann
Publisher.

Russell, S.; Norvig, P. (2003). Artificial Intelligence: A Modern Approach (second edition). Pren-
tice Hall, ISBN: 978-0137903955

Ryan, M. R. K. (2008). Exploiting Subgraph Structure in Multi-Robot Path Planning. Journal of
Artificial Intelligence Research (JAIR), Volume 31, pp. 497-542, AAAI Press.

Surynek, P. (2009a). A Novel Approach to Path Planning for Multiple Robots in Bi-connected
Graphs. Proceedings of the 2009 IEEE International Conference on Robotics and
Automation (ICRA 2009), pp. 3613-3619, ISBN 978-1-4244-2789-5, Kobe, Japan, IEEE
Press.

Surynek, P. (2009b). An Application of Pebble Motion on Graphs to Abstract Multi-robot Path
Planning. Proceedings of the 21st International Conference on Tools with Artificial
Intelligence (ICTAI 2009), pp. 151-158, ISBN 978-0-7695-3920-1, Newark, NJ, USA ,
IEEE Press.

289Multi-robot Path Planning

www.intechopen.com

Multi-Robot Systems, Trends and Development 290

Surynek, P. (2009c). Towards Shorter Solutions for Problems of Path Planning for Multiple Robots
in Theta-like Environments. Proceedings of the 22nd International FLAIRS
Conference (FLAIRS 2009), pp. 207-212, ISBN 978-1-57735-419-2, Sanibel Island, FL,
USA, AAAI Press.

Surynek, P. (2010a). An Optimization Variant of Multi-Robot Path Planning is Intractable.
Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI 2010),
pp. 1261-1263, ISBN 978-1-57735-463-5, Atlanta, GA, USA, AAAI Press.

Surynek, P. (2010b). Abstract Path Planning for Multiple Robots: A Theoretical Study. Technical
Report, http://ktiml.mff.cuni.cz/~surynek/index.html.php?select=publications,
Charles University in Prague, Czech Republic.

Surynek, P. (2010c). Abstract Path Planning for Multiple Robots: An Empirical Study. Technical
Report, http://ktiml.mff.cuni.cz/~surynek/index.html.php?select=publications,
Charles University in Prague, Czech Republic.

Tarjan, R. E. (1972). Depth-First Search and Linear Graph Algorithms. SIAM Journal on
Computing, Volume 1 (2), pp. 146-160, Society for Industrial and Applied
Mathematics.

Wang, K. C. (2009). Bridging the Gap between Centralised and Decentralised Multi-Agent Path-
finding. Proceedings of the 14th Annual AAAI/SIGART Doctoral Consortium
(AAAI-DC 2009), pp. 23-24, AAAI Press, 2009.

Wang, K. C.; Botea, A. (2008). Fast and Memory-Efficient Multi-Agent Path-finding. Proceedings
of the Eighteenth International Conference on Automated Planning and Scheduling
(ICAPS 2008), pp. 380-387, ISBN 978-1-57735-386-7, Australia, AAAI Press, 2008.

West, D. B. (2000). Introduction to Graph Theory, second edition. Prentice-Hall, ISBN 978-
0130144003.

Wilson, R. M. (1974). Graph Puzzles, Homotopy, and the Alternating Group. Journal of
Combinatorial Theory, Ser. B 16, pp. 86-96, Elsevier.

290 Multi-Robot Systems, Trends and Development

www.intechopen.com

Multi-Robot Systems, Trends and Development

Edited by Dr Toshiyuki Yasuda

ISBN 978-953-307-425-2

Hard cover, 586 pages

Publisher InTech

Published online 30, January, 2011

Published in print edition January, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book is a collection of 29 excellent works and comprised of three sections: task oriented approach, bio

inspired approach, and modeling/design. In the first section, applications on formation, localization/mapping,

and planning are introduced. The second section is on behavior-based approach by means of artificial

intelligence techniques. The last section includes research articles on development of architectures and control

systems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Pavel Surynek (2011). Multi-Robot Path Planning, Multi-Robot Systems, Trends and Development, Dr

Toshiyuki Yasuda (Ed.), ISBN: 978-953-307-425-2, InTech, Available from:

http://www.intechopen.com/books/multi-robot-systems-trends-and-development/multi-robot-path-planning

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

