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1. Introduction 

When two liquid bodies with different density come in contact in non-equilibrium 

conditions, a flow is caused, known as gravity or density current. In the environment, as 

well as in the industrial framework, this kind of flow is very common and the scientific-

technical interest of the investigation on it is very high. The paper of Huppert (2006) and the 

book of Ungarish (2009b) give excellent reviews on the state of the art of the topic, while a 

huge collection of artificial, as well as natural, gravity currents and a qualitative description 

of their key features is given in the book of Simpson (1997). 

The investigation on gravity currents dates back to several decades ago (first important 

works are those of Von Karman, 1940; Yih, 1947; Prandtl, 1952 and Keulegan, 1957), 

nevertheless many aspects still need a better understanding. These aspects should be 

investigated in order to widen the knowledge on the considered phenomenon and are 

generally related to the geometry of the fluid domain and the use of particular fluids, like 

e.g. mixtures of liquid and sediments.  

Early studies on gravity currents were based on analytical and experimental methods and 

were concerned with 2D gravity currents: i.e. gravity currents whose description can be 

made in a vertical x-z plane. The seminal work of Benjamin (1968) formulates a fundamental 

theory, based on the perfect-fluid hypothesis and simple extensions of it (like the classical 

theory of hydraulic jumps), which gives a relationship between the thickness of the gravity 

current and the velocity of the front. The Benjamin’s theory is a milestone and analytical 

investigations on gravity currents, even the most recent (Shin et al., 2004; Lowe et al., 2005; 

Ungarish & Zemach, 2005; Ungarish, 2008; Ungarish, 2009) cannot disregard it.  

Laboratory gravity currents can be realized in very different ways (Simpson, 1997), 

depending on which features have to be investigated. The basic experimental setup, which 

permits to investigate the propagation’s features of the gravity current, is the lock exchange 

release experiment. This experiment consists in leaving two liquid bodies of different 

density in non-equilibrium condition, typically removing a sliding gate which originally 

separated them. The consequence is a flow of heavier liquid (the gravity current) under the 
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lighter liquid. The advancing velocity of the gravity current’s front, its thickness and the 

relation between them are the major issues. The work of Huppert & Simpson (1980) is one of 

the first works which gives an empirical relation between the velocity and the thickness of 

the gravity current’s front. The validity of the empirical relation of Huppert and Simpson is 

confirmed by the fact that many experimental results, also of earlier experimental works 

(Simpson & Britter, 1979), agree well with it. Other experimental studies, as the work of 

Rottmann & Simpson (1983), highlight also the different phases of the gravity current’s 

evolution (slumping phase, self-similar phase, viscous phase). More complex geometries 

and fluids are accounted for in recent experimental studies: it is the case of axisymmetric 

gravity currents (i.e. gravity currents whose description can be made in a radial-vertical r-z 

plane), in fixed and rotating frames, (Hallworth et al., 2001; Hallworth et al., 2003; Patterson 

et al., 2006; and Ungarish, 2007a) and the case of gravity currents realized with mixtures of 

water and sediments or with solutions of particular substances and water, which realize a 

high density difference (Bonnecaze et al., 1993; Lowe et al., 2005). In comparison with 2D 

and axisymmetric gravity currents, the case of fully 3D gravity currents, whose spatial 

description needs all of the three spatial coordinates, has been investigated more rarely in 

the scientific literature. The works of Ross (2002) and La Rocca et al. (2008) are interesting 

examples 

With the increasing development of computational resources, numerical investigations on 

gravity currents have developed to a considerable extent. There are two main approaches on 

which numerical investigations are based. The first is represented by the vertically averaged 

equations of motion (shallow water equations). This approach is justified by the fact that the 

longitudinal extension of the gravity current has (except for the very initial phase of motion) 

an order of magnitude L larger than its thickness h. The shallow water approach gives a 

“technical” description of the gravity current, based on the thickness and the vertically 

averaged horizontal velocity of this latter, while the fine details of motion are ignored. The 

first interesting work is that of Rottman & Simpson (1983), focused on 2D gravity currents. 

Since then, this approach has been giving interesting results, as the works of Bonnecaze et 

al. (1993), Klemp et al. (1994), D’alessio et al. (1996), Ungarish & Zemach (2005) and 

Ungarish (2007a) show. The approach based on the vertically averaged equations has been 

successfully applied to gravity current realized in axisymmetric domains (Hallworth et al., 

2003; Ungarish, 2007b; Ungarish, 2010) and to fully 3D gravity currents (La Rocca et al., 

2008). Despite of its limitations, the shallow water approach gives reliable insights and fairly 

accurate predictions (sometimes even better than those obtained by full Navier-Stokes 

simulations) except for a very short initial phase (Ungarish, 2007b). Additionally, the 

shallow water solutions reveal features that appear relevant to the more complex two-

dimensional simulations (Klemp et al., 1994).  
The second numerical approach is based on the complete equations of motion and gives a 
detailed description of the gravity current motion. It is a recent approach, due to the large 
computational resources needed, but it has already achieved a considerable development. 
Some interesting works are those of Härtel et al. (2000a) and Härtel et al. (2000b), who 
computed a high-resolution direct numerical simulation (DNS) of the flow at the gravity 
current’s head; Birman et al. (2005), who made a DNS of 2D non-Boussinesque gravity 
currents (i.e., occurring in fluids with large density differences). Hallworth et al. (2001) 
solved the Navier Stokes equations in a rotating axisymmetric domain. Patterson et al. 
(2006) characterized the flow structure of the head of an axisymmetric gravity current 
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evolving in a circular sector of about 10°, and was able to distinguish different stages of the 
gravity current evolution. 
This brief analysis of the recent literature highlights that the attention dedicated to the 

investigation on fully 3D gravity currents, with constant or variable density, has not had the 

same extent than that dedicated on 2D and axisymmetric gravity currents. 

This chapter is then aimed to give a contribution for the widening of the knowledge on 

gravity currents, presenting some recent numerical and experimental results obtained on 

fully 3D gravity currents, with constant and variable density. The structure of the chapter is 

as follows. After a brief qualitative description of the phenomenon, different mathematical 

models, corresponding to the case of constant and variable density, are formulated. Then, 

the main numerical method is explained and the experimental setup is described. At last, 

after the validation of the mathematical models and the numerical method, experimental 

and numerical results, obtained for 3D gravity currents with constant and variable density, 

are presented.    

2. Description of the phenomenon 

Gravity currents are characterised by a very complex dynamics and a variety of phenomena 

(Simpson, 1997), represented schematically in Fig. 1.  

The gravity current shown in Fig. 1 is generated on an erodible bed after that the two liquid 

bodies with different densities ρ1, ρ2 (ρ1>ρ2) are put in contact in non equilibrium condition. 

After some time, the gravity current assumes the characteristic tapered form shown in Fig. 1: 

the front advances with velocity fu and has a conventional thickness fh . The drawing 

shown in Fig. 1 is not arbitrary and can be compared with the experimental gravity current 

shown in Fig. 4, realised by means of a lock exchange release experiment at the hydraulic 

lab of the DEHMA of the Politechnical University of Catalunya, in a transparent channel 

(length L=2 m, width b=0.2 m, height H=0.35 m), with salty (ρ1=1100 kgm-3) and fresh water 

(ρ2=1000 kgm-3), on a fixed bed. The initial height of the lock was h1=0.28 m. 
 

 

Fig. 1. Sketch of the gravity current 
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The gravity current represented in Fig.1 flows under a layer of lighter liquid (density ρ2), 
whose thickness h2 is larger than that of the gravity current h1: quite a common situation. The 
surface between the gravity current and the liquid layer, represented by a continuous line in 
Fig. 1, is, in fact, a conventional surface. Increasing z, there is actually a gradual change, 
although rather abrupt for z~h1, of all the quantities characterizing the gravity current.  

The gravity current can exchange mass with the lighter liquid by entraining a mass per unit 

time m$ of lighter liquid. This entrainment of liquid dilutes the density ρ1, while causing an 

increase of the gravity current’s volume. An exchange of mass, represented by the term F$ , 

can occur also with the bottom, if the gravity current consists of a mixture of liquid and 

sediment with concentration c. This exchange of mass causes a variation of the density ρ1, by 

means of a variation of the concentration of sediment c, and consists in the settling down 

and re-suspension of sediment. The settling down is caused by the sediment’s weight, while 

the re-suspension is caused by the drag stress exerted by the current on the bottom. This 

latter, on the other hand, acts on the gravity current by means of a friction stress xzT , which 

depends on the roughness of the bottom.  
All of the quantities which characterize the gravity current depend on the spatial 
coordinates and time. In particular, in Fig. 1 are shown the profiles of the concentration and 
the gravity current’s velocity c and u1. Fig. 1 can give an idea of the complexity of the 
phenomena involved in the gravity current dynamics.  
Fig.1 and Fig.4 refer to a 2D gravity current. In Figures 2, 3, the more complex structure of 
the dynamics of a 3D gravity current can be appreciated. In Figg. 2, 3 are shown the top and 
side view of the 3D gravity current respectively. 
 

 

Fig. 2. Top view of a 3D gravity current. a) 2 s; b) 4 s; c) 6 s; d) 8 s after the complete removal 
of the lock 

The gravity currents shown in Figures 2 and 3 were realized by means of a lock exchange 

release experiment performed at the hydraulic lab of the Dep. of Civil Eng. Sciences of the 
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University Roma TRE. A transparent rectangular tank, made of two equal square tanks (side 

L=1 m), was used. A wall, with an opening with width b=0.2 m and closed by a sliding lock,  

divided the two square tanks. The case shown in Fig. 2 was realized with salty (ρ1=1015 

kgm-3) and fresh water (ρ2=1000 kgm-3). The initial height of the lock was h1=0.15 m. 

 

 

Fig. 3. Side view of a 3D gravity current, 4s, 6s, 8s, 10s after the complete removal of the lock 

The case shown in Fig. 3 was realized with salty (ρ1=1018 kgm-3) and fresh water (ρ2=1000 

kgm-3). The initial height of the lock was h1=0.20 m.  

3. Mathematical models 

3.1 Derivation of the shallow water equations for two superimposed liquid layers 

Consider two layers of liquids (Fig. 1), whose densities and thicknesses are respectively ρ1, 

ρ2 (ρ1>ρ2), h1, h2. As shown in Fig. 1, the lighter layer is superimposed on the heavier layer 

and hereinafter reference will be made to the upper or lighter layer and to the lower or 

heavier layer indifferently.  

The densities of the layers will be able to vary slightly, due to the possible mixing between 

the layers, which occurs across the separation surface between them, and to the 

sedimentation and re-suspension phenomena. Standard scaling arguments (Pedloski, 1987) 

and formal perturbative expansions (Stoker, 1957) show that, if the ratio δ=h/L (being h, L a 

vertical and a horizontal spatial scale respectively) is such that: δ<<1, the vertical component 

of the momentum balance equation of the ith layer (i=1,2) is reduced to: 

 g
z

p
i

i ρ−=
∂
∂

 (1) 

from which, assuming that the density iρ does not depend on the vertical coordinate z, the 

following hydrostatic pressure distributions can be obtained in each layer: 

 ( ) ( )zzhgghPpzzhhgPp fsfs −+++=−+++= 112212122 ρρρ ,  (2) 

The pressure sP is a reference pressure, defined on the upper surface. If this latter is a free-

surface, sP vanishes. The pressure distributions (2) are a reliable approximation of the actual 

pressure distribution, at least to order O(δ2) (D’Alessio et al., 1996). 

Consider the mass balance equation in each layer and integrate it with respect to the vertical 

coordinate z. Making use of the Leibniz rule and of suitable conditions on the separation 

surface and on the bottom (D’Alessio, 1996), the following result is obtained:  
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All of the quantities appearing in equations (3) are vertically averaged quantities, defined 
as:  
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where zf is the bottom elevation. In this framework zf is assumed as a known function of the 

spatial coordinates and does not depend on time. The bottom profile is given by: zf=0, if the 

bottom is flat. 

The mass flux between the two liquid layers is accounted for by means of the source term 

m$ at RHS of equations (3). It is worth observing that the source term appears with 

positive sign in the mass equation of the first layer and with negative sign in the mass 

equation of the second layer, then showing consistently that the mass lost by a layer is 

gained by the other layer and preserving the mass conservation for the fluid system as a 

whole.  

Consider the horizontal components of the momentum equation in each layer and integrate 

them with respect to the vertical coordinate z, accounting for the hydrostatic pressure 

distribution (2). Making use of the Leibniz rule and of the abovementioned conditions on 

the separation surface and on the bottom, the following result is obtained: 
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 (5) 

The momentum fluxes exchanged by the liquid layers due to the mass flux m$ are accounted 

for by means of the horizontal components of the liquid velocity on the separation surface: 

2211 ssss vuvu ,,, . The quantities xusxbxss SSS ,, and yusybyss SSS ,, are the horizontal components 

of the pressure forces on the separation surface (ss), the bottom (b) and the upper surface 

(us). They are defined as: 
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The quantities yxjyxikk
ij ,;,;,, === 21T represent the vertically average viscous and turbulent 

stresses and the dispersive stresses. The quantities xusxbxss τττ ,, and yusybyss τττ ,, are the 

horizontal components of the stress τ on the separation surface (
yssxss ,ττ ), the bottom 

(
ybxb ,ττ ) and the upper surface (

yusxus ,ττ ). Equations (3) and (5) are put in the most general 

form, from which it is possible to derive all of the shallow water approximations concerning 

the motion of two liquid layers with slightly varying densities. 

3.2 The case of two immiscible liquids with constant density 
The case of two immiscible liquids with constant densities is representative for gravity 
currents realized with water and a soluble matter (e.g. NaCl), when the Richardson number 

 
2

2

21

U

gh
Ri

ρ
ρρ −

=  (7) 

has an order of magnitude larger than 1 (Fischer et al., 1979). Indeed, the Richardson 
number, calculated with the velocity and thickness scales U, h, is the ratio of the order of 
magnitude of hydrostatic forces to the order of magnitude of inertial forces: if the former 
dominate, i.e. if Ri>1, mixing between the two liquid layers is hindered by the stratification 
and can be neglected. The gravity currents realized with water and a soluble matter are 
known as conservative gravity currents, because the matter dissolved in water is conserved, 
and are distinguished from those realized with mixtures of water and sediments, whose 
density can change due to sedimentation and re-suspension processes. Variations of density 
in conservative gravity currents are possible only due to the entrainment of lighter liquid, 
which occurs at the separation surface, as shown in Fig. 4, where the red ellipses indicate the 
part of the gravity current affected by the entrainment of lighter liquid.  

As a consequence of the immiscibility hypothesis, the mass flux m$ is zero. Moreover, it is a 

usual assumption to neglect the stresses yxjyxikk
ij ,;,;,, === 21T (Ungarish, 2009). This 

assumption is based on the estimate of the Reynolds number of the current and on the 

difficulty in modeling dispersive stresses. The Reynolds number of the current is defined 

by: 

 gh
h

Re
1

21

ρ
ρρ

ν
−

=     (8)  

and is usually very high, due to the small value of the kinematic viscosity and the moderate 

values of the gravity current’s height. As an example, the value of the Reynolds number of 

the gravity current shown in Fig. 4, assuming h=0.1 m, ν=10-6 m2s-1, is equal to: 4103 ×=Re , 

showing that the gravity current is in turbulent motion. Only the stresses ybxb ττ , will be 

retained. Indeed, they are exerted on the lower layer by the bottom and are surely more 

important than the stresses acting on the separation surface yssxss ττ , and the stresses acting 

on the upper surface yusxus ττ , . These latter vanish if the upper surface is a free surface. 
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Fig. 4. Experimental profile of a 2D gravity current 
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   (9) 

At last, also the velocities 2211 ssss vuvu ,,,  are neglected. With these hypothesis equations (3) 

and (5) reduce to the equations (9). These equations, together with proper initial and 
boundary conditions, represent a very difficult problem for numerical integration. Even 
when the upper surface is a free surface and then the pressure Ps vanishes on it, the 
equations (9) form a partial differential system of six equations in non conservative form, 
fact which makes difficult the application of numerical methods with good shock-capturing 
and shock-fitting features (La Rocca et al., 2008). Moreover, performing the analysis of the 
eigenvalues of the partial differential system (9), it is found that wide ranges of the relevant 
physical parameters exist where these eigenvalues are complex, then revealing the non-
hyperbolicity nature of the partial differential system (9). The loss of hyperbolicity causes 
instability during numerical integration (Garabedian, 1964; Bradford et al., 1997; 
Lyczkowski et al., 1978; Lee & Lyczkowski, 2000). 
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In order to overcome the abovementioned difficulties, assume the rigid-lid hypothesis, 

according to which the sum of the liquid layers thicknesses is constant with respect time and 

space: 

 Hzhh f =++ 21  (10) 

being H the initial elevation of the upper surface. The consequences of the rigid-lid 

hypothesis are very interesting. Firstly, the mass balance equation for the upper layer is 

substituted by the algebraic relation (10) and the partial differential system (9) becomes: 
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Secondly, the pressure Ps does not vanish, as the upper surface is no more a free 

surface, being forced to remain flat. The pressure Ps represents the actual coupling term 

between the two liquid layers. Indeed, fourth and fifth equations (11) do not contain 

any forcing term, but the pressure terms. If these happen to vanish, the two liquid 

layers are uncoupled and the evolution of the lower layer cannot influence that of the 

upper layer.  
Thirdly, the presence of the pressure Ps represents a non trivial problem in solving the 
equations (11). Indeed, while in the 2D and axisymmetric cases the pressure Ps can be easily 
eliminated from the motion equations (Rottmann & Simpson, 1983; Ungarish & Zemach, 
2005), for the general case presented here this is not possible. The pressure Ps must be 
determined solving the motion equations together with a specific equation, which can be 

obtained starting from the following observation: the vector field U 

{ }( )22112211 hVhVhUhU ++≡ ,U  is divergence free. Indeed, add the mass balance equations of 

the two liquid layers and account for (10): 
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Then sum second and fourth equation (11) and third and fifth equation (11), differentiate 

these sums with respect to x and y, sum them again and account for the divergence free 

condition (12): as a consequence the following Poisson equation is obtained for the pressure 

Ps: 
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being the reduced gravity g’ defined as: ( )121 ρρ−= gg' . 

So, in the framework of the shallow water formulation, the dynamics of two layers of 
immiscible liquids, with a rigid lid, is governed by the equations (11), (13), given suitable 
initial and boundary conditions. Initial conditions refer generally to motions starting from a 
quiescent configuration with a given shape of the lower layer thickness: 

 ( ) ( ) ( ) ( ) ( ) ( )yxfyxhyxVyxUyxVyxU ,,,,,,,,,,,,,,, ===== 000000000 12211   (14) 

Boundary conditions are imposed in correspondence of rigid, impermeable surfaces. The 
normal velocity component and the normal derivative of the pressure vanish on these 
surfaces: 

 000 2211 =
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=+=+ y
s
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s
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x

P
nVnUnVnU ,,  (15) 

The first two boundary conditions (15) are physically consistent, while the third satisfies the 
solvability condition obtained integrating the Poisson equation (13) on the fluid domain.  
The equations (11), (13), with the initial and boundary conditions (14), (15), set up the rigid-
lid, two-layer formulation for 3D gravity currents with constant density. 

3.3 The case of two liquid layers with variable density 
In this case the density of the heavier layer can change mainly as a consequence of a 
sedimentation-resuspension dynamics. This case is representative for subaqueous turbidity 
currents, occurring e.g. when a heavy current of water and sediments flows under a lake or 
a sea. In this framework, variations of density due to temperature are considered of minor 
importance, although they can be accounted for by means of a suitable thermal energy 
balance (Pratson et al., 2001), which however will not be considered for the sake of 
simplicity. These turbidity currents form at the bottom of great water basins and represent 
an important mechanism of transport of sediments in deep water (Parker et al., 1986). 
Turbidity currents can attain high velocities (8-14 m/s) (Huang et al. 2005), they can be 
characterized by time scales varying from hours to weeks and flow inside of submarine 
canyons, which can attain depths of hundreds of meters, widths of thousands of meters and 
lengths of thousands of kilometers (Birman et al., 2009). These currents can damage the 
submarine structures (pipes, cables) they interact with and can change the morphology of 
the bottom, due to erosion and sedimentation (Kostic & Parker, 2007; Cantero et al., 2008). 
Moreover, turbidity currents can affect the quality of water, depending on the sediments 
they are made of. This is an environmental problem of increasing importance and it is worth 
examining briefly the case study of the artificial reservoir of Flix, situated near Tarragona, 
Spain (Costa et al. 2004). This artificial water reservoir, built on the river Ebro in 1948 for 
irrigation, water storage and production of energy, caused the accumulation of 
contaminated sediments, resulting from the chemical processes of a factory situated 700 
meters upstream of the reservoir in the right margin of the Ebro. The contaminated 
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sediments, accumulated during over fifty years of industrial activity, contained very 
dangerous substances as DDT, Hexachlorineethylene, PCB, bicalcic phosphate, Mercury, 
Cyanide. On December 22nd 2001, after several days of very low temperatures, thousands 
of dead fish appeared in the river Ebro, close to the Flix reservoir, and the water analysis, 
carried out at the entrance of supply water plants of important cities as Tarragona, 
revealed levels of concentration of Mercury much higher than the normal. The most 
probable explanation of this fact was that the particular meteorological conditions could 
have caused a current of cold and dense water with enough strength to entrain the 
sediment from the bed and, therefore, to mix mercury with water. The resulting 
concentration of Mercury caused the murrain of fishes and made unusable the water for 
several months.   
The mathematical modeling of this kind of gravity current, known as turbidity current, is 
very complicate. Here the approach of Pratson et al. (2001) will be followed and extended to 
the general 3D case. It is assumed that (Pratson et al., 2001; Kostic and Parker, 2007) the 
heavier liquid is a mixture made with a uniform sediment, characterized by a median 
diameter ds, with depth averaged concentration C, flowing under an infinite layer of water. 
This latter assumption is very important, because it is possible to show that, as a 
consequence of it (Ungarish & Zemach, 2005; La Rocca & Bateman, 2010), the pressure Ps 
vanishes and the motion of the upper layer becomes negligible. Then the well known one 
layer formulation is obtained for the turbidity current and a considerable reduction of the 
equations number follows, because only the mass and momentum balance equations of the 
turbidity current have to be considered. Having introduced the depth averaged 
concentration C, the density of the heavy liquid layer is given by: 

 ( ) ( )CCC ss 2221 ρρρρρρ −+=+−= 1  (16) 

being sρ the density of the sediments. In dealing with such gravity currents, it is usual to 

assume that the ratio: 
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is small. R is defined as: ( ) 22 ρρρ -sR = . The consequence is that the Boussinesq‘s 

approximation is valid (Kostic & Parker, 2007), according to which the changes in the 

density 1ρ are considered important only in the gravitational term. Substituting definition 

(16) in the partial differential system (5) and accounting for the Boussinesq‘s approximation, 

the mass and momentum balance equations assume the following form: 

 ( )

( )
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

∂

∂
−+=

∂
∂

+
∂

∂
+

∂
∂

+
∂

∂

∂

∂
−+=

∂
∂

+
∂

∂
+

∂
∂

+
∂

∂

=
∂

∂
+

∂
∂

+
∂

∂

y

z
ghvqhC

y
Rg

y

hV

x

hVU

t

hV

x

z
ghuqhC

x
Rg

y

hVU

x

hU

t

hU

q
y

hV

x

hU

t

h

f
ybs

f
xbs

1
2
1

1
2
111111

1
2
1

1111
2
111

11111

2

2

τ

τ

$

$

$

 (18) 

The mass exchange between the two layers is accounted for by means of the quantity q$ : it 

represents the volume of water per unit surface and time, entrained by the heavier layer, 
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and is related to the mass per unit surface and time m$ exchanged between the two layers by 

the approximate relations: 21 ρρ mmq $$$ ≈≈ . The approximation is valid if RC<<1. 
Due to the presence of the concentration C as a new variable, another equation is needed. 
Such an equation is obtained vertically averaging the sediment mass balance equation 
within the heavier layer. Omitting the details, the following equation is obtained: 
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where yx KK , are the dispersion coefficients along x and y directions (Fischer, 1979) and css is 

the concentration of sediment at the separation surface. The term F$ represents the flux of 

mass at the bottom and accounts for the sedimentation and re-suspension phenomena.  
Initial and boundary conditions have to be imposed on the gravity current’s thickness, 
on the velocity components and on the average concentration. Initial and boundary 
conditions on the gravity current’s thickness and on the velocity components are 
identical to conditions (14) and (15). With regard to averaged concentration C, a given 
shape of the initial concentration is imposed as initial condition, while a vanishing mass 
flux is used as boundary condition, in correspondence of impermeable and fixed 
boundaries: 
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3.4 Closure relations 

The proposed mathematical models (eqs. (11), (13) and eqs. (18), (19)) contain the 

unknown terms: yxssssybxb KKcvuq ,,,,,,,, F$$ ττ whose meaning has been previously 

introduced. However, the simulation of realistic cases needs the definition of these 

unknown terms as functions of the resolved variables. In other words, it is necessary to 

introduce proper closure relations.  

The volume flux of entrained liquid q$ per unit surface has the physical dimensions of a 

velocity. For this reason is expressed as the product of the dimensionless entrainment 

coefficient ew by the entrainment velocity eU : 

 ewUeq =$  (21) 

Following Kostic & Parker (2007), the entrainment coefficient ew can be estimated by means 
of: 

 
Ri

ew +
=

02040

001530

.

.
  (22) 

Being Ri the Richardson number (7). The entrainment velocity can be estimated by the 
modulus of the velocity of the heavier layer: 

 2
1

2
1 VUUe +=  (23) 
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The terms ybxb ττ , are the tangential stresses exerted on the heavier layer by the bottom. In the 

case of constant densities they can be expressed by means of a friction coefficient λ: 

 2
1

2
111

2
1

2
111 VUVVUU ybxb +=+= λρτλρτ ,  (24) 

The friction coefficient can be in turn expressed by means of empirical formulas which make 

use of the gravity current Reynolds number (8) and the roughness of the bottom (see e.g. 

Cengel & Cimbala, 2006). In the case of variable density the terms ybxb ττ , are usually 

expressed by means of the friction velocity, which in turn is assumed proportional to the 

vertically averaged turbulent kinetic energy K (Parker, 1986): 
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The proportionality constant α is usually given the value 0.1 (Pratson et al., 2001), while the 
vertically averaged turbulent kinetic energy K is determined by the empirical equation: 
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The various terms at RHS of (26) represent respectively: the production of kinetic energy 
due to turbulence, the production of kinetic energy due to the entrained liquid, the viscous 
dissipation of energy, the kinetic energy spent to hold the sediment in suspension 
(proportional to the sediment settling velocity Ws), the kinetic energy spent to maintain in 
turbulent motion the entrained lighter liquid, the kinetic energy lost (if 0F <$ ) or gained (if 

0F >$ ) due to the sedimentation-re-suspension dynamics, the kinetic energy spent to 
maintain the entrained lighter liquid in turbulent motion. The empirical coefficient β is 
calculated as in Launder & Spalding (1972). 
The velocity components and the concentration on the separation surface ( ssss cvu ,, ) can be 
neglected. Indeed the velocity within the turbidity current increases from the bottom up to a 
maximum value and then decreases uniformly, until it attains a negligible value in 
correspondence of the separation surface, while  the concentration on the separation surface 
decreases uniformly from the bottom, where it attains its maximum value (Fig. 1). 

The diffusive flux of massF$ occurring in correspondence of the bottom is due to the settling 
and the re-suspension of sediment. It can be put in the form (Kostic & Parker, 2007): 

 ( )CrEW ss 0−=F$  (27) 

where sW is the sediment settling velocity. This latter can be calculated following Dietrich 

(1982), as a function of the non dimensional sediment diameter d* (
2

3

ν
sgd

Rd =* ). 

The non dimensional erosion coefficient Es accounts for the entrainment of sediment and, 
according to Parker & Garcia (1993), is expressed as a function of the non dimensional 

parameter Z ( 3
s

s

Rgd
W

u
Z

ν
*= ). Anyway, the non dimensional erosion coefficient Es is often 
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assumed to be negligible with respect to the concentration of sediment at the bottom (Kostic 
& Parker, 2007), which is usually assumed proportional to the vertically averaged 

concentration C, by means of the dimensionless coefficient r0 ( 10 ≥r ). 

At last, the dispersion coefficients yx KK , can be defined in terms of the friction velocity and the 
gravity current’s thickness, by means of empirical formulas, as e. g. those of Fischer et al. 
(1979). Such formulas are usually referred to the case of the dispersion of contaminant in a 
fluvial stream and, when used in a different context, the numerical values of the dispersion 
coefficients are affected by large uncertainty. Moreover, the turbidity current’s dynamics is 
dominated by inertia and buoyancy forces, whose effects are more important than those due to 
the dispersion of sediment. Due to these reasons we will set the dispersion coefficients to zero. 

4. Numerical methods 

A good numerical method, able to deal with the mathematical models developed in the 
previous section, should be able to reproduce correctly the key features of the considered 
phenomenon. These key features refer to the propagation of the front and to the sharp 
variations of the relevant physical quantities occurring in a narrow spatial interval between 
the gravity current and the lighter liquid. In other words, a good numerical method should 
possess good shock-fitting and shock-capturing characteristics.  
The mathematical models formulated in the previous section refer to two particular cases: 
the constant density case and the variable density case. In the case of constant density, the 
mathematical model consists of the motion equations (11), of the Poisson equation (13) and 
the initial and boundary conditions (14), (15). In the case of variable density, the 
mathematical model consists of the motion equations (18), the concentration equation (19), 
the turbulent kinetic energy equation (26) and the initial and boundary conditions (20). 
Moreover, closure relations are integrant part of both the mathematical models.  
The proposed mathematical models are rather complex. The strong coupling existing between 
the motion equations and the Poisson equation in the constant density case is particularly 
challenging. Anyway, by means of a suitable scaling and a formal perturbative expansion (La 
Rocca & Bateman, 2010), it is possible to eliminate this strong coupling and to adopt a solution 
procedure valid both for the constant and the variable density case. It is worth showing the 
essential points of the simplification of the motion equations, omitting the details of the scaling 
and the formal perturbative expansion. Consider equations (11) in the compact form: 
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being U the vector whose components are the conserved variables: 
{ }222211111U hVhUhVhUh ,,,,≡ . The vectors F, G, P, S depend on the vector U and can be 

defined comparing equations (11) with the compact form (28). Decompose U as: U=U0+Uc. 
U0 satisfies the partial differential system: 
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and has the remarkable property that its components 
022022 hVhU , are zero. Indeed, the 

evolution of 
022022 hVhU , is described by the last two equations of the partial differential 
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system (11) without the pressure term. These two equations are homogeneous and so, if the 

initial values of 
022022 hVhU , are zero, they remain zero. The partial differential system (29) 

is also known as the one-layer model, because it can be thought as a model which ignores 

completely the motion of the upper layer. It is possible to derive formally this one-layer 

model (La Rocca & Bateman, 2010) as the leading order approximation of a perturbative 

expansion of U and the partial differential system (28) with respect to the small parameter 

h/H, being h the order of magnitude of the gravity current’s thickness and H the sum of the 

thicknesses of the upper layer and the gravity current. The one-layer model is obtained in 

the limit h/H→0 (H→∞) (Ungarish & Zemach, 2005) and can be applied when the gravity 

current’s thickness is expected to be negligible with respect to the thickness of the ambient 

liquid. Nevertheless, the one-layer model (29) is widely applied in the investigation of 2D, 

axisymmetric and 3D gravity currents also when the ratio h/H→0 is not small and results are 

generally good (Ungarish, 2007a; Ungarish, 2007b; Ungarish, 2010; La Rocca et al., 2008). 

Once the one-layer solution U0 is known, it is possible to determine a first approximation of 

the pressure PS, solving the Poisson equation (13), with the RHS calculated in 

correspondence of the one-layer solution U0. Having determined the pressure PS, it is 

possible to determine the correction Uc by means of: 
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Solving again the Poisson equation with the RHS calculated in correspondence of U0+Uc, a 
better approximation of PS is obtained. In turn, a new value of the correction can be 
determined from equations (30) and so on.  
The core of the numerical model consists then in solving the one-layer partial differential 
system. This latter is fundamental not only in the constant but also in the variable density 
case, as the partial differential system (18) and the concentration equation (19) have the 
same structure of the one-layer partial differential system (29). The other steps of both the 
cases can be dealt with standard numerical methods: e.g. the Poisson equation can be solved 
with a SOR iterative method, while the partial differential system (30) can be solved with a 
Lax-Wendroff method. 
The one layer partial differential system (29), being in conservative form, can be dealt with a 
finite volume numerical method, particularly suitable to deal with propagation of sharp 
discontinuities. The book of Toro (1999) is an excellent guide to these methods and shows 
that the Godunov formulation together with the use of an approximate Riemann solver is a 
common choice in dealing with hydraulic problems.  
In this chapter the Godunov formulation with the approximate Riemann solver of Roe will 
be adopted for the solution of the one-layer partial differential system (29). The details of the 
numerical method and of its application to the present case are however omitted, for the 
sake of simplicity. The reader can find them in the book of Toro (1999) and in the papers of 
La Rocca et al. (2008), La Rocca et al. (2009). 

5. Experimental setup for the realisation of 3D gravity currents 

The setup, realized in the Hydraulics Lab of the University Roma TRE (Fig. 5), is a 3D, full-
depth, lock exchange release experiment and it consists of a rectangular tank, divided into 
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two square parts (side L=1 m) by a rigid wall, filled with tap water (density ρ2) and salty 

water (density ρ1, ρ1>ρ2) up to the same height H. At the centre of the wall there is a sliding 
gate AB which can be manually removed. The width of the gate is b=0.2 m. The flat bottom 
of the tank (zf=0) can be smooth or be made rough by gluing on it uniform sediments, with 

diameter ε. A CCD video camera records the evolution of the gravity current with an 
acquisition frequency of 25 Hz. The images obtained from the records are digitized and 
analysed, so the instantaneous shape of the gravity current is obtained. In general, the top 
view of the gravity current is considered. Only in few cases the lateral view of the gravity 
current has been considered too (Fig. 3), but this latter can be used mainly for qualitative 
comparisons, being the image strongly distorted.  
The preparation of the heavier liquid is very simple. It consists in adding a mass ms of salt to 

the water, determined in order to obtain a given density ρ1 of the heavier liquid: 

 Vm s
s

s ρ
ρρ
ρρ

2

21

−
−

=  (31) 

V is the total volume occupied by the heavier liquid and sρ is the density of the salt (NaCl). 
 

 

Fig. 5. Setup of the 3D lock exchange release experiment 

The solution of water and salt is then coloured, in order to make easier the image analysis, 
and its actual density is measured by means of a picnometer. The runs considered are 
resumed in table 1. 

6. Results 

6.1 Validation of the mathematical models and the numerical methods 
The mathematical models proposed in this chapter have to be validated reproducing results 
concerning with 2D gravity currents, because in literature there is a very wide choice of such 
results. Reference is made to 2D gravity currents generated by the full depth lock exchange 
release experiment. This latter is performed in a long and narrow channel (ratio width b 
over length L: b/L<<1) so the prevailing longitudinal dimension L makes possible a reliable 
representation of the gravity current on the xz plane. In such a channel the lock is situated at 
a distance x0 from the wall. If the initial height of the heavier and the lighter liquid is the 
same, the lock exchange release is classified as full depth, otherwise as fractional depth. In 

this latter case, the ratio ϕ of the initial height of the heavier liquid h on the total height H is 
an important parameter of the experiment, known as fractional depth. 
The evolution of a 2D gravity current originated by a lock exchange release experiment is 
characterised by four phases: the very initial phase, the slumping phase, the self-similar or 

L=1m

b=0.2m 

ρ1 ρ2=1000 kgm-3 H 

A

B
x

y

x 

z 

L=1m L=1m

www.intechopen.com



Experimental and Theoretical Modelling of 3D Gravity Currents 

 

297 

inertial phase and the viscous phase. As soon as the lock is removed and after the very 
initial phase, the heavier liquid starts travelling forward, while the lighter liquid starts 
travelling backward. The slumping phase is characterised by a constant advancing velocity 
Uf  and a constant height hf of the heavier front and it ends as soon as the bore, caused by the 
reflection of the lighter front with the wall, reaches the gravity current’s front (Ungarish & 
Zemach, 2005). In lock of finite length x0 the reflected wave reaches the forward advancing 
heavier front at a given instant of time, after which, the self-similar phase, characterised by 
time decreasing height and front velocity, starts. The viscous forces assume gradually 
increasing importance with respect to the inertial forces and eventually prevail on them. 
During the viscous phase the velocity of the front decreases more rapidly with time, with 
respect to the self-similar phase. Quite a long distance is required by the 2D gravity currents 
in order to develop the viscous phase (Huppert, 1982) and the evolution of experimental 
gravity currents is generally limited to the first three phases, i.e. until the self-similar phase.  
 

Run 1ρ [kgm-3] H [cm] V [m3] ms [kg] ε [mm]

1 1025 15 0.15 6.98 0.0 

2 1015 15 0.15 4.19 0.0 

3 1055 15 0.15 15.36 0.0 

4 1015 15 0.15 4.19 0.7 

5 1015 15 0.15 4.19 1.0 

6 1015 15 0.15 4.19 1.6 

7 1015 15 0.15 4.19 3.0 

8 1025 15 0.15 6.98 0.7 

9 1025 15 0.15 6.98 1.0 

10 1025 15 0.15 6.98 1.6 

11 1025 15 0.15 6.98 3.0 

12 1017 10 0.10 3.17 3.0 

13 1018 20 0.20 6.70 3.0 

14 1028 10 0.10 5.21 3.0 

15 1033 20 0.20 12.29 3.0 

16 1019 15 0.15 5.31 3.0 

17 1030 15 0.15 8.38 3.0 

18 1017 10 0.10 3.17 0.0 

19 1018 15 0.15 5.03 0.0 

20 1019 20 0.20 7.08 0.0 

21 1033 10 0.10 6.14 0.0 

22 1033 15 0.15 9.22 0.0 

23 1033 20 0.20 12.29 0.0 

Table 1. Experimental runs 

The behaviour of 2D gravity currents will be reproduced integrating numerically the 
“simplified” mathematical model, consisting of the one-layer partial differential system (29), 
the partial differential system for the correction term (30) and the Poisson equation (13), 
with the RHS calculated in correspondence of the one-layer solution U0. This “simplified” 
mathematical model will be hereinafter denoted as the 3D partial differential system. 
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Moreover, setting the y velocity components to zero (Vi=0; i=1,2) in the constant density 
equations (11) and omitting the derivatives with respect to y, it can be shown (Rottmann & 
Simpson, 1983; Ungarish & Zemach, 2005) that the pressure Ps can be eliminated from the 
motion equations and that the original five partial differential equations system (11) can be 
reduced to a partial differential system of two equations, hereinafter indicated as RL2D. This 
latter will be solved, by means of a Lax-Wendroff method, to obtain 2D numerical results. It 
is worth mentioning that all of numerical integrations were performed adopting the 
boundary conditions imposed on the velocities at the rigid walls of the tank. In literature 
(Ungarish, 2009b), a boundary condition imposed on the gravity current’s front is usually 
adopted for 2D numerical gravity currents, except rare examples (D’Alessio et al., 1996). The 
choice of avoiding to impose a boundary condition on the gravity current’s front is 
motivated by the fact that for 3D gravity currents it is very difficult or perhaps not possible 
to adopt a front condition. The validation process is also aimed to check the reliability of 
such a choice. 
The slumping phase of gravity currents can be highlighted by experiments where the length 
of the lock is half of the total length of the channel (Shin et al., 2004; Lowe et al., 2005). In this 
case the velocity of the gravity current’s front is quite well predicted by the Benjamin’s 
formula for energy-conserving gravity currents (Shin et al., 2004). The experimental gravity 

currents considered in Lowe et al. (2005), with ratio r (r=ρ2/ρ1) in the range 0.607<r<0.993, 
were realized in a channel, covered with a rigid lid, length L (L≈2 m), wide b (b=0.23 m) and 
filled up to the height H ( H=0.2 m). In Fig. 6a, b the time history of the non dimensional 
position of the gravity current’s front is plotted versus non dimensional time. The scaling is 

defined by: 000 hx*x,hh'gt*t == . 

 

 

Fig. 6. a,b Slumping phase of Boussinesq (r>0.8) and non-Boussinesq (r<0.8) gravity currents 

The results plotted in Fig. 6a,b are in good agreement. An interesting information can be 
obtained considering how the numerical data approximate the analytical value of the front 
velocity predicted by the energy conserving theory of Benjamin (Shin et al., 2004). This 

analytical value is equal, in dimensionless terms, to: ru f 21= . The angular coefficients of 

the red and blue straight lines plotted in Fig. 6a,b, reported on the plot, are the non 
dimensional values of the analytical front velocity, obtained with the least (blue line) and 
the largest (red line) value of the ratio r. The agreement is quite good, showing that the 3D 
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partial differential system is able to reproduce 2D numerical results, when integrated in a 
2D geometry, for quite a wide range of the density ratio. 
The numerical and experimental space-time evolution of the thickness of the gravity current 
is shown in Fig. 7. Numerical results are obtained solving the RL2D partial differential 
system, the 3D partial differential system and the 2L2D partial differential system, obtained 
setting to zero the pressure Ps, the y velocity components and eliminating the derivatives 
with respect to y in the partial differential system (9). This 2L2D partial differential system, 
consisting of four partial differential equations, is able to describe the evolution of the 
gravity current thickness h1 and the upper surface h1+h2. The experimental results shown in 
Fig. 7 were obtained by means of a full depth lock exchange release experiment, conducted  
at the hydraulic lab of the DEHMA of the Politechnical University of Catalunya, in a 

transparent channel (length L=2 m, width b=0.2 m, height H=0.35 m), with salty (ρ1=1100 

kgm-3) and fresh water (ρ2=1000 kgm-3). The initial height of the lock was h1=0.28 m. The 
profiles are relative to 1 and 3 sec after the removal of the lock. The agreement between the 
experimental and the 2L2D numerical profiles is good. From Fig. 7, it is evident that the 
mathematical model is able to describe the evolution of the gravity current, which is in its 
slumping phase. The 2L2D numerical profile of the gravity current is in good agreement 
with the experimental profile not only concerning with the position of the front, but also 
with the position of the forward advancing bore, which gradually approaches the front. 
 

 

Fig. 7. Numerical and experimental profiles of a 2D gravity current 

It is also surprising to see how the form of the gravity current is quite well reproduced by 
the 2L2D numerical results, despite of the fact that the entrainment of lighter liquid is 
neglected. The upper surface profile is well reproduced too. It is interesting to observe that 
the amplitude of the motion of the upper surface is small with respect to the gravity 
current’s thickness. This fact justifies the rigid-lid hypothesis, whose validity depends on the 
value of the density ratio r: the smaller this ratio, the larger the amplitude of the free surface 
motion and the less reliable is the rigid-lid hypothesis (D’Alessio et al., 1996). The agreement 
between the experimental and the RL2D numerical profiles is fairly good. Indeed, it is 
evident from Fig. 7 that the RL2D simulations slightly overestimate the velocity of the 
forward advancing bore, with respect to the 2L2D numerical results, and then 
underestimate the position xs where the bore reaches the front. This underestimation of xs is 
typical for the RL2D simulations and it is also confirmed in the work of Ungarish and 
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Zemach (2005). At last, it is interesting to observe that the ratio of the height of the gravity 
current, just behind the front, on the initial height, is approximately equal to 1/3. This fact is 
in agreement with the theory of Benjamin (Shin et al., 2004), which predicts a value for such 
a ratio equal to 0.347 for the most dissipative gravity current. The experiments generally 
confirm that this kind of gravity current occurs during the slumping phase, after the bore is 
reflected from the left wall of the channel. The agreement between the experimental and the 
3D numerical profiles is fairly good too.  
The 2L2D and RL2D numerical simulations were obtained on a grid with approximately 103 
computational points and a time step with an order of magnitude of 10-4 sec. The 3D 
numerical simulations were obtained on a grid with approximately 105 spatial cells and a 
time step with an order of magnitude of 10-5 sec. 

6.2 Experimental and numerical results on 3D gravity currents 
All of the experiments listed in Table 1 have been numerically reproduced, but for obvious 
reasons of space not all of the results will be presented.  
In Fig. 8, the comparison between the experimental and numerical time histories of the 
position and the velocity of the front along x direction are shown. With reference to Table 1, 
curves plotted in Fig. 8 are relative to runs 1,2,4,5,6,8,9,10. Non dimensional time t*, position 

x* and velocity u* are scaled as: 
000 hg

u
u

L

x
x

hgh

t
t

'
*,*,

'
* === . The position of the 

numerical front has been determined as in La Rocca et al. (2008). The agreement between the 
experimental and numerical results is fairly good for all of the cases. Indeed, the error, 
defined as in La Rocca et al. (2008), is no larger than 11%, which is a reasonable and 
consistent value with regard to the limits of the mathematical model and the experimental 
uncertainties. Numerical results plotted in Fig. 8 have been obtained by solving the one-
layer partial differential system (29), i.e. without considering the correction due to the 
pressure Ps. This fact shows as the one-layer model is able to reproduce the dynamics of the 
3D gravity current, while the correction gives information on the upper layer dynamics.  
Both the experimental and numerical curves plotted in Fig. 8 show a two-phase dynamics 
during the evolution of the gravity current: an accelerating phase followed by a decelerating 
phase. The first phase is dominated by inertial-buoyancy forces, while during the second 
phase the effects of the friction force gradually become evident, through a reduction of the 
front’s velocity. The fact that the reduction of the front velocity occurs during the second 
phase of motion is in qualitative agreement with the results of other works on 2D gravity 
currents flowing on a rough bottom (Hogg & Woods, 2001).  
Discrepancies between numerical and experimental data occur mainly during the first phase 
of motion, i.e. the accelerating phase, and are due to a general overestimation of the 
numerical front velocity during this phase. This overestimation of the front velocity could be 
caused both by the difference between numerical and experimental initial conditions and by 
the intrinsic limitation of the mathematical model. The difference between numerical and 
experimental initial conditions is concerned with the removal of the lock: it is instantaneous 
in the numerical code, while it occurs during a finite interval of time in the laboratory 
experiments. Such a difference affects the motion of the gravity current during the first 
instants of motion. With regard to the intrinsic limitations of the mathematical model, it is 
worth mentioning that (Klemp et al., 1994) the shallow water and the one-layer 
approximations are questionable during the very initial phase of motion. 
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Fig. 8. 3D gravity current. Non dimensional front position x* and velocity u* versus non 
dimensional time t*. Runs 1,2,4,5,6,8,9,10 

In Fig. 9 the numerical and experimental top views of the gravity currents corresponding to 

the runs 2,4,5 at different instant of times are shown. These top views give an idea of the 

ability of the mathematical model and of the numerical method in reproducing the 

evolution of the gravity current not only along the x direction. The agreement between 

numerical and experimental results is quite good, except for the region near the gate, which 

is the most critical region of the flow, due to the high gradients of the hydrodynamic 

quantities in correspondence of the edges of the gate. 

 

 

Fig. 9. Numerical and experimental top views of the gravity currents at different instants of time 

The solution of the 3D partial differential system determines the motion of the upper layer. 
Presently no experimental results are at disposal to verify the correctness of the numerical 
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results. Nevertheless the numerical pressure and velocity fields are consistent with the 
experimental observations. Those plotted in Fig. 10a,b refer to the run 9, 5.6 sec after the 
removal of the gate. The structure of the velocity field of the gravity current and the lighter 
layer is shown in Fig.10a. Thanks to the symmetry of the flow field, Fig. 10a reproduces only 
half of the fluid domain. The top velocity field refers to the gravity current, while the bottom 
velocity field refers to the lighter liquid. The choking effect caused on the flow by the 
narrow opening of the gate is highlighted by the high values of the velocity attained in 
correspondence of the opening, which is the most critical region of the flow, due to the high 
value attained by the radius of curvature of the streamlines at the edges of the gate. 
 

 

Fig. 10. a,b Velocity and pressure fields. Run 9, 5.6 seconds after the removal of the gate 

The pressure field shown in Fig.10b shows that, apart from the region of the gate, the 
pressure Ps vanishes. This fact justifies the use of the one-layer model for modelling the 
dynamics of the 3D gravity currents. The plot is divided, for the sake of clarity of 
representation, into two parts, corresponding to the left and right parts of the tank shown in 
Fig. 5. In the region of the gate the pressure Ps shows large variations in small spatial 
intervals, corresponding to the strong deformation of the gravity current and to the sudden 
increase of velocity of this latter across the gate. 
Another interesting feature reproduced by the pressure field, is the line of the gravity current’s 
front, which is clearly apparent on the plot reproducing the right side of the tank (Fig. 10b). 
This pressure front corresponds to the gravity current’s front velocity, shown in Fig. 10a, and 
separates the advancing front of heavier liquid from the quiescent lighter liquid.  
Looking at the velocity field shown in Fig. 10a, it is possible to observe that along the 
streamline y=0 (the symmetry streamline) the y velocity components V1, V2 vanish. 
Consequently, equation (14) becomes: 

 ( )
consthUhU

x

hUhU
=+⇒=

∂
+∂

2211
2211 0  (39) 

The constant is set to zero, due to the fact that on the wall U1=U2=0. As a consequence of 
(39), the velocity of the lighter layer U2 along the streamline is related to that of the heavier 
layer U1 by the algebraic relation: 
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The simple relation (40) permits an interesting check on the validity of the numerical results, 
shown in Fig. 11.  
 

 

Fig. 11. Dimensionless profiles of the gravity current’s thickness and the velocities. Run 9, 
5.6 sec after the removal of the lock 

In Fig.11 the dimensionless profile of the gravity current’s thickness h1/H (the orange line) 

and the dimensionless profile of the velocities 
Hg

U

Hg

U

'
,

'

21  (respectively the green and the 

blue line) along the simmetry streamline are plotted. The data refer to the run 9, 5.6 sec after 
the removal of the lock. The dotted line represents the velocity of the upper layer, calculated 
according to (40). The agreement between the dotted line and the continuous blue line is 
very good, showing that numerical data are consistent with the mathematical model. It is 
also worth noting the agreement on the position of the front, between the profile of the 
gravity current and the velocity profile U1. 
The numerical results considered until now were obtained assuming constant the densities 
of the two liquid layers. Nevertheless, in many circumstances of environmental importance, 
this assumption does not make sense. It is the case of the turbidity currents, which occur 
under a deep layer of fresh water (in lakes or seas) and consists of a mixture of water and 
heavy sediment. The most important feature in turbidity current’s dynamics is that the 
sediment settles down and possibly can be put in re-suspension during the evolution of the 
current, then varying the concentration C and consequently reducing the excess density (17) 
and the driving buoyancy force (Hogg et al., 2000). In order to have an idea of the effect of 
settling of sediment on the turbidity current’s dynamics, a numerical experiment inspired by 
the experimental work of Bonnecaze et al. (1993) has been performed. Bonnecaze et al. 
(1993) compared the behavior of 2D turbidity currents with the behavior of a 2D gravity 
current, all of them having the same initial excess density. The turbidity currents were 
realized making a suspension of water and silicon carbide particles with increasing diameter 
(9μm≤ds≤53μm). The numerical experiment presented here refers to the comparison between 

the numerical results of run 2 (ρ1=1015 kgm-3) and the numerical results relative to turbidity 
currents with the same initial density, but realized with a mixture of water and silicon 

carbide particles, with increasing diameter (9μm≤ds≤53μm). Numerical results were 
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obtained solving the equations (18), (19) and are shown in Fig. 12a,b. In Fig. 12a the 
numerical time histories of the current’s front position are plotted.  
 

 

Fig. 12. Comparison between the constant density gravity current and the turbidity currents 
obtained with particles of increasing diameters 

The front position is dimensionless and the scaling factor is represented by the front position 
attained by the gravity current 10 s after the start of the run. So the values on the vertical 
axis represent the percentage of the distance travelled at any instant of time by the turbidity 
current’s front, with respect to that travelled by the gravity current’s front. The time is 

scaled as: 
00 hgh

t
t

'
* = . The general behavior is in qualitative agreement with that 

shown in Bonnecaze et al. (1993): as the diameter of the sediment increases, the front 
velocity decreases. Indeed, the settling of larger particles occurs more rapidly, thus making 
more effective the reduction of the excess density and then of the driving buoyancy force. 
The influence of the particles settling on the profile of the current’s thickness is shown in 
Fig. 12b. In this figure, the thickness profiles, obtained at t*=8 and relative to the currents 
considered in Fig. 12a, are shown. The dotted line represents the gravity current; the circles, 
the squares, the overturned triangles and the upright triangles represent the turbidity 

currents made with diameters dS respectively of 9 μm, 23 μm, 37 μm and 53 μm. The profiles 
are scaled with the initial height (H=0.15 m), while the abscissa is scaled with the distance 
travelled by the gravity current at t*=8. 
Settling of particles causes a distortion of the gravity current profile. The distortion increases 
with the diameter of the particle. Nevertheless the volume of the gravity current remains 
practically constant. Indeed, the relative variation of volume is equal to 1.35% in the case of 
the turbidity current showing the maximum distortion, realized with particles of diameter 
dS=53 μm. 

6.3 Numerical simulation of entrainment at Flix reservoir 
A qualitative study of the contamination event occurred in the Flix reservoir has been 
carried out by means of the software BANG 1DT (Herrero et al., 2009), firstly with a simple 
bathymetry consisting in a variable slope that ends in a horizontal section, secondly 
considering the actual bathymetry of the reservoir. BANG 1DT is essentially based on the 
one dimensional version of the equations (18), (19) and (26). The study was focused on the 
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influence of the slope, the initial velocity, the initial concentration of sediment and the 
temperature of water on the evolution of the density current, which could have caused the 
contamination of the Flix reservoir.  In Figure 13 are plotted the profiles of the depth of the 
density current, of its velocity and density, at different instants of time, versus the distance 
travelled by the density current. These profiles have been obtained by BANG 1DT starting 
from the following initial conditions: 

• slope: 1.0 % 

• initial velocity: 1.0 m/s 

• initial concentration: 0.05 mg/kg 

• initial temperature: 7.0 ºC 

• external temperature: 15.0 ºC 

• sediment temperature: 15.0 ºC 
 

 

 

Fig. 13. Depth, velocity and density distribution of the density current along its path 

The analysis of the case shown in Figure 13, as well as that of other cases (not reported here), 
showed that:  
a. the difference of temperature between two water bodies has a slight influence on the 

evolution of the density current, although this latter can be also caused by such a 
difference. The evolution of the density current is dominated by the gradients of 
sediment concentration. 
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b. Sedimentation and erosion depend on the velocity of the density current. 
c. The qualitative behaviour of the density current is not affected by the slope of the 

bottom, while the erosion increases with the slope. 
The influence of the initial length of the density current on the scour profile is also an 
interesting issue. Initial lengths of 500, 1000 and 1500 meters have been considered (Figure 
14). 
 

 

Fig. 14. Scour profile produced during the passage of the density current for three different 
initial lengths 500 m, 1000 m and 1500m 

As the current length increases, the maximum depth of the scour decreases but the total 
volume of entrained sediment increases. This latter quantity is of primary importance and 
once it has been obtained, it is possible to compute the quantity of contaminant set into 
movement, starting from the concentration of this element at the bottom of the reservoir, 
obtained by means of suitable measurements procedures.  
 

 

Fig. 15. Distribution of the concentration of Hg in the sediment fan in front of the chemical 
enterprise (Herrero et al. 2009) 
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As an example, in Figure 15 is shown the concentration of Hg at the bottom of the Flix 
reservoir after the contamination event (Herrero et al. 2009). In Table 2 are given the 
entrained volumes of sediment corresponding to the initial velocity of 1.0 m/s and 3.0 m/s 
and calculated by means of the scour profiles determined by BANG 1DT. Considering a 
density current 30 meters wide (a reasonable value for the considered case), these results 
would imply the mobilized volumes of mercury shown in the same Table. Assuming that 
the sediment entrained by the current has an average mercury concentration of 200 mg/kg 
and taking the value of 2650 kg/m3 as characteristic for the density of sediment, the amount 
of mobilized mercury shown in Table 2 are obtained. 
 

Initial 
velocity 

(m/s) 

Eroded volume 
per width unit 

(m3/m) 

Mobilized 
volume 

(m3) 

Mass of mercury 
mobilized  

(kg) 

1.0 1.5 45 23.85 

3.0 18 540 286.2 

Table 2. Eroded volume per unit width due to two different initial velocities current 

These values have the same order of magnitude of those measured in water samples. The 
results obtained by the numerical model then give only a qualitative indication, which 
however confirms the potential dangerousness of the density current, as a cause for the 
mobilization of contaminated sediment in water bodies, and explains the contamination 
event of Flix as due to the formation of a density current. In this case study, the complexity 
of the geometry is one of the sources of uncertainty.  The non-availability of the exact 
bathymetry of the upstream section of the river Ebro e.g. hindered a more realistic 
simulation of the density current and is then considered as a major weak point.  

7. Conclusion 

This chapter deals with mathematical, experimental and numerical modelling of 3D gravity 
currents. The motivation is that this kind of gravity currents has not been so frequently 
examined in scientific literature as 2D and axisymmetric gravity currents.  
Two main cases have been examined: the constant density and the variable density case. 
Concerning with the constant density case, the attention has been focused on the problem of 
the double layer formulation and the determination of the pressure at the upper surface 
when the rigid lid hypothesis is assumed. A suitable simplified procedure has been 
proposed for solving the equations of motion and the Poisson’s equation for the pressure. 
Concerning with the variable density case, the attention has been focused on the extension 
of known 2D mathematical models and on the effect of the resuspension and sedimentation 
dynamics in 3D turbidity current.  
The comparison between numerical and experimental results, which refer to the simulation of 
3D gravity currents, shows that the constant density, two-layer mathematical model 
reproduces correctly the key features of the dynamics of the considered physical phenomenon.  
Numerical results obtained in the variable density case make sense and are in qualitative 
agreement with the experimental observations found in literature. 
Future work should go along two main directions: a systematic validation of the constant 
density, two-layer mathematical model and the realisation of an exhausting experimental 
campaign on 3D turbidity current. 
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At last a case study, concerning with the contamination event of the Flix reservoir has been 
considered. Results have to be carefully managed, due to the complexity of the phenomenon 
and to its intrinsic uncertainties. Nevertheless it is possible to claim that density and 
turbidity currents can be responsible for contamination of water bodies, as in this case 
study. This fact is a strong motivation for further studies on this subject.  
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