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1. Introduction

The robot is said to be truly autonomous (Dissanayake et al. (2001)), if it has the ability to start
at an unknown location in an unknown environment and then simultaneously build a map of
the environment and localize it self in the map. Thus the robot has to solve the simultaneous
localization and mapping (SLAM) problem. The information used are sequences of relative
observations captured by the mobile robot. Many approaches has been proposed to solve the
SLAM problem.
Se et al. (2001) proposed an approach for a robot equipped with a trinocular stereo system
(Murray & Little (1998)) and an odometer. The algorithm starts by detecting feature points
(Lowe (1999)) in the three images. Then these feature points are matched using the epipolar
and disparity constraints thats exist between the three cameras. Assuming known camera
intrinsic parameters, the 3D position of each matched feature point is estimated. As the robot
moves, the odometry readings are used to provide a rough estimate about the motion. This
estimate can be employed in matching feature points among consecutive frames. The 3D
position of each newly detected feature point is estimated and the motion of the robot is
localized using a least-squares minimization scheme (Lowe (1991)). Finally, a map is built for
the 3D positions of the detected feature points and the location graph of the robot is computed.
Other SLAMmethods are based on evaluating some probabilistic models of the robot motion
and sensed data from the environment. It is assumed that the robot can sense landmarks
relative to its local coordinate frame. The landmarks may be naturally occurring in the
environment like trees or artificially added like steel poles.
Smith & Cheeseman (1986) use extended Kalman filters (EKF) to estimate the posterior
distribution over the robot pose. The problem they solved can be stated as follows:
Given a measurement of the environment zt = [z1,z2, ...,zt] and a set of control inputs
ut = [u1,u2, ...,ut], determine the robot pose st and the location of all the k landmarks
m = [m1,m2, ...,mk]. In probabilistic terms, this can be expressed as the posterior:

p(st ,m/zt,ut) (1)

where the superscript t refer to a set of variables at time t.
The extended kalman filters (EKFs) are relatively slow when estimating maps with very
large number of landmarks. Murphy (99) and Montemerlo et al. (03) proposed more capable
approach. They proposed algorithms to solve the SLAM problem by integrating particle filter
and Kalman filter representation to solve the posterior function in Equation(1).
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When a team of robots are sharing the same worksite, the SLAM problem becomes more
challenging. The robots has to build a joint map of the environment and be able to localize
their positions in the joint map in order to coordinate the navigation andminimize the overlap
in information.
Thrun et al. (2000) presented a multi-robot SLAM algorithm based on likelihood
maximization to find the maps that are maximally consistent with the sensor data. The sensor
data used are laser scanners to sense the environment and odometers to estimate the robot
motion. The exact initial pose of all robots relative to each other is assumed to be known. The
localization process starts as follows: Each robot collects a sequence of its own odometry and
sensor measurements (like laser scans). Using these measurements, each robot incrementally
constructs amaximum likelihood estimate for its position and amaximum likelihood estimate
for the location of surrounding objects and a posterior function to determine its location in the
map. To build a joint map, the posterior estimation component is used. The relative location
of robots is unknown; however, each robot in the team starts within a map of a specific robot
called the team leader. Using the posterior estimation, each robot localizes it self in the team
leader’s map and thus a unified map for the team is built.
Simmons et al. (2000) introduced similar approach but with known approximate initial pose of
the robots (within 1 meter distance and 20o orienation). Each robot in the team incrementally
constructs the likelihood and posterior estimates as in the approach proposed by Thrun et al.
(2000).
However, to build a joint map, each robot in the team sends its sensed data (laser range scans
and odometer readings) to the team leader. Since the initial approximate pose of each robot is
known, the team leader localizes the robots relative to each other.
When the initial pose of the robots is unknown, an important question is raised:

If two robots in the team sensing similar data in the environment, are they actually
sensing the same part of the environment or are they sensing different parts that look
alike?

Liu & Thrun (2003) presented an approach to solve the multi-robot SLAM problem assuming
unknown initial positions and ambiguous landmarks. Each robot in the team builds a local
map similar to ones discussed in Thrun et al. (2000) and Simmons et al. (2000). The joint map
is built by fusing the maps acquired by the robots into one map. First, the landmarks between
different local maps are matched. Correspondences found in this matching process provide
an estimate of the rotation and translation between local maps. Using this estimate, a global
map of the environment may be built by estimating a posterior similar to the one defined in
Equation(1) evaluated over all robot poses and all landmarks from all available data. Liu and
Thrun applied the algorithm using a single vehicle equipped with laser range finder and an
odometer in an outdoor environment. Features in the map are the stems of trees detected by
the laser range finder. The multi-robot case is demonstrated by splitting the data acquired by
the vehicle into 8 disjoint sequences and then the proposed multi-robot SLAM algorithm is
applied.
In this chapter, we propose to solve the multi-robot SLAM problem by using a collection
of sparse views of the scene. The originality of our approach is that it uses purely vision
sensors (single camera on each robot) and that no special landmarks are assumed to exist in
the environment. Moreover, no assumptions are made on the initial relative pose of the robots.
The robot location is estimated from sparse views, this makes the estimation much more
accurate. In contrast, method based on small incremental displacements are more affected
by noise and inaccuracies and are thus more subject to error accumulation. In our proposed
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Multi-Robot SLAM: A Vision-Based Approach 3

Fig. 1. Geometry of the system.

algorithm, each robot in the team starts at an arbitrary unknown location and incrementally
builds a local map of the environment with the ability to localize itself in the map. When an
overlap occurs between any two robots, a joint map can be built between them and the two
robots are able to localize themselves in the joint map for all their previous as well as future
locations without the need for a new overlap. Under this approach a joint map of the team
can be built if each robot has at least one overlap with any other robot in the team.
In our approach we simply assume that each robot is equipped with a single camera and the
robots are operating on a planar surface. We also assume that the height of the camera with
respect to the ground plane as well as its orientation are known. Note that the tilt angle does
not have to be accurate since this one is simply used as an initial approximation and will be
re-estimated by the algorithm. However, a good accuracy in the height measure could be
required since robot localization will be specified in terms of height units.

2. Robot localization

2.1 Estimating the camera motion
In our work, the overhead views are used to match images and get the homography. The
matching is done without depending on known patterns, moving objects on the plane or
manual registration, instead the algorithm is based on features that have to be matched
between views. However when a plane is observed by a tilted camera the features lying on it
are subject to important perspective deformations. In the context of sparse views, this makes
the features difficult to match using the usual correlation schemes. Applying the overhead
view transformation will undo the perspective deformation which will make the apparent
features differing only by a similarity transformation.
Figure 1 shows the structure of the coordinate systems of the world, camera and image
coordinate systems. The ground plane surface is at Y = 0, the optical axis of the camera is
aligned with the Z axis and the camera is rotated around the X axis by an angle α. The camera
height from the world plane is h.

173Multi-Robot SLAM: A Vision-Based Approach
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(a) (b)

Fig. 2. Overhead view: (a) The image of a planar surface taken with tilt = 33o , (b) The
corresponding generated overhead view.

The projective relation between the world plane and the corresponding overhead image point
can be represented as follows:

⎡

⎣

xi
yi
1

⎤

⎦ =HO

⎡

⎣

XW

ZW

1

⎤

⎦ (2)

When the geometry of the system is as shown in Figure 1, the 3× 3 homography matrix HO

can be described as follows (Laganière (2000)):

HO =

⎡

⎣

f x0 cos(α) x0hcos(α)
0 f sin(α) + y0 cos(α) y0hcos(α)− f hsin(α)
0 cos(α) hcos(α)

⎤

⎦ (3)

where f represents the focal length, x0 and y0 are coordinates of the principal point, α is the
tilt angle and h is the height of the camera.
This transformation is inversible such that the overhead view can be generated from a
perspective or vice versa. Figure 2(a) shows an image takenwith a tilt = 33o , the corresponding
overhead view image is shown in Figure 2(b).

2.2 Overhead view mosaic
In this section the composition of overhead view mosaics is discussed. The method is based
on estimating the homography transformation of the set of images with respect to a certain
plane in the scene (for example the ground plane). The overhead viewmosaic is finally built by
rectifying the images using an overhead transformationwith respect to a reference image. One
of the images (say image 0) is selected as a reference frame. The homographic transformation
between the reference view 0 and a view i is:

xi =H0ix0 (4)

For known camera parameters, the image to plane homography HO between the reference
view (view 0) and the ground plane can be calculated as described in Equation(3). The two
matricesH0i andHO can be used to calculate the homography transformation between a view
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i and the composted overhead view as follows:

HiO =H−1
O H−1

0i =

⎡

⎣

h11 h12 h13
h21 h22 h23
h31 h32 h33

⎤

⎦ (5)

Armed with all these homographic transformations, it is possible to produce an overhead
mosaic representing the environment under study. When combining the information coming
from different images, two strategies can be considered. The first one consists in determining
the value of each pixel in the mosaic by selecting the pixel from the source image that has the
best resolution as described by Laganière (2000). For a world point [X,Y,1]T the mosaic pixel
is selected from the source image that best samples the segment between points [X,Y,1]T

and [X + ∆X,Y + ∆Y,1]
T where ∆X and ∆Y are small increments in the X and Y directions

respectively. The relation between a point [X,Y,1]T in world plane and a point [x,y,1]T in the
image plane is:

X = hX(x,y) =
h11x+ h12y+ h13
h31x+ h32y+ h33

(6)

Y = hY(x,y) =
h21x+ h22y+ h23
h31x+ h32y+ h33

(7)

The image resolution is determined by a measure called instantaneous sampling rate. For a
world point [X,Y,1]T the sampling rate at the X direction is the number of source images
between points [X,Y,1]T and [X + ∆X,Y,1]

T divided by the distance between them. The
instantaneous horizontal sampling rate is as follows:

sX =

√

(

δhX(x,y)

δx

)2

+

(

δhX(x,y)

δy

)2

(8)

Similarly the instantaneous vertical sampling rate is:

sY =

√

(

δhY(x,y)

δx

)2

+

(

δhY(x,y)

δy

)2

(9)

The instantaneous sampling rate is defined as follows:

s= sXsY (10)

The mosaic pixel at point (x,y) is selected from the source image that have the highest
sampling density s.
Figure 3 shows a set of images of a ground plane scene; the reference image is Figure 3(a).
Figure 4(a) shows the mosaic obtained for this set of images. As it can be seen, when obstacles
are visible in the source image, these ones interfere with the ground plane representation. In
order to cope with this problem, we have to discard the source pixels that contains intensities
that belong to the obstacles. To do so, we propose the following algorithm:

175Multi-Robot SLAM: A Vision-Based Approach
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Set of images of a ground plane scene.

– Step 1: For each point on the ground plane apply the appropriate transformation to obtain the
corresponding image point in each view.

– Step 2: Compute the mean RGB value of the pixels and the pixel that deviates the most from
this mean value is discarded.

– Step 3: Repeat steps 1 and 2 until half of the points are discarded.

– Step 4: The mean RGB value of the remaining points is then used in the mosaic composition.

(a)
(b)

Fig. 4. Mosaic of the set of images in Figure 3 : (a) selecting points with best resolution. (b)
discarding points that belong to the obstacle.
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The result obtained using this algorithm is shown in Figure 4(b). An appropriate
representation is thus obtained that could be used as a ground plane model of the
environment. We show in the next section how it is possible to obtain the inter-image
transformations (Hij) necessary to build such overhead viewmosaic. This is done bymatching
the different available views, however taken from widely separated viewpoints.

2.3 Matching two widely separated views
The idea of this proposed technique is to use the overhead view images in the matching
process. The procedure first starts by detecting corners on the original perspective images
(Figure 5 (a) and (b))and the corners are then mapped to the overhead view images(Figure 5
(c) and (d)).
The two views in Figure 5 (a) and (b) are subjected to a projective deformation which
makes image matching more challenging and subject to false matches. However, the two
corresponding overhead views in Figure 5 (c) and (d) are only related by a similarity
transformation ( i.e. translation and rotation). This makes matching corner points using the
overhead views more favorable. The matching process can be summerized as follows:

– Step 1: detect corners on the two images to be matched (Figure 5 (a) and (b))

– Step 2: use Equation 3 to calculate the overhead views of the two images (Figure 5 (c) and
(d))

– Step 3: Match overhead views to calculate the similarity transformation HSij

– Step 4: Homography transformation between (Figures 5 (a) and (b)) can be calculated as:

Hij = H−1
Oi HSijHOj

The reader is referred to Hajjdiab & Laganière (2004) for more details of the matching process.
The inter-image homography transformation Hij for two cameras Ci and Cj viewing a planar
scene can be expressed as:

Hij = Kj

[

R−
tnT

d

]

K−1
i (11)

where Ki and Kj are the matrices containing the intrinsic parameters of cameras Ci and Cj

respectively, R is the rotation between the two cameras, n is the normal to the plane under
consideration and t is the translation. Finally d is the distance from the camera to the ground.
The optical axis of the two cameras are along the Z-axis as described in Figure 1, then the
rotation between the two cameras can be expressed as follows (Altmann (1986)):

R=

⎡

⎣

cos(θ) −sin(θ)cos(αi) −sin(θ)sin(αi)
cos(αj)sin(θ) cos(θ)cos(αj)cos(αi) + sin(αj)sin(αi) cos(αj)sin(αi)cos(θ)− cos(αi)sin(αj)
sin(αj)sin(θ) sin(αj)cos(θ)cos(αi)− cos(αj)sin(αi) cos(θ)sin(αj)sin(αi) + cos(αj)cos(αi)

⎤

⎦

(12)

where αi and αj are the angle of cameras Ci and Cj with respect to the ground plane.
The normal to the ground plane n can be expressed with respect to camera Ci as follows:

n =

⎡

⎣

0
−sin(αi)
cos(αi)

⎤

⎦ (13)

The motion parameters can be estimated using SVD decomposition as proposed by Triggs
(1998) as follows:

177Multi-Robot SLAM: A Vision-Based Approach
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Let the coordinates of camera Ci be the reference frame, the projection matrices of cameras Ci

and Cj are respectively:
Pi = [I | 0] (14)

Pj = R [I | − t] (15)

where R is the rotation matrix, t is translation vector and I is the 3× 3 identity matrix.
The inter-image homography matrix Hij can be decomposed as follows:

Hij = R

[

I−
t′nT

d

]

(16)

where t= −Rt′.
For nT

d = 1, Equation (16) can be expressed as follows:

Hij = R
[

I− t′
]

= RH∗
ij ∼ Pj (17)

The motion can be estimated from the SVD’s Hij and H∗
ij.

Hij = USV

H∗
ij = U1SV

(18)

where U and V are 3× 3 rotation matrices denoted by the columns U = [u1,u2,u3] and V =
[v1,v2,v3], S = diag(ss, s2, s3) is a diagonal matrix and U= RU1.
The motion between the two cameras (R, t′) can be estimated as follows:

t′ =
β1

s1
v1 +

β2

s3
v3 (19)

R= UUT
1 (20)

where β1 = ±
√

1− s23 and β2 = ±
√

s21 − 1

In general, the SVD approach gives two distinct solutions. This indetermination can be
resolved if additional information about the scene is known. In our case, the normal vector to
the ground plane is known (Equation (13)) and is used to eliminate the ambiguity.
In the following section an experiments is performed to estimate the motion parameters
between two cameras. The internal camera parameters are assumed to be known.

2.3.1 Experiment: motion estimation
In this section the details of calculating the motion between two camera is provided. The
carpet example in Figures 5(a) and (b) is used here to calculate R and t. The homography is
calculated as described in section 2.3 as follows:

Hij =

⎡

⎣

0.599 −0.883 213.665
0.270 0.946 −39.851
0 0 1

⎤

⎦ (21)

The SVD approach is applied to the matrix in Equation (21). The following two solutions
were obtained:

178 Multi-Robot Systems, Trends and Development
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Solution 1:

n =

⎡

⎣

−0.039
−0.697
0.715

⎤

⎦ R=

⎡

⎣

0.787 0.413 0.457
−0.43 0.899 −0.07
−0.44 −0.141 0.886

⎤

⎦ t=

⎡

⎣

−0.798
−0.045
−0.016

⎤

⎦ (22)

Solution 2:

n =

⎡

⎣

0.709
0.683
0.17

⎤

⎦ R=

⎡

⎣

0.613 0.772 −0.164
−0.787 0.585 −0.189
−0.05 0.245 0.968

⎤

⎦ t =

⎡

⎣

−0.289
−0.505
0.548

⎤

⎦ (23)

The solution is the one with normal vector that satisfies the normal to the plane n as defined
in Equation (13). In this case Solution 1 is selected.
The SVD algorithm is used to calculate the camera motion for the images in Figures 5, 6 and
7. The results are shown in Table 1.
In the next section, the robot localization algorithm is presented. The algorithm is applied on
Table 1 and the localization results are presented.

(a)

Fig. 5. Two views of a carpet scene taken with camera tilt of 45o. (a) The first image ( Image
i)(b) The second image (Image j). (c) and (d) The overhead view transformations of images in
i and j respectively mapped.

179Multi-Robot SLAM: A Vision-Based Approach
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(a) (b)

Fig. 6. Floor images (a)and (b) images for a floor taken at tilt of 45o.
.

Scene Motion estimated from Hij

carpet
R=

⎡

⎣

0.787 0.413 0.457
−0.43 0.899 −0.07
−0.44 −0.141 0.886

⎤

⎦ , t = [−0.798 − 0.045 − 0.016]T , n= [−0.039 − 0.697 0.715]T

floor
R=

⎡

⎣

0.999 0.025 0.028
−0.026 0.999 0.016
−0.028 −0.016 0.999

⎤

⎦ , t = [−0.082 − 0.256 − 0.209]T , n= [−0.013 − 0.661 0.75]T

vase
R=

⎡

⎣

0.852 0.474 0.221
−0.424 0.873 −0.237
−0.306 0.108 0.945

⎤

⎦ , t = [−0.289 0.239 0.15]T , n = [−0.01 − 0.377 0.926]T

Table 1. Camera motion estimation using the homography transformations.

2.4 Locating the Robots
The localization problem is formalized as shown in Figure 8. This can be parameterized by
the triplet Γ = [ρ,φ1,φ2]. Where ρ is the Euclidean distance between the two robots, φ1 is the
angle of Robot2 with respect to Robot1 and φ2 is the angle of Robot1 with respect to Robot2.
The robot locations with respect to one another may be expressed by projecting the two 3D

(a) (b)

Fig. 7. Vase images: (a) tilt = 22o and (b) tilt = 33o .

180 Multi-Robot Systems, Trends and Development
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Fig. 8. The Robot angles.

camera coordinate systems on Robot1 and Robot2 on a 2D coordinate systems. The location of
Robot2 with respect to Robot1 is at (x1,y1) defined as follows:

x1 = −tx1 (24)

y1 =
√

t2y1 + t2z1 sin(α1 + β1) (25)

ρ1 =
√

x21 + y21 (26)

where β1 = tan−1 ty1
tz1

Similarly, the location of Robot1 with respect to Robot2 is at (x2,y2) defined as follows:

x2 = −tx2 (27)

y2 =
√

t2y2 + t2z2 sin(α2 + β2) (28)

ρ2 =
√

x22 + y22 (29)

where β2 = tan−1 ty2
tz2

Finally, the location vector Γ is defined as follows:

Γ = [ρ,φ1,φ2] =

[

ρ1 + ρ2
2

, tan−1

(

y1
x1

)

, tan−1

(

y2
x2

)]

(30)

The value of ρ in Equation (30) is calculated in term of camera height units. For a known
camera height h in cm, the value of Γ can be expressed as follows:

scene h dmeasured Γ |∆d|

carpet 78 cm 61.5 cm [0.79,−3.18o,138.76o ] 0.12 cm

floor 80 cm 27 cm [0.33,−75.99o,101.76o ] 0.6 cm

vase 78 cm 32 cm [0.40,44.09o ,102.06o ] 0.8 cm

Table 2. The calculated robot position from the estimated homographies

181Multi-Robot SLAM: A Vision-Based Approach
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Γ = [ρh cm,φ1,φ2] (31)

The information in Table 1 is used to localize the robots in the carpet, floor and vase scenes.
The localization results are shown in Table 2. The camera height h and the measured distance
between the cameras for each scene are shown in columns 2 and 3 respectively. The location
vectors Γ are calculated as described in this section and the results are shown in column 4, the
discrepancy between the calculated and the measured locations are shown in column 5.

3. SLAM Experiments

In this section two experimental examples are provided for a robot traversing a work site. The
objective is that the robot is capable of calculating its pose with respect to its previous position.

3.1 Single-robot SLAM
Figure 9 shows a set of images collected by a robot moving on a planar surface, the tilt
with the ground is set manually to 33o and the height of the cameras is measured to
be h = 82cm. First, the matching algorithm discussed in the previous section is applied
and the inter-image homographies are calculated between consecutive robot locations. The
homography transformations calculated are: H01, H12, H23, H34, H45, H56 and H67. These
homographies are used to incrementally build a location graph. At each new location, the
robot pose is calculated with respect to its previous position, the resulting location graph
is shown in Figure 10. To estimate the accumulated error in estimating the pose between
consecutive locations, the pose between the initial location (Robot0) and last location (Robot
7) is estimated by concatenating the calculated inter-image homography transformations as
follows:

H07 =H67H56H45H34H23H12H01 (32)

Any error in estimating any of the matrices in the right hand side of Equation(32) will
influence the estimation of H07. In Figure 10 the value of r1 represents the measured distance
between Robot 7 and Robot 0, the estimated distance using H07 is represented by r2.
The error in estimating the distance between Robot 0 and Robot7 can be evaluated by dr =
|r1 − r2| as shown in Figure 10. The value of dr is 11.5cm for a total displacement error of
2.95%.
The global overhead view map of the environment can be built by combining the overhead
transformation and the inter-image homographies as described in Section 2.2. The result is
shown in Figure 11.
In the next section, our single-robot SLAM algorithm is generalized to the multiple-robot case.

3.2 Multi-robot SLAM
In this section we provide an example of two mobile robots RobotA and RobotB moving in
the same work site. The camera tilt on robots RobotA and RobotB are set manually to 33o and
45o respectively, the height of the camera from the ground plane is 55cm. Figure 12 shows
the images captured by RobotA and Figure 13 shows the images captured by RobotB. The
two robots start at arbitrary unknown locations (location A0 for RobotA and location B0 for
RobotB). Each of the robots starts building a local location graph and a local map of the
environment as discussed in the single-robot SLAM case, the local locations graphs are shown
in Figure 14(a) and (b). When an overlap occurs between the two robots, a joint location graph

182 Multi-Robot Systems, Trends and Development
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(0) (1) (2)

(3) (4) (5)

(6) (7)

Fig. 9. Single-robot SLAM: Image set collected by the robot.

and environment map can be build by calculating the relative pose of the two robots. The
approach used to determine the overlap between two robots is presented in the next section.
At location A7 for RobotA and location B8 for RobotB the two robots are viewing the same
scene, this overlap can be verified by comparing image A7 in Figure 12 and image B8 in
Figure 13. The relative pose of the two robots is estimated by the inter-image homography
between the two images and a joint location graph can be built. Figure 14(c) shows the joint
location graph which relates all the robot locations with A7 selected as the reference frame.
The joint map of the environment is shown in Figure 15.

3.3 Overlapping view detection
In order to determine if two cameras are viewing the same scene, the images have to be
compared. One approach is to calculate the inter-image homography as discussed in Section
2.3 and then determine the validity of this transformation. The validity may be checked
by mapping the corner points from one image to the other. If there exist a large number of
matches then this transformation is considered to be a valid transformation and accepted
otherwise it is rejected.

183Multi-Robot SLAM: A Vision-Based Approach
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Fig. 10. Single-robot SLAM: Location graph.

For two robots, this approach requires calculating the inter-image homography for
every possible combination of images. For N images captured by each robot, a complexity
of O(N2) of inter-image homography calculations is required. To improve the efficiency, the
homography between any two images is only calculated if there is a potential for match. To
do so, we propose a method based on color histogram distance.
The color histograms are commonly used to compare images based on their overall
appearance (Pass et al. (1996)). Because they are computationally efficient, they have
been used in many applications like image retrieval ( Brown et al. (1995); Flicker (1995);
Olga & Stonebraker (1995); Pentland et al. (1996)) and object identification( Swain & Ballard
(1991)).
The histogram h of an image is a vector consisting of n bins as follows:

h = [h1, . . . ,hn ] (33)

Each bin hi ∈ h, 1≤ i ≤ n, contains the number of pixels of color i in the image. Two images I
and I′ of histograms h and g can be compared based on the inter-bin distance d(h,g) between
their histograms. Images I and I′ are considered similar if d(h,g) is minimized. The histogram
is trivially computed compared to the inter-image homography. We propose an algorithm
to use histogram distance to determine the most likely overlap and then use-inter image
homography transformation to validate such an overlap. The algorithm is stated as follows:
Let A = {I1, . . . , INA

} and B = {I′1, . . . , I
′
NB

} be the sets of images collected by RobotA and
RobotB respectively. With set A contains NA images and set B contains NB images. The
problem to solve is to find, using color histogram distance, an image Ia ∈ A and an image
I′b ∈ B such that Ia and I′b are most likely the overlap images if such an overlap exists between
the two robots.
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Fig. 11. Single-robot SLAM: generated map of the site

Let Hist(I)1 denotes the histogram of the overhead view of image I and CHist and CHomog

denote the cost of computing the histogram distance d and the inter-image homography
between two images. The algorithm we propose is summarized as follows:

Step 1: For k = 1 to NA

For l = 1 to NB

calculate d(Hist(Ik),Hist(I′l))
If d is minimized then

Ia = Ik and I′b = I′l
End

End
End

Step 2: Calculate the inter-image homography Hab between images Ia and I′b
Step 3: Accept/reject Hab based on the validation test.

In Step 1, the histogram distances between all the images acquired by the two robots are
calculated. The outcome is the two images (Ia and I′b) whose histogram distance is the global
minimum. In Step 2, the inter-image homography (Hab) is calculated for the two images.

1throughout this chapter all the histograms are calculated using the overhead view images
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(A0) (A1) (A2)

(A3) (A4) (A5)

(A6) (A7) (A8)

(A9) (A10) (A11)

(A12)

Fig. 12. Image set collected by the Robot A.
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(B0) (B1) (B2)

(B3) (B4) (B5)

(B6) (B7) (B8)

(B9) (B10) (B11)

(B12)

Fig. 13. Image set collected by the Robot B.
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(a)

(b)

(c)

Fig. 14. Multi-Robot Localization: (a) location graph generated by RobotA (b) location graph
generated by RobotB (c) the joint location graph
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Fig. 15. The map generated from images collected by Robot A and Robot B.

Finally, in Step 3, Hab is validated, if there exist a high number of matches between corners in
image Ia and corners in image I′b then the homography Hab is accepted.

4. Summary

We have presented a vision-based technique to solve the multi-robot SLAM problem. The
different robot locations are computed by finding the transformations that relate together
the captured images of the scene. The camera motions are estimated from the computed
inter-image homographies and each robot is localized with respect to a local map. To build a
global map, the inter-image homographies have to be calculated between different robots in
the team. To do so, an overlapping view detection technique is presented. The technique is
based on color histogram distances between images collected by the team of robots. When two
images from two robots have similar color histograms, a potential overlapping between the
two robots is assumed. The inter-image homography is calculated to verify if this overlapping
is valid. If the such an overlapping exist, then it is possible to build a common map of the
environment inside which the robots are evolving.
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