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1. Introduction

The past three decadeswitness a long-term intensive interest in researching a variety of control
methods on wheeled mobile robots (WMRs), although the general nonholonomic systems
have been investigated for more than one and half a century (Kolmanovsky & McClamroch,
1995). It is well-known that usually WMRs are characterized by non-integrable kinematic
constraints, namely the nonholonomic constraints. The consequence is that those constraints
rule out the possibility of direct application of standard control theories, such as linear
control system theory in this field. Furthermore, as pointed out in a landmark paper
(Brockett, 1983), nonholonomic systems can not be stabilized by continuously differentiable,
time invariant, state feedback control laws. To cope with the challenges arising in
nonhonomic system control, a great number of approaches have been proposed and some
selections of the vast amount of published literature are reflected in the survey paper
(Kolmanovsky & McClamroch, 1995) and the book (Dixon et al., 2001) and in chapters (7 - 9) of
the book (Wit & Siciliano, 1996). Several controls from experiment perspectives are examined
and implemented in the work (Luca et al., 2001). Central to the WMR motion control
are the tracking control problems. Normally there are two categories of tracking control:
posture tracking and point tracking. The former aims to achieving stably tracking a moving
reference posture (i.e., position and orientation) while the latter only concerns about position
tracking. Nonlinear feedback control strategies (Wit & Sordalen, 1992),(Godhavn & Egeland,
1997),(Kanayama et al., 1990),(Closkey & Murray, 1997),(Teel et al., 1995) are often favored in
dealing with tracking control problem to compensate disturbances and uncertainties although
open-loop control laws are also workable (Murray & Sastry, 1990),(Lafferiere & Sussmann,
1991),(Brraquand & Latombe, 1989),(Brockett, 1981). In recent years, more and more attention
have been drawn to the robustness of the controller in presence of uncertainties. In
(Aguiar et al., 2000), the authors address the regulation control of WMR with parametric
modelling uncertainty using Lyapunov functions. A robust new Kalman-based active
observer controller for path following was proposed (Coelho & Nunes, 2005) in circumstances
of uncertainties and disturbances. And the paper (Dixon et al., 1999) presents a controller
robust to parametric uncertainty and additive bounded disturbance in the dynamic model
through the use of a dynamic oscillator.
An autonomous multi-robot system comprises a group of (often homogeneous) robots, each
has a certain degree of mobility and autonomy. Research interests in unmanned autonomous
robots have been growing significantly in recent years, due to the potential that this type of

5

www.intechopen.com



2 Multi-Robot Systems, Trends and Development

robotic systems will be able to perform a variety of tasks in environments inaccessible or too
dangerous to humans. One basic problem concerning multi-root systems is formation control,
whereby a group of robots maintain a certain (usually 2D) geometry while in concerted
motion. When encountering obstacles (either static or dynamic), the groupmust maneuver to
avoid them while maintaining the overall formation geometry whenever possible.
In this chapter, we studied the robustness of a nonlinear feedback control law based on a
kinematic model. A generic kind of feedback control laws which cover some commonly used
methods and the associated stability are quickly reviewed in a new perspective by invoking
Lyapunov stability theorems. A simple fact is then unveiled that the stability proof actually
depends on perfect mathematical manipulation which requires some terms of the differential
equations to be cancelled. However, in real world, the perfect will be ruined under some
circumstances and the robustness issue has to be investigated. Invariance principles, rather
than Lyapunov stability theorems, are the major tools in dealing with the imperfect cases
in which no term cancellation can be reached. The stability issue and the robustness of
this control law as well is analyzed and the results lead to stable zones for each given set
of controller gains. It is found that under certain circumstances the closed-looped system
may fail in reaching the desired control objectives and performance. Such insights into the
stability zone for a given set of controller gains make it possible to improve the controller by
choosing proper controller gains. This new robust control can overcome the drawbacks of
the previous commonly used counterpart. Guidelines on designing improved control law are
also provided to facilitate real implementation. The merits and benefits of this new control are
also highlighted through comparisons with its prototype. The analysis shows that except the
more robustness, the new control law is entitled to faster response if the controller gains are
properly chosen. Matlab simulation results which show the benefit are presented.
Implementation of the proposed new control law on real robots is another major work of
this chapter. An implementation on multiple robot formation control is reported including
overview of the whole system structure, description of the robots used in the experiments, the
vision system which is used for acquisition of the real-time position information of a group of
robots moving on a test bed, and the background noise analysis of the vision system and so
on. In the experiments, a group of mobile robots are requested to follow their corresponding
visual leaders to form certain geometric patterns. A triangle formation with three robots
and a square formation with four robots are demonstrated. The velocities/headings of
robots during the formation control and other information are summarized in figures. The
downside of robot locomotion mechanism, which is based on step motor and its effects on
real implementation, such as misstep and dead zone are discussed. Suggestions and further
improvements are discussed at the end of this chapter.
This chapter is organized as follows: in Section 2, the stability problem is reviewed in a
new perspective. Section 3 deals with formulation the problem of robustness. In Section 4
robustness analysis and its benefits are addressedwhile the effectiveness of the new proposed
robust control law is verified via simulation in Section 5. Implementation and experiments
with multiple robots on the application of formation control are addressed in Section 6,
followed by conclusions summarized in Section 7.

2. Problem statement

We consider the point tracking problem for a wheeled mobile robot which is depicted in
Figure 1. In this scenario, a wheeled mobile robot is supposed to track a series of goal
points denoted by the symbol qg on a segment, which is a smooth curve in the world frame.
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Fig. 1. Illustration of a wheeled mobile robot and its goal point qg, which may be moving on
a segment (smooth curve) in the world frame.

Referring to this figure, intuitively we refer to notations r and φ as “distance to target“ and
“misalignment angle” respectively.
As shown in Figure 2, in order to facilitate modelling kinematics of the wheeled mobile robot
in a polar coordinate, specially we assign the origin to be the goal point (on the segment)
for the robot to track. In this figure, a differential mobile robot, together with the associated
notations, is illustrated in a polar coordinate. The separation between point (x,y) and center
of each wheel is represented by Cd, which is a constant parameter for a given model of real
robot. The heading of the robot is θ while its translational velocity and angular velocity are
denoted by v and ω respectively. Notice that throughout this chapter, both φ and θ are defined
in the domain [−π,π].
Referring to Figure 2, motion of a differential mobile robot can be described by

⎡

⎣

θ̇
ẋ
ẏ

⎤

⎦ =

⎡

⎣

0 1
cos(φ) 0
sin(φ) 0

⎤

⎦

[

v
ω

]

. (1)

To link this model with the notations in polar coordinate, we can calculate r and φ as

r =
√

x2 + y2,

φ = π + θ − ϕ,

respectively.
A kinematic model of a differential robots in the polar coordinate can be derived as follows:

⎡

⎣

θ̇
ṙ
φ̇

⎤

⎦ =

⎡

⎣

0 1
−cos(φ) 0
1
r sin(φ) 1

⎤

⎦

[

v
ω

]

. (2)
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Fig. 2. Representation of a wheeled mobile robot in the polar coordinate frame with the
originO′ (i.e., point qg on Figure 1) being its goal point to track and the associated notations.

Detailed derivation procedures of Equation (2) can be found in the work (Lee et al., 1999) and
are omitted for the sake of brevity in this chapter. This model is similar to the ones used
in chapter 3 of (Siegwart & Nourbakhsh, 2004). From this model, specifically we have the
relationship between ṙ, φ̇ and v, ω as

[

ṙ
φ̇

]

=

[

−cos(φ) 0
1
r sin(φ) 1

][

v
ω

]

. (3)

Now we consider to derive a general form of control laws which can stabilize the robot in the
sense of Lyapunov stability theorems. It requires that both r and φ tend to zero as time t→ ∞.
One possible way is to choose control laws which lead to diagonalization of the matrix on the
right hand side of Equation (3). To this end, we let v and ω being

[

v
ω

]

=

[

g1(r,φ) 0
0 g2(r,φ)

][

r
φ

]

+

[

0
−g1(r,φ)sin(φ)

]

, (4)

where g1(r,φ) and g2(r,φ) are certain unexplicit functions to be determined.
Then by substituting the above equations into Equation (3), we can rewrite the Equation (3)
into

[

ṙ
φ̇

]

=

[

−cos(φ) 0
1
r sin(φ) 1

][

g1(r,φ) 0
0 g2(r,φ)

][

r
φ

]

+

[

0
−g1(r,φ)sin(φ)

]

. (5)

A family of possible functions g1(r,φ) and g2(r,φ) can be chosen as follows:

g1(r,φ) = K1r
nφ2q

(

cos(φ)
)2p+1

,

g2(r,φ) = −K2φ2s, (6)

where n = 0,1,2, · · · , p = 0,1,2, · · · , q = 0,1,2, · · · and s = 0,1,2, · · · .
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Accordingly Equation (4) can be rewritten into the following form:

v = K1r
n+1φ2q(cos(φ)

)2p+1
,

ω = −K1r
nφ2q sin(φ)

(

cos(φ)
)2p+1

− K2φ2s+1. (7)

Proposition 1 The family of control laws given in Equation (7) asymptotically stabilizes a differential
robot on its goal point. �

Proof: The proof for this proposition is pretty straightforward by constructing a Lyapunov
function candidate as

V =
1

2
r2 +

1

2
φ2. (8)

Simplifying Equation (5), we reach at

[

ṙ
φ̇

]

=

[

−g1(r,φ)cos(φ)
1
r g1(r,φ) + g2(r,φ)

][

r
φ

]

+

[

0
−g1(r,φ)sin(φ)

]

=

[

−rg1(r,φ)cos(φ)
g1(r,φ)sin(φ) + φg2(r,φ)

]

+

[

0
−g1(r,φ)sin(φ)

]

=

[

−rg1(r,φ)cos(φ)
φg2(r,φ)

]

. (9)

Based on the results from Equation (9) and Equation (6), the first time derivative of V can be
calculated readily as

V̇ = rṙ+ φφ̇

= −r2g1(r,φ)cos(φ) + φ2g2(r,φ)

= −K1φ2qrn+2
(

cos(φ)
)2p+2

− K2φ2s+2 ≤ 0, (10)

thus completes the proof. �

It should be noted that the general control law represented in Equation (7) can theoretically
asymptotically stabilize the robot at its goal point. However the term φ2q will greatly slow
down the system response. Therefore for the sake of practical considerations, q = 0 is
preferred. Let us focus on the control with simple structure. Obviously if we let n = p =
q = s= 0, then the Equation (7) can be reduced into the simplest form as shown below:

v = K1rcos(φ),

ω = −K1 sin(φ)cos(φ)− K2φ. (11)

However, it is noted that control in Equation (11) is actually not the “simplest“. We can adopt
another family of possible functions g1(r,φ) and g2(r,φ) as: g1(r,φ) = K1r

nφ2q, and g2(r,φ) =
−K2φ2s, where n = 0,1,2, · · · , p = 0,1,2, · · · and s = 0,1,2, · · · . Therefore a more simplified
control law can be found as follows:

v = K1r,

ω = −K1 sin(φ)− K2φ, (12)

by simply letting n= q= s= 0. The control law presented by Equation (12) is used in (Baillieul,
2005) with preliminary analysis results.
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3. Robustness problem

Beneath the control law stated in Equation (11) exists a fundamental challenge, although
the stability issue seems to be affirmatively guaranteed by Lyapunov stability theorem. We
already noticed that the technique of term cancellation

(

i.e., g1(r,φ)sin(φ)
)

is used when
simplifying Equation (9). One may be interested in the following question: what if the ideal
cancellation fails and the gain K1 in v and ω does not match with each other? To put it in
details, it is to consider an alternative to the control law in Equation (11) as follows:

v = K1rcos(φ),

ω = −K3 sin(φ)cos(φ)− K2φ, (13)

where K3 is another independent variable and it may not be equal to K1. In other words, it is
equivalent to ask: ”will the closed-loop system be stable if an alternative control represented
in Equation (13) rather than the one in Equation (11) is applied to the system¿‘.
In real world, there are numerous factors contributing to the such kind of ”gain mismatching”.
Take the digital control for example, truncation error of numerical calculation of triangle
functions of φ is unavoidable. More than that, in terms of real outputs of physical actuator,
this “mismatching gain“ phenomena may happen from time to time. To explain it, let vL,vR
denote the tangent velocities of each wheel about the centers of rotation.

v =
vL + vR

2
,

ω =
vR − vL
2Cd

, (14)

where Cd is the displacement from the point (x,y) to each wheel. We can establish the
relationship between the vector [v ω]T and [vL vR]

T as follows:

[

v
ω

]

=
1

2

[

1 1
1
Cd

1
Cd

][

vL
vR

]

, (15)

[

vL
vR

]

=

[

1 Cd

1 −Cd

][

v
ω

]

. (16)

The ideal case of control law Equation (11) is based on the assumption that we can make the
equations

vL = K1rcos(φ)− Cd

(

K1 sin(φ)cos(φ) + K2φ
)

,

vR = K1rcos(φ) + Cd

(

K1 sin(φ)cos(φ) + K2φ
)

,

strictly hold for each moment during the operation. However, in the real world, this turns out
to be unrealistic. Apart from external disturbances, there are many factors that can ruin the
perfect diagnosing shown in aforementioned context. For instance, each motor have different
electro-mechanical characteristics. And each motor has its own nonlinearities (e.g. saturation)

and so on. So in dynamic scenarios, we only have the real velocities v
′

L and v
′

R instead of
the ideal counterparts vL and vR. It means that in the real world, we have the following
relationship,

v
′

= (v
′

L + v
′

R)/2,

ω
′

= (v
′

R − v
′

L)/(2Cd). (17)
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Both v
′
and ω

′
can be transformed into uncertainties in K1 and K2. To simplify the analysis,

we consider uncertainties of K1 caused by mismatching of ω with respect to v, which is the
case with control in Equation (13). Substituting Equation (13) into Equation (2) in Part I of this
chapter, we obtain

[

ṙ
φ̇

]

=

[

−cos(φ) 0
1
r sin(φ) 1

][

K1rcos(φ)
−K3 sin(φ)cos(φ)− K2φ

]

=

[

−K1(cos(φ))
2r

−K2φ −
( K3−K1

2

)

sin(2φ)

]

. (18)

Through studying the stability of the closed-loop system described by Equation (18), we are
entitled to investigating the robustness of the alternative control law given in Equation (13).

4. Robustness analysis

4.1 Stable zone

We refer to themodel in Equation (18) as the real closed-loop systemmodel. Then our problem
is to analyze the stability and robustness of this real-world model. We can decompose this
model into two subsystems as follows.

ṙ = −K1

(

cos(φ)
)2
r,

φ̇ = −K2φ −

(

K3 − K1

2

)

sin(2φ).

Obviously except the special case with cos(φ(t))≡ 0, r(t) is at least asymptotically convergent
to zero. As to φ(t), the situation is more complicated.
Let K4 = (K3 − K1)/2, then we have

φ̇ = −K2φ − K4 sin(2φ) (19)

As to the subsystem denoted by Equation (19), construct a Lyapunov candidate as V = 1
2φ2.

The derivative of V with respect to time is

V̇ = φφ̇ = −K2φ2 − K4φsin(2φ). (20)

As shown by the closed-loop system equation in Equation (18), this system is time invariant
indicating that LaSalle’s theorem is applicable. Therefore we are motivated to find out the
invariant set Σ, which leads to negative V̇ represented in Equation (20). The invariant set Σ

can be calculated according to the following equation:

Σ =
{

(K1,K2,K3)|V̇ < 0
}

.

To this end we let V̇ = 0, then we have to make either φ = 0 or φ = −K4/K2 sin(2φ).
To find out the solution of φ=−K4/K2 sin(2φ) for φ∈ [0,π], we performnumerical calculation
in Matlab environment. There are two scenarios: either K4/K2 ≥ 0 or K4/K2 < 0. The
illustration of different solutions when K4/K2 > 0 is shown in Figure 3 while the case with
K4/K2 < 0 is shown in Figure 4. The calculation shows that:

– if K4/K2 ≥ 0 when 0 ≤ K4/K2 < c1, equation φ = −K4/K2 sin(2φ) has only one solution,
i.e., φ = 0.
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y=x

one solution
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Fig. 3. Illustration of different solutions with K4/K2 > 0.

– if K/K2 < 0 when c2 < K4/K2 < 0, equation φ = −K4/K2 sin(2φ) has only one solution, i.e.,
φ = 0.

where c1 and c2 are constants. The numerical calculations offer approximation values of c1
and c2 as c1 ≈ 2.30 and c2 ≈ −0.50.
To sum up, the ratio K4/K2 should be within the range (c2, c1) to make subsystem Equation
(19) asymptotically stable. Or in other words, the relationship among K1,K2,K3 to make
subsystem Equation (19) stable is: K1 + 2c2K2 < K3 < 2c1K2 + K1 (K2 > 0) or 2c1K2 + K1 <

K3 < K1 + 2c2K2 (K2 < 0).
In practise, K2 is usually chosen to be positive. So we can further simplify the conclusions
above. In this case, the whole stable range of K3 is:

K1 + 2c2K2 < K3 < 2c1K2 + K1. (21)

The stable zone is shown in Figure 5. The stable zone is the whole wedge and is separated
by a plane with K3= K1. The upper part of this wedge has the property of K4> 0 while the
lower part with K4< 0. Compared with the nominal sets of parameters in the plane K3= K1,

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x(φ)

y

Illustration of different solutions when K4/K2<0

y=x

one solution

three solutions

three solutions

Fig. 4. Illustration of different solutions with K4/K2 < 0.
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Fig. 5. Illustration of stable zone with practical concerns in the case when K1 > 0 and K2 > 0.
Note that the whole zone is separated by a plane K3= K1, i.e., K4= 0.

the difference of those two parts of the zone is that the system response will be different as
revealed by Proposition 3.

4.2 A new robust control and its benefits

Proposition 2 If K4 ≥ 0, namely, K3 − K1 ≥ 0, r(t) is exponentially convergent to zero for arbitrary
initial φ0. �

The proof is pretty straightforward and hence it is omitted here for the sake of brevity.

Proposition 3 A Set of (K1,K2,K3) in the upper part of the wedge in Figure 5 expedites the response
of φ if φ0 ∈ (0,π/2). �

Proof: It is noted that equation
φ̇ = −K2φ − K4 sin(2φ)

has a unique solution on time interval [0, t1] for any t1 > 0 because

f (φ) = −K2φ − K4 sin(2φ),

is locally Lipschitz. Let p(t) = φ2(t), then

ṗ(t) = 2φφ̇

= −2K2φ2 − 2K4φsin(2φ)

≤ −2K2φ2

= −2K2p(t).

Let q(t) be the solution of the differential equation

q̇(t) = −2K2q(t),

where q(0) = φ(0) then we arrive at

q(t) = φ2(0)e−2K2t.

79
A Robust Nonlinear Control for
DifferentialyMobile Robots and Implementation on Formation Control

www.intechopen.com



10 Multi-Robot Systems, Trends and Development

According to comparison principle, the solution φ(t) is defined for all t≥ 0 and satisfies

|φ(t)|=
√

p(t) ≤ |φ(0)|e−K2t,∀t ≥ 0,

thus completes the proof. �

According to the proposition above, we can deliberately choose K3 ≥ K1 to make the system
more robust. Specifically we can design control laws according to guidelines as follows:

1. As revealed in Figure 5, K2 should not be too close to zero as the bigger K2, the wider zone
between upper bound and lower bound.

2. To maximize the stability zone for a given set of (K1,K2,K3), it is desirable to choose K3 =
K1 + (c1 + c2)K2. In other words, (K1,K2,K3) is within the plane in the middle of upper
bound and lower bound as illustrated in Figure 5.

3. To obtain comparatively large stability zone for a given set of (K1,K2,K3) while keep the
converging rate from being negatively affected, it is desirable to choose K3 = K1 + c1K2.

5. Simulation study

5.1 Mismatching K3 and K1

A simulation in Matlab is designed to show two cases of mismatching K3 and K1. In case one,
initial conditions are set to be φ0 = 1 rad and r0 = 1 and in case two φ0 = π rad and r0 = 1.
The nominal gains are chosen as K1 = 20 and K2= 1. Suppose there is −6% deviation of K3

with respect to K1, i.e., K3 = 18.8 in case one and a positive 24% deviation of K3,i.e., K3 = 24.8
in case two.
The simulation results of system response are depicted in Figure 6 with (a), (b) for case one
and (c), (d) for case two. From this figure, it is obvious that in those two cases φ(t) fails to
approach to zero due to −6% and 24% deviation of K3 respectively. In other words, this is
because both cases break the constraint described by Equation (21).

0 1 2
0

0.5

1

time(second)

r(
t)

(a)

0 5 10
0.4

0.6

0.8

1

time(second)

φ
(t

)

(b)

0 1 2
0

0.5

1

time(second)

r(
t)

(c)

0 5 10
2

2.5

3

3.5

time(second)

φ
(t

)

(d)

Fig. 6. Illustration of mismatching K3 and K1. In (a) and (b) initial conditions are φ0 = 1 rad
and r0 = 1 and gain K1 = 20, K2= 1 and K3= 18.8 (i.e., −6% deviation). And in (c) and (d)
initial conditions are φ0 = π rad and r0 = 1 and gain K1 = 20, K2= 1 and K3= 24.8 (i.e., 24%
deviation).
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Fig. 7. Illustration of the effects of mismatching K3 on system response. Initial conditions are
φ0 = 1 rad and r0 = 1 and gain K1 = 20, K2= 1 and K3= 19.2,20,21.80,22.30 respectively.

5.2 Effects of K3 on system response

In this simulation we investigate the effects of mismatching K3 on system response through
simulation. Initial conditions are set to be φ0 = 1 rad and r0 = 1 and gain K1 = 20 and K2= 1.
We vary the value of K3 with respect to K1. Refer to the stable zone illustrated in Figure 5, we
deliberately choose several sets of (K1,K2,K3) from upper part, separation plane (K1 = K3)
and lower part respectively. According to design guidelines, in this experiment, we choose
K3 = 22.30,21.8 fromupper part and K3= 20 for the nominal case and K3= 19.2 from the lower
part. The results are depicted in Figure 7. From this figure, it is noticed that compared with
K3 = 20, a set in upper part of the wedge in Figure 5 contributes to expediting the system’s
response while a set in lower part of the wedge will negative affect the system’s response. The
most significant effects of mismatching K3 is on the converging rate of term φ(t). Since they
are all within the stable wedge, both r(t) and φ(t) approach to zero as time t→ 0.
To compare the energy needed for each controller, we define a function Jn which is describe
by

Jn =
∫ t

0

(

v2(τ) + ω2(τ)
)

dτ.

In this simulation, the integral of the norm squared of the actual velocity signals for each
controller is shown in Table 1. From the figures shown in this table, the control laws
recommended by design guidelines seem to be more efficient than the nominal case with
K3 =K1 and the one with negative deviation (K3= 19.2). And there is not significant difference
between the two recommended control laws, i.e.,K3 = 21.80 and K3 = 22.30 respectively.

K3 = 19.2 K3 = 20 K3 = 21.80 K3 = 22.30

331.8 129.8 69.78 63.87

Table 1. Comparison of the integral of the norm squared of the velocity input signals
∫ 30
0

(

v2(t) + ω2(t)
)

dt.
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6. Implementation and experiment

6.1 Overview of implementation

One picture of the real implementation is presented by Figure 8. In this figure, a 4m by
2.8m wooden test bed offers the field for a group of mobile robots. The MRKIT mobile
robots presented in Figure 8 with on-board infrared sensors and compass, which are used
in the experiments consist of the main platform to verify algorithms. Each robot has two
independently controlled wheels driven by stepper motors. A GPS system is simulated by
a vision system comprising vision frame grabber, CCD color camera with lens, a working
station, and wireless communication modules. Two web-cam are mounted on the ceiling and
can be used for robot tracking or video recording and only one is showed in Figure 8. The
main parts of this implementation are connected as shown by Figure 10.

6.2 Parameters of MRKIT mobile robots

Each wheel of MRKIT robot is driven independently with step motor being controlled by
on-board micro-controller. The velocity of wheel is controlled via PWM waveform and is
determined by an internal time interval T in the micro-controller. The relationship between
the velocity V of a wheel and T can be represented as

V =
Dπ

NP
,

where D = 54 mm is the diameter of the wheel; N = 400 is the step of motor per revolution; P
is the time (second) per step and

P =
T · 10−6

2.5
.

Fig. 8. Picture of real robots, test bed(on the floor), CCD color camera with wide-angle lens
and one web-cam (mounted on the ceiling).
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Fig. 9. Picture of one MRKIT mobile robot with on-board color pads.

Finally we arrive at

V =
1060.288

T
m/s,

and T is a 16-bit integer which can be set in micro-controller. Due to the finite length of T and
physical limitations ofmotor, V has a minimumVmin = 0.0162 m/s and amaximumVmax = 0.3
m/s.
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Tqdqv

Eqpvtqn"
Hktoyctg

TH"Oqfwng

TH"Oqfwng
EEF"Ecogtc

YqtmUvcvkqp"Rncvhqto"*RE+

Ykfg"Cping"
Ngpu

Htcog"Itcddgt

Eqqtfkpcvg"Hggfdcem
U{uvgo

Eqoocpf"Kpvgrtgvqt

Hqtocvkqp"Eqpvtqnngt

Wugt"Eqpvtqn""Kpvgthceg

000

WUD XIC

Fig. 10. Illustration of connection of the whole implementation.
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6.3 Vision system: resolution and noise analysis

A vision system, comprising of CCD camera, lens, frame grabber and application program
as shown in Figure 10, is developed for the tracking of mobile robots and detecting
position/orientation of them. Its resolution is largely determined by the resolution of the
CCD camera and the optical system. In the experiment, the CCD camera is mounted on a
bracket fixed on the ceiling. Due to the limitation of ceiling’s height, the viewable area on the
test bed is of 1800mm by 2480mm. The CCD camera has a resolution of 576 by 768 pixels. We
designate the x and y coordinate to the vision system and therefore we can calculate the real
resolution of the vision system. The calculation results show that on the x axis, the resolution
is 3.229mm per pix while on the y axis, 3.177mm per pix.
To identify the robot’s position and orientation, a color pad is attached on the top of a robot as
shown in Figure 9. Each color pad has two different color circles aligned in a line. Each color
circle has a diameter of 65mm. One circle is painted blue and another one is yellow. The center
of each circle can be calculated through the image processing hardware and software, namely
the frame grabber and the corresponding vision processing software running on working
station. We can use coordinates of the centers of the two color circles to calculate the position
of the robot’s center and its orientation as well. Let (xa,ya) and (xb,yb) denote the measured
coordinates of the center of yellow circle and blue circle respectively. Hence, the coordinate of

the robot’s center can be represented as ( xa+xb
2 ,

ya+yb
2 ). Meanwhile the orientation of the robot

can be calculated as

θ = cos−1(
xa − xb

ρ
), (22)

where

ρ =
√

(xa − xb)2 + (ya − yb)2.

The measurement of the position of each color circle is a resultant of its real position and the
error signal together with noise. The position error is incurred by the hardware of the system.
For instance the field is not even and can end up with position error. Another sample of the
source of the error signal can be the optical system. The distortion of the lens on the margin
of the viewable area is relatively salient and such distortion in fact affects the accuracy of
the measurement. Roughly the measurement of position can be expressed in the following
equation:

Xm = xr + xe + xn,

where xr is the real position; xe is the system error and xn the noise. It is of interest and
practically importance to know the noise level of the measured signal. For any static robot on
the test bed, its real position and system error are always constant and contribute no variation
to the mean value of Xm and to the variance either. From this observation, it helps to sample
the measurement for a certain period and then use the spectrum analysis tools to get the
information of the noise signal. One convenient way is to use the FFT technique. It is well
known that Microsoft Windows is not a real time operation system. For the purpose of FFT,
it is required to evenly sample the data. To solve this conflict, a high resolution timer without
accumulation error is in need. In this experiment, the multi-media timer is used. It is a high
resolution timer with high accuracy and resolution while demands of the system resource
are relatively low. We set the sampling rate to be 500 Hz. A period of 2 minutes is used to
sample the data and the error signal along x-axis is presented in Figure 11. Figures of error
signal along y-axis and the associated orientation error signal are shown in Figure 12 and 13
respectively. Then we apply the FFT technique to analyze its frequency components. It turns
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Fig. 11. Position error signal along x-axis with sample rate f = 500Hz.

out that the noise signals on x, y and orientation all show on the feature of Gaussian noise.
The analysis results show that δx = 0.142 pix, δy = 0.154 pix δθ = 0.0122 radius. Obviously
compared with vision system’s resolution, the noise level of position signal is relatively low.

6.4 Experiment-1: triangle formation of three robots

A scalable formation control scheme is introduced in (Ge & Fua, 2005). The idea is that,
instead of being attracted to a predetermined point, each robot is to be attracted to the
corresponding segment, and once there, move along the segment to distribute themselves
along the trench in order to form a formation by maintaining the desired position in relation
to other robots. To briefly review this idea, Figure 14 is presented to show the segments and
the robots which are supposed to fall into certain assigned segment. Usually a segment S is
a curve defined by some smooth (i.e., at least twice-differentiable) function in R3 that passes
through one or two formation vertices. And a robot will arrive at the nearest point on the
segment and then move along the curve of the segment.
In this experiment, suppose that assignment mechanism of segment is known and initially all
robots are static. Three straight lines are assigned to three robots respectively. For the first
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Fig. 12. Position error signal along y-axis with sample rate f = 500Hz.
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Fig. 13. Angular error signal with sample rate f = 500Hz.

8 seconds, each robot will try to approach the nearest point on the segment and then three
virtual points moving along segments are assigned to each robot. Those three virtual points
form a triangle pattern and will stop at the vertices of segments. The velocity of virtual points
are set to be 20 pix per second. During the process of formation, velocities and headings of
each robot are depicted in Figure 15 - 18. Snapshots of video (taken by web-cam) are shown
in Figure 19-22. The controller parameters are set to be K1 = 0.1, K3 = 0.12 and K2 = 1.0. From
those figures that all the robots are attracted to the segment for the first 8 seconds and later on
form the triangular pattern while moving forward.

6.5 Experiment-2: square formation of four robots

In this experiment, four robots which are initially randomly scattered are required to form a
square patter. Two straight lines are assigned. For the first 3 seconds, each robot will try to
approach the corresponding nearest point on the segment and then try to approach to four
virtual points moving along segments are assigned to each robot. Those three virtual points
form a triangle pattern and will stop at the vertices of segments. The velocity of virtual points
are set to be 20 pix per second. During the process of formation, velocities and headings of
each robot are depicted in Figure 23 - 27. Snapshots of video (taken by web-cam) are shown
in Figure 28-30. The controller parameters are set to be K1 = 0.1, K3 = 0.12 and K2 = 1.0. From
those figures that all the robots are attracted to the segment for the first 3 seconds and later on
form the square pattern while moving forward.

Xgtvkegu

Ugiogpv

Tqdqv

Tqdqv

Ugiogpv

Ugiogpv

Fig. 14. Illustration of segments and robots falling into assigned segments.
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Fig. 15. Velocity of robot 1 during 3-robot triangle formation control.

6.6 Limitation of locomotion

Each wheel of MRKIT utilizes an independent step motor for locomotion. There are two
outstanding drawbacks which impede implementation. As indicated by Equation (11), the
desired velocity is proportional to the distance to goal point (i.e., r). If a robot is initially
placed far away from its goal point, the desired velocity will be relatively high. However,
step motor usually is weak on its maximum starting speed and starting torque. If the gain
(K1,K2,K3) is too high, a robot initially at standstill will immediately miss its step at the very
beginning of formation control. The other shortcoming arises from the minimum speed of
step motor. Due to the limitation of minimum speed, a wheeled mobile robot in fact can not
reach a fixed goal point. Instead it will stop moving once it enters certain range with respect to
its goal point. It results in a dead zone to which the robot is prohibited. To reduce dead zone,
higher gain is demanded and thus increases the risk of missing steps. Trade-off has to be done
for real implementation. To overcome such downside of locomotion, other motors with high
starting torque such as permanent magnet brushless DC motor cater for real implementation.
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Fig. 16. Velocity of robot 2 during 3-robot triangle formation control.
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Fig. 17. Velocity of robot 3 during 3-robot triangle formation control.

7. Conclusion

In this chapter we first consider the stability issue of a generic form of nonlinear feedback
control based on kinematic model in polar coordinate in a novel perspective. Some commonly
used controls can be derived from this general form of a family of stable control laws. In
addition to the commonly used stability analysis based on Lyapunov stability theorems,
in this chapter we employe LaSalle’s invariance theorem to investigate the robustness of a
point tracking controller. Then the robustness problem of the control law (Lee et al., 1999) is
investigated and successfully solved. Thanks to LaSalle’s invariance theorem and Lyapunov’s
stability theorem as well, we are able to unveil the whole stable range of controller gains when
velocity and angular velocity of each driving motor are not exactly what they are supposed to
be in the real world. This study yields some exciting conclusions on converging rate than the
counterpart. Based on the robustness analysis, we can propose useful and handy guidelines
in determining controller gains and consequently a new robust control law is proposed.
Improvement to this control law is achieved from the analysis results and is verified inMatlab
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Fig. 18. Headings of all robots during 3-robot triangle formation control.
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Fig. 19. Snapshot of initial conditions of 3-robot triangle formation control at t= 0.

simulation. Implementation with real robots has been done to demonstrate the application
to multiple robot formation control. An implementation of multi-robot formation control has
been done and discussed in details.
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Fig. 29. Snapshot of 4-robot square formation control at (t= 6s).

Fig. 30. Snapshot of 4-robot square formation control at (t= 12s).
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