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1. Introduction     

1.1 Background 

Building pathologies originated by moisture are frequently responsible for the degradation 
of building components and can affect users’ health and comfort. The solutions for treating 
moisture related pathologies are complex and, many times, of difficult implementation. 
Several of these pathologies are due to innovative techniques combined with new materials 
of poorly predicted performance. The knowledge of the physical processes that define 
hygrothermal behaviour allows for the prediction of a building response to climatic 
solicitation and for the selection of envelope solutions that will lead to required feasibility. 
Over the last five decades, hundreds of building energy software tools have been developed 
or enhanced to be used. A list of such tools can be obtained in the US Department of Energy 
Webpage (2007). This directory provides information for more than 345 building software 
tools for evaluating energy efficiency, renewable energy and sustainability in buildings. 
The problem of moisture damage in buildings has attracted interest from the early days of 
the last century, but it was during the past decades that the general topic of moisture 
transport in buildings became the subject of more systematic study, namely with the 
development of the modelling hygrothermal performance. In the field of building physics 
the hygrothermal models are widely used to simulate the coupled transport processes of 
heat and moisture for one or multidimensional cases. The models may take into account a 
single component of the building envelope in detail or a multizonal building.  
In literature, there are many computer-based tools for the prediction of the hygrothermal 
performance of buildings. These models vary significantly concerning their mathematical 
sophistication and, as shown  Straube and Burnett (1991), this sophistication depends on the 
degree to which the model takes into consideration the following parameters: moisture 
transfer dimension; type of flow (steady-state, quasi-static or dynamic); quality and 
availability of information and stochastic nature of various data (material properties, 
weather, construction quality, etc.). 
All the hygrothermal simulation tools presented later in this paper are based on one of the 
following numerical methods for space and time discretization:  
a. Finite Difference Methods (FDM) and Finite Control Volume (FCV) methods; 
b. Finite Element Method (FEM); 
c. Response Factor and Transfer Function method. 
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1.2 HAM models 

Different models for the coupled heat, air, moisture and salt transport have been developed 
and incorporated into various software programs used in the field of porous building 
materials and in the closely related field of wetting and drying of soils. 
The HAM models (heat, air and moisture) combine the flow equations with the mass and 
energy balances. Transient, one-dimensional models for combined heat, air and moisture 
transport in building components have been reasonably well established for about two 
decades now. In 1996 the final report of Volume 1 – Modelling, of the Annex 24 of the 
International Energy Agency (IEA), elaborated by Hens (1996), showed that 37 programs 
had been developed by researchers of 12 countries, 26 of which were non-steady sate 
models. In the last ten years, many programs indicated in this work have developed new 
versions and improved the conditions of analysis and therefore sensitized the values of 
results.  
More recently, a review of hygrothermal models for building envelope retrofit analysis 

made by Canada Mortgage and Housing Corporation (2003) has identified 45 hygrothermal 

modelling tools, and in the last four years, 12 new hygrothermal models were developed, 

most of them during Annex 41 (Rode and Grau, 2004).  

Most of the 57 hygrothermal models available in literature are not readily available to the 

public outside of the organization where they were developed. In fact, only the following 14 

hygrothermal modelling tools are available to the public in general. The programs available 

for the public in general were analyzed in detail (Delgado et al. (2010)), namely the input of 

material properties and the boundary conditions (inside and outside). 

1D-HAM - a one-dimensional model for heat, air and moisture transport in a multi-layered 

porous wall. The program uses a finite-difference solution with explicit forward differences 

in time. Analytical solutions for the coupling between the computational cells for a given air 

flow through the construction are used. The moisture transfer model accounts for diffusion 

and convection in vapour phase, but not liquid water transport. Heat transfer occurs by 

conduction, convection and latent heat effects. Climatic data are supplied through a data file 

with a maximum resolution of values per hour over the year. The program accounts for 

surface absorption of solar radiation (Hagentoft and Blomberg, 2000). 

BSim2000 - a one-dimensional model for transport of heat and moisture in porous building 

materials. BSim2000, the successor of the MATCH program, is a computational design tool 

for analysis of indoor climate, energy consumption and daylight performance of building. 

The software can represent a multi-zone building with heat gains, solar radiation through 

windows, heating, cooling, ventilation and infiltration, steady state moisture balance, 

condensation risks. A new transient moisture model for the whole building was also 

developed as an extension of BSim2000. One of the limitations is that liquid moisture 

transfer in constructions is not yet represented (Rode and Grau, 2004). 

DELPHIN 5 - a one or two-dimensional model for transport of heat, air, moisture, pollutant 

and salt transport in porous building materials, assemblies of such materials and building 

envelopes in general. The Delphin program can be used in order to simulate transient mass 

and energy transport processes for arbitrary standard and natural climatic boundary 

conditions (temperature, relative humidity, driving rain, wind speed, wind direction, short 

and long wave radiation).This simulation tool is used for:  

a. Calculation of thermal bridges including evaluation of hygrothermal problem areas 
(surface condensation, interstitial condensation);  

www.intechopen.com



Hygrothermal Numerical Simulation: Application in Moisture Damage Prevention   

 

99 

b. Design and evaluation of inside insulation systems;  
c. Evaluation of ventilated facade systems, ventilated roofs;  
d. Transient calculation of annual heating energy demand (under consideration of 

moisture dependent thermal conductivity);  
e. Drying problems (basements, construction moisture, flood, etc);  
f. Calculation of mold growth risks and further applications. 
A large number of variables as moisture contents, air pressures, salt concentrations, 
temperatures, diffusive and advective fluxes of liquid water, water vapour, air, salt, heat 
and enthalpy which characterize the hygrothermal state of building constructions, can be 
obtained as functions of space and time (Nicolai, Grunewald and Zhang, 2007). 
EMPTIED - a one-dimensional model for heat, air and moisture transport, with some 
considerations for air leakage included (Rousseau, 1999). The software makes enough 
simplifying assumptions to be practical for designers to use in order to compare the relative 
effects of different climates, indoor conditions, wall materials and air tightness on wall 
performance. EMPTIED calculates temperatures assuming steady-state conditions for the 
duration of each bin, neglecting latent heat and heat transported by moving air. The program 
uses monthly bin temperature data and outputs plots of the monthly amount of condensation, 
drainage and evaporation. It is recommended for simple analysis of air leakage. EMPTIED has 
limitations that should be kept in mind. Initial moisture contents cannot be specified. Wind, 
sun and rain are not taken into account. Air movement is taken to be the same through every 
layer, there are no convection loops within layers or between the exterior and vented cavities. 
The maximum amount of moisture a material can store safely is assumed to be the same 
amount at which condensation will start to occur on the surface. 
GLASTA - a one-dimensional model for heat and moisture transport in porous media. It is 
based on the Glaser method, but includes a model for capillary distribution within the layers 
of the assembly and may be suitable for assessing drying potential. The program calculates 
monthly mean values of temperature and vapour pressure or relative humidity and climatic 
database for more than 100 European locations are presented (see Physibel, 2007). 
hygIRC-1D - a one-dimensional simulation tool for modelling heat, air and moisture 
movement in exterior walls. This program is an advanced hygrothermal model that is an 
enhanced version of the LATENITE model developed jointly by Institute for Research in 
Construction and the VTT (Finland). The hygIRC program can be used to model common 
wall systems. The hygIRC model simulates heat, air and moisture conditions within the 
retrofitted walls to determine how the retrofits affect the durability of the wall system. This 
information can be used as a means to confirm the integrity of several specific retrofit 
measures developed for high-rise wall structures before they are recommended to the 
building industry (Karagiosis, 1993 and Djebbar et al., 2002a,b). 
HAMLab - a one-dimensional heat, air and moisture simulation model. This hygrothermal 
model is a collection of four tools and functions in the MatLab/Simulink/FemLab 
environment that includes: HAMBASE (used for: indoor climate design of multizone 
buildings; energy and (de)humidification simulation; rapid prototyping; and HAM building 
model component to be used with HAMSYS, for the design of HVAC systems), HAMSYS 
(used for: HVAC equipment design; and controller design), HAMDET (used for: HAM 
simulation of, up to 3D, building constructions; and airflow simulation in rooms and around 
buildings) and HAMOP (used for: design parameters optimization; and  optimal operation). 
All tools have been validated, except HAMOP, by comparison with experimental data 
obtained in the laboratory and in field studies (van Schijndel, 2005). 
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The main objective of HAMBASE is the simulation of the thermal and hygric indoor climate 
and energy consumption. In SimuLink, the HAMBASE model is visualised by a single block 
with input and output connections. The interface variables are the input signal of the 
HAMBASE SimuLink model and the output signal contains for each zone the mean comfort 
temperature, the mean air temperature and RH. In HAMBASE model the diffusion 
equations for heat and moisture transfer in the walls are modelled with a finite difference 
scheme and solved with an implicit method. 
HAM-Tools - a one-dimensional heat, air and moisture transfer simulation model. The main 

objective of this tool is to obtain simulations of transfer processes related to building 

physics, i.e. heat and mass transport in buildings and building components in operating 

conditions. Using the graphical programming language Simulink and Matlab numerical 

solvers, the code is developed as a library of predefined calculation procedures (modules) 

where each supports the calculation of the HAM transfer processes in a building part or an 

interacting system. Simulation modules are grouped according to their functionality into 

five sub-systems: Constructions, Zones, Systems, Helpers and Gains (Kalagasidis, 2004). The 

software is an open source, new modules can be easily added by users and moreover they 

are free of charge and can be downloaded from the internet. 

IDA-ICE - a tool for building simulation of energy consumption, indoor air quality and 

thermal comfort. It covers a large range of phenomena, such as the integrated airflow 

network and thermal models, CO2 and moisture calculation and vertical temperature 

gradients. For example, wind and buoyancy driven airflows through leaks and openings are 

taken into account via a fully integrated airflow network model. IDA ICE may be used for 

the most building types for the calculation of:  

a. The full zone heat and moisture balance, including specific contributions from: sun, 
occupants, equipment, lighting, ventilation, heating and cooling devices, surface 
transmissions, air leakage, cold bridges and furniture; 

b. The solar influx through windows with a full 3D account of the local shading devices 
and those of surrounding buildings and other objects; 

c. Air and surface temperatures; 
d. The operating temperature at multiple arbitrary occupant locations, e.g. in the 

proximity of hot or cold surfaces. The full non-linear Stephan-Bolzmann radiation with 
the view factors is used to calculate the radiation exchange between surfaces; 

e. The directed operating temperature for the estimation of asymmetric comfort 
conditions; 

f. Comfort indices, PPD and PMV, at multiple arbitrary occupant locations; 
g. The daylight level at an arbitrary room location; 
h. The air, CO2 and moisture levels, which both can be used for controlling the VAV 

(Variable Air Volume) system air flow; 
i. The air temperature stratification in displacement ventilation systems; 
j. Wind and buoyancy driven airflows through leaks and openings via a fully integrated 

airflow network model. This enables one to study temporarily open windows or doors 
between rooms; 

k. The airflow, temperature, moisture, CO2 and the pressure at arbitrary locations of the 
air-handling and distribution systems; 

l. The power levels for primary and secondary system components; 
m. The total energy cost based on time-dependent prices. 
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To calculate moisture transfer in IDA-ICE, the common wall model RCWall should be 
replaced with HAMWall, developed by Kurnitski and Vuolle (2000). It can be used either as 
a single independent model or as a component of a bigger system. HAMWall model can be 
used also as a single program. The moisture transfer is modelled by one moisture-transfer 
potential, the humidity by volume. The liquid water transport is not modelled and 
hysteresis is not taken into account. By using this moisture transfer model it is possible to 
study the following cases: 
a. The effect of structures on the indoor air quality and thermal comfort; 
b. The effect of moisture buffering building materials and furniture to dampen the 

fluctuation of air humidity; 
c. Making the hygrothermal analysis by taking into account the changes in the indoor 

climate; 
d. To study the influence of the ventilation system caused under or over pressure on the 

hygrothermal conditions in the building envelope; 
e. To study the influence of moisture on the heating and cooling load and on the 

performance of heating and cooling equipment. 
MATCH - a one-dimensional model for heat and moisture transport in composite building 

structures. A modified version of the program also calculates air flow (Rode, 1990). The 

program uses both the sorption and suction curves to define the moisture storage function 

and the sorption isotherm in the hygroscopic regime. MATCH uses a Finite Control Volume 

method to calculate the transient evolution of both the thermal and the moisture related 

variables, and the moisture transport is assumed to be by vapour flow only, defined by the 

vapour permeability of the material. In the capillary regime the suction curve is used 

together with the hydraulic conductivity to model moisture transport. Some applications of 

the program are:  

a. Determining of moisture transport in and through building constructions;  
b. Calculating the temperature and moisture profiles transiently by considering the 

thermal and hygroscopic capacities.  
By dividing the time into small steps, it is possible to take into account the effect on 

constructions of short, intensive temperature gradients, such as when they are exposed to 

solar radiation. MATCH can be used successfully for the analysis and design of protected 

membrane roofs and walls with non-absorbent cladding. The program has been validated 

by comparison with experimental data obtained in the laboratory and in field studies. 

MOIST - a one-dimensional model for heat and moisture transport in building envelopes. It 

models moisture transfer by diffusion and capillary flow, and air transfer by including 

cavities that can be linked to indoor and outdoor air (Burch and Chi, 1997). The program 

enables the user to define a wall, cathedral ceiling or low-slope roof construction, and to 

investigate the effects of various parameters on the moisture accumulation within layers of 

the construction, as a function of time of year for a selected climate. Most of the material 

data required by the program are coefficients of curve-fits to specific equations for each 

property. The equilibrium moisture curves had to be severely approximated, close to the 

saturation point. Some applications of the MOIST program are:  

a. Predicting the winter moisture content in exterior construction layers;  
b. Predicting the surface relative humidity at the construction layers in hot and humid 

climates, thereby analysing the potential for mould and mildew growth;  
c. Determining the drying rates for materials containing original construction moisture; 
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d. Investigating the performance of cold refrigeration storage rooms;  
e. Analysing the effect of moisture on heat transfer.  
Finally, MOIST is a one-dimensional model, doesn’t include exterior wetting of a 
construction by rain and the insulating effect and change in roof absorptance from a snow 
load. Moreover, the model does not include heat and moisture transfer by air movement 
(the construction is assumed to be air tight) and the weather data for European cities are not 
available and cannot be generated (only has weather data of USA and Canada). 
MOISTURE-EXPERT - one or two-dimensional model for heat, air and moisture transport 

in building envelope systems (Karagiozis, 2001). The program is, basically, software 

developed by Oak Ridge National Laboratory and Fraunhofer Institute for Building Physics, 

to adapt the original European version of WUFI software for USA and Canada. The model 

treats vapour and liquid transport separately. The moisture transport potentials are vapour 

pressure and relative humidity, and the energy transport potential is the temperature. The 

model includes the capability of handling temperature dependent sorption isotherms and 

liquid transport properties as a function of drying or wetting processes. It is a highly 

complex program, typically requiring more than 1000 inputs for the one-dimensional 

simulations. Inputs include: exterior environmental loads, interior environmental loads, 

material properties and envelope system and subsystem characteristics. 

UMIDUS - a one-dimensional model for heat and moisture transport within porous media, 

in order to analyze hygrothemal performance of building elements when subjected to any 

kind of climate conditions (Mendes et al., 1999). Diffusion and capillary regimes are 

modelled, so moisture transport occurs in the vapour and liquid phases. The model predicts 

moisture and temperature profiles within multi-layer walls and low-slope roofs for any time 

step and calculates heat and mass transfer. The program needs to be validated.  

WUFI - a one or two-dimensional model for heat and moisture transport developed by 

Fraunhofer Institute in Building Physics (IBP). It was validated using data derived from 

outdoor and laboratory tests, allows calculation of the transient hygrothermal behaviour of 

multi-layer building components exposed to natural climate conditions (Kuenzel and Kiessl, 

1997). Heat transfer occurs by conduction, enthalpy flow (including phase change), short-

wave solar radiation and long-wave radiative cooling (at night). Convective heat and mass 

transfer is not modelled. Vapour-phase transport is by vapour diffusion and solution 

diffusion, and liquid-phase water transport is by capillary and surface diffusion. 

As the purpose of most hygrothermal models is usually to provide sufficient and 

appropriate information needed for decision-making, four items should be considered when 

choosing software for modelling a single component of the building envelope or a 

multizonal building:  

a. The software must be in the public domain (freeware or commercially) available;  
b. Suitability of the software for the single component or a multizonal building analysis 

under consideration must be assured;  
c. The programs must be of reasonably recent vintage or with recent further development; 
d. The software must be “user friendly”. 
Finally, as the programs have different hygrothermal potentialities, strengths and 
weaknesses, such as the ability to model heat and moisture transfer by air movement, 2-D or 
3-D phenomena, or the capability to simulate high number of zones in a reasonable 
execution time, the investigators need to select the hygrothermal simulation tools that suit 
better to their problems. 
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1.3 Numerical simulations data 

The hyrothermal performance of a building can be assessed by analysing energy, moisture 
and air balances. The hygrothermal balances consider the normal flows of heat by 
conduction, convection and radiation; moisture flows by vapour diffusion, convection and 
liquid transport; and airflows driven by natural, external or mechanical forces. 
The prediction of the hygrothermal performance of the building enclosure typically requires 
some knowledge of: 
Geometry of the enclosure - The enclosure geometry must be modelled before any 
hygrothermal analysis can begin. In simple methods the geometry is reduced to a series of 
one-dimensional layers. The enclosure geometry includes all macro building details, 
enclosure assembly details and micro-details. 
Material Properties - Material properties and their variation with temperature, moisture 

content and age, as well as their chemical interaction with other materials are also critical. 

Some material properties needed in hygrothermal simulation are: bulk density, porosity, 

specific heat capacity, thermal conductivity, sorption isotherm, vapour permeability and 

diffusivity, suction pressure, liquid diffusivity, specific moisture capacity, etc. 

Boundary Conditions - The boundary conditions imposed on a mathematical model are 

often as critical to its accuracy as the proper modelling of the moisture physics. In general, 

the following environment needs to be known: (i) interior environment, including the 

interaction of the enclosure with the interior environment; (ii) exterior environment, 

including the interaction of the building with the exterior environment and (iii) boundary 

conditions between elements. The correct treatment of the interfacial flows at boundaries 

between control volumes of different type is an important point in successful modelling. 

1.3.1 Material properties 

Bulk density (ρ) - Several standards can be applied for the experimental determination of 
this property, as EN ISO 10545-3 (1995) for ceramic tiles, EN 12390-7 (2000) for concrete, EN 
772-13 (2000) for masonry units. The samples must be dried until constant mass is reached. 
The samples volume is calculated based on the average of three measurements of each 
dimension.  

Bulk porosity (ε) - The standards EN ISO 10545-3 (1995) for ceramic tiles and ASTM C 20 
(2000) for fired white ware products, could be used to measure the bulk porosity of building 
materials. The samples are dried until constant mass is reached (m1). After a period of 
stabilization, the samples are kept immersed under constant pressure. Weigh of the 
immersed sample (m2) and the emerged sample (m3) the bulk porosity is given by: 

)()( 2313 mmmm −−=ε . 

Specific heat capacity (cp) - This test method employs the classical method of mixtures to 
cover the determination of mean specific heat of thermal insulating materials. The materials 
must be essentially homogeneous and composed of matter in the solid state (see ASTM C 
351-92b (1999)). 
The test procedure provides for a mean temperature of approximately 60°C (100 to 20°C; 
temperature range), using water as the calorimetric fluid. By substituting other calorimetric 
fluids the temperature range may be changed as desired. All the samples shall be dried to 
constant mass in an oven at a temperature of 102 to 120ºC and the method is to add a 
measured material mass, at high temperature, to a measured water mass at low temperature 
in order to determine the resulting equilibrium temperature. The heat absorbed by water 
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and container is so calculated and this value equalised to the amount of heat released 
expression in order to calculate the specific heat desired. 

Thermal conductivity (λ) - The standards ISO 8302 (1991), EN 12664 (2001), EN 12667 (2001) 
and EN 12939 (2001) can be applied to determine the thermal conductivity of building 
materials using the Guarded Hot Plate method. The method uses two identical samples of 
parallel faces. After the system stabilization, a constant flux is obtained, perpendicular to the 
samples dominant faces. Knowing the temperature in opposite faces allows determining the 
thermal conductivity of the samples. 
Moisture storage functions - The sorption curve of a material can be determined using 
different methods. Gravimetric type methods are usually preferred for building materials 
following, for instance, the standard EN ISO 12571 (2000). According to this document, the 
sorption curves are determined by stabilizing material samples in different conditions of 
relative humidity and constant temperature. The obtained values allow knowing the 
moisture content of the material at hygroscopic equilibrium with the surrounding air.  
The moisture content in the over-hygroscopic region is usually defined using suction curves 
that can be determined using pressure plate measurements. 

Water vapour permeability (δp) - Vapour permeability is usually determined using the cup 

test method. The sample is sealed in a cup containing either a desiccant (dry cup) or a 

saturated salt solution (wet cup). The set is put inside a climatic chamber where the relative 

humidity value is regulated to be different from the one inside the cup. The vapour pressure 

gradient originates a vapour flux through the sample. The standard EN ISO 12572 (2001) can 

be used as a reference. 

Water absorption coefficient (A) - The standard EN ISO 15148 (2002) can be applied in the 

determination of the water absorption coefficient by partial immersion. The side faces of the 

samples are made impermeable to obtain a directional flux. After stabilization with the 

room air, the samples bottom faces are immersed (5±2 mm) and weighed at time intervals 

defined according to a log scale during the first 24 h period and after that every 24 h. This 

property is derived from the linear relation between mass variation and the square root of 

time. When that relation is not verified, only the values registered at 24 h are used. 

The liquid conductivity, K, can be related to the moisture diffusivity, Dw, and is highly 

dependent on moisture content. This implicates that its determination implies the 

knowledge of moisture content profiles on the material. These profiles can be estimated 

from the water absorption coefficient. 

Reference values - The standards EN ISO 10456 (2007) and EN 12524 (2000) present 

tabulated design values of hygrothermal properties for a wide range of building materials 

(see Table 1). 

 

Materials 
ρ 

kg/m3 
ε 

(%) 
cp 

J/(kgK) 
λ 

W/(mK) 
δp×1012 

kg/(msPa) 

A 
kg/(m2s0.5) 

Stone 1600-2800 0,5-20 1000 0,5-3,5 2,0 0,01-0,025 

Lime plaster 1600 26 1000 0,8-1,5 4,5-13 0,01-0,25 

Concrete 2000-2400 16 1000 1,15-2,0 0,7-13 0,01 

Brick 1000-2400 28 920 0,34-1,04 2,4 0,05 

Table 1. Example of material properties values. 
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1.3.2 Boundary conditions 

A critical aspect in the design of envelope elements is the inclusion of the exterior and 
interior hygrothermal environmental loads (see Table 2). The most important exterior 
environmental loads are: (1) ambient temperature; (2) ambient relative humidity; (3) diffuse 
solar radiation; (4) direct solar radiation; (5) cloud index; (6) wind speed; (7) wind direction 
and (8) horizontal rain. 
 

Boundary Conditions (outside) B.C. (inside) 
Name Type 

1 2 3 4 5 6 7 8 9 10 A B C D 

1D-HAM 1D-HAM X X X X    X   X X   

BSim2000 1D-HM X X X X X X  X X  X X X  

DELPHIN 5 
1/2D-

HAMPS 
X X X X X X X X   X X X  

EMPTIED 1D-HAM X X X        X X X  

GLASTA 1D-HM X X  X    X   X    

hygIRC-1D 1D-HAM X X  X X X X  X X X X  X 

HAMLab 1D-HAM X X   X X  X X  X X   

HAM-Tools 1D-HAM X X X X X X X X X  X X X  

IDA-ICE(*) 1D-HAM X X X X X X  X   X X   

MATCH 1D-HAM X X  X X  X X X  X X   

MOIST 1D-HM X X  X X X   X  X X   

MOIST-EXP. 1/2D-HAM X X X X X X X X X X X X X X 

UMIDUS 1D-HM X X  X X X     X X   

WUFI (**) 1/2D-HM X X  X X X X X X  X X   

(*) IDA-ICE version with HAMWall; (**) WUFI family: WUFI-Plus, WUFI-2D, WUFI-Pro 
and WUFI-ORNL/IBP. A free research and education version of WUFI-ORNL/IBP for USA 
and Canada is available. 
 

List of symbols: 

 

1– Temperature 8 – Long-wave exchange 
9 – Cloud index 2 – RH / Humidity ratio / Dew point / 

Vapour pressure/concentration 10 – Water leakage 
3 – Air pressure A –Temperature 
4 – Solar radiation 
5 – Wind speed 

B – RH / Humidity ratio / Dew point / 
Vapour pressure/concentration 

6 – Wind direction C – Air pressure 
7 – Horizontal rain D – Interior stack effect (T and RH) 

Table 2. Some information of the 14 hygrothermal models available to the public in general. 

2. Case Study 1 – Interstitial condensations 

2.1 Steady-state vs. transient simulations 

Interstitial condensation, originating undesired liquid water inside components, can lead to 
degradation of variable severity depending on the type of materials that are affected. This 
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process depends on components characteristics and boundary conditions (interior and 
exterior). 
Relevant standardization in the field of hygrothermal behaviour and energy performance is 

being developed by the International Organization for Standardization (ISO) and by the 

European Committee for Standardization (CEN), which established the technical committee 

CEN/TC 89 – Thermal Performance of Buildings and Building Components. This committee 

aims to study heat and moisture transfer and its effect on buildings behaviour. 

This case study intends to evaluate, for the problem of interstitial condensation in building 

components, what is the structure of standardization for the available numerical simulation 

and connected experimental determination of material properties (see Ramos et al. (2009)). 

Two numerical models of different complexity are then analysed using an example. The 

simpler model is supported by the software Condensa 13788 developed in collaboration 

with the Building Physics Laboratory – FEUP, based on the Glaser model, and it allows for 

analysis under steady state conditions. The more complex model is supported by the 

software WUFI 5.0 developed by the Fraunhofer Institute of Building Physics, allows for 

analysis under transient conditions. 

The model used by WUFI 5.0 is based on the standard EN 15026 (2007). It allows for a 

detailed knowledge of the hygrothermal state of the building component. It is possible to 

evaluate, for the simulation period, the hourly evolution of the component total moisture 

content. The variation of the moisture content, temperature and relative humidity for each 

layer or for a chosen location in the component is also available, not only through the 

simulation period, but also for the component profile for a specific point in time. Although 

its complexity, the model neglects:  

a. Convective transport (heat and moisture);  
b. Some of the liquid transport mechanisms, as seepage flow through gravitation, 

hydraulic flow through pressure differentials and electro-kinetic and osmotic effects;  
c. The interdependence of salt and water transport;  
d. The resistance of the interface between two capillary-active materials;  
e. The enthalpy flows resulting from the transport of liquid water due to temperature 

differential.  
The software Condensa 13788 applies the model defined by the standard EN ISO 13788 

(2002), allowing for the calculation of temperature, vapour pressure and saturation pressure 

in defined interfaces of a component, for monthly periods. The Glaser model simplifies the 

heat and moisture transport process assuming:  

a. Condensation only occurs in interfaces and there is no redistribution of liquid water; 
b. The dependence of thermal conductivity on moisture content is negligible; 
c. Capillary suction and liquid moisture transfer are negligible;  
d. The heat and moisture transport by convection are neglected;  
e. One-dimensional moisture transfer is assumed;  
f. Boundary conditions are constant over the months (average value);  
g. The effects of solar and long-wave radiation and rain are neglected.  

2.2 Numerical results 

Figures 1 and 2 show a schematic representation of the façade under study and the internal 

and external boundary conditions used in this application, respectively. 
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Exterior rendering

Brick wall

Mineral insulation board

Gypsum board

 

Fig. 1. Building component under study – exterior wall with interior insulation. 

 

  

Fig. 2. Boundary condition for simulation. 

2.2.1 Simulation with Condensa 13788 

Condensa 13788 allows the risk assessment for interstitial condensation according to the 

standard EN13788 (2002). The material properties (see Table 3) necessary for the simulation 

with Condensa 13788 are the thermal conductivity (λ) and the water vapour diffusion 

resistance factor (μ), derived from vapour permeability. 

 

Materials d [m] ǌ [W/(mK)] Ǎ [-] 

Exterior rendering 0,02 1,2 25 

Brick wall 0,2 0,6 10 

Mineral insulation board 0,08 0,043 3,4 

Gypsum board 0,0125 0,2 8,3 

Table 3. Material properties required by Condensa 13788. 
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Condensa 13788 assumed one-dimensional, steady-state conditions. Moisture transfer is 

assumed to be pure water vapour diffusion, described by the following equation, 

 
ds

P

x

P
g a

a Δδ
Δ
Δ

μ
δ

=⋅=  (1) 

where ds  is the water vapour diffusion-equivalent air layer thickness,  aδ  is the water 

vapour permeability of air with respect to partial vapour pressure, 

)kg/(m.s.Pa 102 10−×=aδ , and P is the water vapour pressure. The density of heat flow 

rate is given by, 

 
R

T

d

T
q

ΔΔλ ==  (2) 

where T is the temperature in Celsius, R is the thermal resistance and d is the material layer 

thickness. 

Figure 3 presents an example of Condensa 13788 graphical output indicating the interface 

where condensation/drying occur for each month.  

 
 
 
 

  
 
 

Fig. 3. Condensa 13788 graphical output. 

Table 4 presents the simulation results, where gc1 represents the flux of 

condensation/drying for each month and Ma1 stands for the amount of water resulting from 

accumulated condensation/drying on the interface. The results indicate that the wall would 

go back to dry state in an annual cycle. With the information from Ma1 it would also be 

possible to determine if the condensed flux would originate pathologies in the wall layers. 

However, that evaluation is not simple since the actual amount of water in each layer next to 

the condensation interface is unknown. This aspect can lead a designer to be too 

conservative and adopt a strategy of full elimination of condensation risk. 
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Time θe φe Pe θi Δv Pi gc1 Ma1 
Month 

[h] [ºC] [%] [Pa] [ºC] [g/m³] [Pa] [kg/(m²s)] [kg/m²] 

October 744 16,2 80 1472,50 20,0 5 2145,29 1,96E-07 0,5242 

November 720 12,3 81 1158,12 20,0 5 1826,40 2,48E-07 1,1659 

December 744 9,9 81 987,48 20,0 5 1652,99 2,69E-07 1,8876 

January 744 9,3 81 948,44 20,0 5 1613,26 2,75E-07 2,6243 

February 672 10,1 80 988,45 20,0 5 1654,19 2,55E-07 3,2405 

March 744 11,5 75 1017,19 20,0 5 1684,55 1,70E-07 3,6956 

April 720 12,9 74 1100,52 20,0 5 1769,50 1,34E-07 4,0422 

May 744 15,1 74 1269,40 22,0 5 1943,23 6,58E-08 4,2185 

June 720 18,1 74 1536,12 24,0 0 1536,12 -6,81E-07 2,4526 

July 744 19,9 73 1695,44 24,0 0 1695,44 -7,44E-07 0,4597 

August 744 19,8 73 1684,97 24,0 0 1684,97 -7,42E-07 0 

September 720 19,0 76 1669,08 22,0 0 1669,08 0,00E+00 0 

Table 4. Condensa 13788 simulation results. 

2.2.2 Simulation with WUFI 5.0 

The WUFI 5.0 allows for the calculation of the transient hygrothermal behaviour of multi-
layer building components exposed to natural climate conditions (see Kuenzel and Kiessl 
(1996)). This program is a one-dimensional model for heat and moisture transport analysis 
of building envelope components, based on the finite volume method. 
The governing equations for moisture and energy transfer are, respectively, 

 ( )) ( satp pD
t

w ϕδϕϕ
ϕ ϕ ∇+∇∇=

∂
∂

∂
∂

 (3) 

 ( ) ( )) ( satpv phT
t

T

T

H ϕδλ ∇∇+∇∇=
∂
∂

∂
∂

 (4) 

where w is water content (kg/m3), ϕ  is the relative humidity (%), t is the time (s), ϕD  is the 

liquid conduction coefficient (kg/ms), pδ  is the vapour permeability (kg/m.s.Pa), psat is the 

saturation vapour pressure (Pa), H is the enthalpy (J/m3), T is the temperature (K) and hv is 

the latent heat of phase change (J/kg). The water vapour diffusion resistance factor, μ , used 

by WUFI is given by, 

 
p

n
81.07

p

a /100.2

δδ
δ

μ
PT−×

==  (5) 

where Pn is the normal atmospheric pressure (Pa). 
European standard EN 15026:2007 provides minimum criteria for simulation software used 
to predict one-dimensional transient heat and moisture transfer in multi-layer building 
components exposed to transient climate conditions on both sides, and WUFI 5.0 complies 
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with all requirements of this European standard. WUFI program requirements of material 
properties include: bulk density (kg/m3), porosity (m3/m3), heat capacity (J/kgK), water 
content (kg/m3) vs. relative humidity, liquid transport coefficient (suction and 
redistribution) (m2/s) vs. water content (kg/m3), heat conductivity (W/mK) vs. water 
content (kg/m3) and diffusion resistance factor vs. relative humidity (%). 
The application of WUFI 5.0 in the case study provides the variation with time of the 
moisture content in the building element and in each layer (see Figure 4). It is also possible 
to know the moisture content profile at a given point in time (see Figure 5). 
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Fig. 4. Component moisture content variation over time in WUFI 5.0 simulation. 
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Fig. 5. Component moisture content profiles in WUFI 5.0 simulation. 

2.3 Discussion 

Using two simulation programmes of different complexity degree allows for the following 
discussion: 
a. The application of Condensa 13788 is less demanding regarding material properties. 

Admitting steady state condition, moisture retention curves are not necessary. It must 
be understood that if properties must be introduced in a model as moisture dependent 
the data availability decreases. Characterization of moisture dependency properties is 
of slow and complex experimental determination and is not easy to find in literature for 
all materials; 

b. Results interpretation, in the case of Condensa 13788 demand less basic building 
physics knowledge to perform interstitial condensation risk assessment; 

c. The results from WUFI 5.0 allow for extensive knowledge on each layer’s moisture 
content development over time. This type of information is important for component 
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optimization since it supports a detailed risk control strategy. As an example, it’s 
possible to evaluate the increase of thermal conductivity of the mineral wool layer, due 
to the increase in moisture content during winter; 

d. Both programmes indicated that, for the case study, interstitial condensation or the 
increase in moisture content would not cause severe damage, since the component 
would regain equilibrium during summer. But the more detailed simulation pointed 
out the decrease of insulating capacity during winter (see Figure 6). This is due to the 
moisture content increase in mineral wool which implies an increase of thermal 
conductivity. 
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Fig. 6. Thermal conductivity variation over time in WUFI 5.0 simulation. 

3. Case Study 2 – External condensations 

3.1 Overview of the analysed models 

One important characteristic of HAM models is the ability to simulate the radiative balance 

in the exterior surface. In fact, most models use a simplified method to assess surface 

temperature on the exterior layer that only considers explicitly the effect of solar radiation. 

The effect of the long-wave radiation exchange is modelled as a constant parameter, 

independent of the surface itself, and is included in the heat transfer coefficient value. 

Solar radiation, considered as a source of heat that increases the surface temperature during 

the day, depends on short-wave radiation absorptivity, αs, and on the solar radiation normal 

to component surface, Is (Hagentoft, 2001) 

 sss Iq ×=α  (6) 

The heat flux, qcr, between the surface and the exterior air is given by their temperature 
differences, Ts and Ta. The heat transfer coefficient, h, consists in 2 parts, one dealing with 
convection, hc, and the other with long-wave radiation, hr. 

 ( )sacr TThq −×=   (7) 

 rc hhh +=   (8) 

The radiative heat transfer coefficient, hr, specifies the long-wave radiation exchange 
between the building surface and other terrestrial surfaces (sky included), that is governed 

www.intechopen.com



 Numerical Simulations - Examples and Applications in Computational Fluid Dynamics 

 

112 

by the Stefan-Boltzmann Law (σ is the Stefan-Boltzmann constant). As all surrounding 
surfaces of the building have similar temperatures, the heat flux, qr, dependent on the fourth 
power of the temperature, can be linearized in good approximation. Since normally the 
temperatures of the terrestrial surfaces are not known, they are assumed to be identical to 
the air temperature. Furthermore, is also assumed that all objects have similar emissivities, 

ε, as long as they are non-metallic, which is usually the case in the context of building 
physics. Three of the four powers of the temperature are lumped together with the radiative 
heat transfer coefficient and a simple linear relationship analogous to the convective heat 
transfer is obtained (Hagentoft, 2001). 

 ( )sarssatr TThTTq −×≈××−××= 44 σεσε   (9) 

 3
04 Thr ×××= σε  (10) 

where T0 is an average temperature depending on the surface, the surrounding surfaces and 
the sky. 
Although these temperatures change in time, in most formulations they are assumed as 
constant. Providing that outside surfaces have similar emissivity, a constant value for the 
radiative heat transfer coefficient may be adopted. This simplification is quite appropriate 
for most hygrothermal simulations, however to assess the undercooling phenomenon in 
walls covered with external thermal insulation composite systems – ETICS more accuracy in 
the exterior layer is needed. The low thermal capacity of the external rendering and its 
thermal decoupling emphasises the influence of boundary conditions, mainly temperature 
and radiation.  
It is known that undercooling phenomenon, which occurs mostly during the night, is caused 

by long wave radiation exchange between the exterior surface and its surroundings. The 

radiant balance of a building façade is affected by the building’s radiation, the sky’s 

radiation and terrestrial surface’s radiation (Barreira et al., 2009). A building, being a grey 

body, emits long wave radiation that can be calculated using the Stefan-Boltzmann Law. On 

the other hand, the façade absorbs part of the long wave radiation emitted by surrounding 

surfaces and by the sky. Terrestrial radiation is the sum of long wave radiation emitted by 

the terrestrial surfaces (ground, other building façades, obstacles, etc.) that also behave as 

grey bodies and whose temperature is similar to the building’s temperature. Therefore, 

terrestrial surfaces and the building emit long wave radiation at identical intensities. 

Atmosphere may behave in two distinct manners. If the sky is cloudy, the atmosphere 

behaves like a grey body whose temperature is identical to the building’s, and emits 

radiation in a continuous spectrum at intensity similar to that of terrestrial surfaces. If the 

sky is clear, the atmosphere stops emitting continuously for all wavelengths and the 

atmosphere’s emitted radiation decreases considerably. The radiation emitted by the surface 

is, therefore, greater than the one that reaches the surface, causing a heat loss. 

This negative balance that is not compensated by solar radiation during the night causes the 

building's surface temperature to decrease, which is maintained until heat transport by 

convection and by conduction compensate for the loss by radiation. Condensation takes 

place whenever the surface temperature is lower than the dew point temperature.  

For this reason, the influence on the exterior surface temperature of the numerical treatment 

of the radiative balance will be analyzed in detail in the following paragraphs. 
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In this case study, three hygrothermal models, WUFI 5.0, hygIRC-1D and HAM-Tools, were 
used to compare the results of a case study under natural conditions. These simulations 
used real climatic variables and actual material properties to determine temperature 
dynamics. 
The governing equations of WUFI 5.0 for moisture and energy transfer are given by Eqs. (3) 
and (4), respectively. The hygIRC-1D governing equations for moisture, heat, air mass and 
momentum balance are, respectively, 
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where u is the air velocity, ρv is the water-vapor density, K is the liquid-water permeability, 
ρw is the density of water, g is the acceleration due to gravity, Dw is the moisture diffusivity, 
ms is the moisture source, cp is the effective heat capacity, ρ is the dry density of the material, 
ρa is the density of air, cpa is the specific capacity of air, Lv is the latent heat of 
evaporation/condensation, Lice is the latent heat of freezing/melting, fl is the fraction of 
water frozen, Qs is the heat source, ka is the air permeability and η is the dynamic viscosity. 
Finally, HAM-Tools governing equations for moisture and energy transfer are, 
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where s is the suction pressure, ga is the air flux density and gv is the water vapour flux 
density. 
Regarding the treatment of the radiation effect on the exterior surface, all the three models 
use an explicit balance of the long-wave radiation, defining the surface emission, Ie, and the 
radiation arriving to it, Il. They are combined with the shortwave radiation components into 
a collective heat source at the surface which may have positive or negative value, depending 
on the overall radiation balance: a positive value leads to heating up the component and a 
negative value leads to cooling it. With this methodology, the exterior heat transfer 
coefficient only contains the convective part. 

 elsurflss IIIq −×+×= ,εα  (17) 

In Eq. (17), the two first items give the total amount of radiation (short and long) arriving to 
the surface, as according to Kirchoff Law the emissivity of a surface, εl,surf, is equal to its 
long-wave absorptivity. The last item is the radiation emitted by the building surface. 
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The total solar radiation, Is, is described as a function of the direct solar radiation normal to 

component surface, Is,dir, of the diffuse solar radiation, Is,dif, affected by the atmospheric field 

of view, gatm, and of the solar radiation reflected by the ground, Is,ref, affected by the field of 

view of the ground, gter. 

 refsterdifsatmdirss IgIgII ,,, ×+×+=  (18) 

The total long-wave radiation arriving to the surface, Il, depends on the downward 

atmospheric radiation, Il,atm, affected by the atmospheric field of view, gatm.  

 atmlatml IgI ,×=  (19) 

The sky radiation is ruled by the Plank Law, considering the concept of effective sky 

temperature, which can be defined as the temperature of a blackbody that emits the same 

amount of radiation as the sky (Martin and Berdahl, 1984). The effective sky temperature 

depends on several atmospheric conditions, which are rarely available. For that reason, it is 

assumed that the sky behaves like a grey body, ruled by Stefan-Boltzmann Law, considering 

the sky emissivity and the air temperature near the ground (Finkenstein and Haupl, 2007). 

The downward atmospheric radiation in a specific location may be obtained through 

measurement, using pyrgeometers, or by empirical models (detailed methods are not 

commonly used because they require the knowledge of atmospheric conditions). According 

to Finkenstein and Haupl (2007), those empirical models provide satisfactory results for 

clear sky but the approaches for cloudy sky still point to very different results. The long-

wave radiation emitted by the surface, Ie, depends on the surface emissivity, εl,surf, and 

temperature, Tsurf, as it is ruled by the Stefan-Boltzmann Law.  

 4
, surfsurfle TI ××= σε  (20) 

From the above equations, the direct solar radiation normal to component surface, Is,dir, is 

automatically calculated by each model from the direct solar radiation in an horizontal 

surface, included in the climatic data, using information about the sun position. The diffuse 

solar radiation, Is,dif is obtained directly from the climatic data. The solar radiation reflected, 

Is,ref, is calculated using solar radiation data (direct in an horizontal surface and diffuse) and 

the short wave radiation reflectivity of the ground. 

The differences between the three models, regarding the heat exchange by radiation in the 

exterior surface, are related with the way the long-wave radiation emitted by the sky is 

obtained and the effect of the ground in the balance. 

WUFI 5.0 allows two different approaches to obtain the atmospheric long-wave radiation, 

Il,atm, necessary for the calculation: it may be read directly from the climatic file, if it has this 

information available, or it may be calculated using the cloud index data. This model also 

considers the emission and reflection of long-wave radiation by the ground, adding to eq. 

(19) two extra items: the long-wave radiation emitted by the ground, calculated by the 

Stefan-Boltzmann Law assuming that the ground has the same temperature as the air and 

inputting the ground long-wave emissivity, and the atmospheric long-wave radiation 

reflected by the ground, calculated using the atmospheric long-wave radiation, Il,atm, and the 

long-wave radiation reflectivity of the ground. 
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HygIRC-1D calculates the atmospheric long-wave radiation, Il,atm, necessary for the 
simulation, using the cloud index information available in the climatic file. The effect of the 
ground (emission and reflection of long-wave radiation) is not taken into account. 
HAM-Tools reads the atmospheric long-wave radiation, Il,atm, necessary for the calculation 
directly from the climatic file. The effect of the ground (emission and reflection of long-wave 
radiation) is not included in the mathematical treatment. 

3.2 Input data 

Figure 7 is a schematic of the test façade analysed numerically and Table 5 presents the 
material properties used in this application. The construction type chosen for comparison of 
the three hygrothermal models was a wall with external thermal insulation systems (ETICS) 
exposed to solar radiation. 
 

Wall components 
L 

(cm) 

ρ  

(kg/m3)

ε  

(m3/m3)
λ  

(W/mK) 
pc  

(J/kgK) 

μ  

(-) 

Resin finishing coat 0.5 1800 0.12 0.70 840 1000 
EPS (Expanded polystyrene) 4 15 0.95 0.04 1500 30 
Concrete C12/15 20 2200 0.18 1.6 850 92 
Cement plaster - stucco 1.5 1985 0.30 1.20 840 25 

Table 5. Material properties of wall components used in the hygrothermal models. 
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Fig. 7. Wall construction details (dimensions in cm). 

The exterior and interior Sd value used was zero (no coating) and the interior heat transfer 
coefficient was constant and equal to 8 W/m2K. The exterior heat transfer coefficient only 
contained the convective part and was considered independent from the wind (constant 
value of 17 W/m2K). 
All the calculations were done with climate data for Porto city obtained with METEONORM 
6.0 (METEOTEST 2008). METEONORM is a software tool that consists of a set of 
meteorological databases and a series of conversion utilities that prepare and format 
weather data for use with major hygrothermal modelling software packages. 
METEONORM calculates hourly values of all parameters using a stochastic model and the 
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resulting weather data files are produced in a variety of formats. The weather data inputted 
to the models was temperature (ºC), relative humidity (-), wind direction (°), wind speed 
(m/s), global solar radiation in a horizontal surface (W/m²) and diffuse solar radiation in a 
horizontal surface (W/m²). WUFI 5.0 also required information about air pressure (hPa), 
downward atmospheric radiation in a horizontal surface (W/m²) and cloud index (two 
climatic file were created, one with downward atmospheric radiation and other with cloud 
index). HygIRC-1D also included information about the cloud index variation and HAM-
Tools also demanded data about the air pressure (hPa) and the downward atmospheric 
radiation in a horizontal surface (W/m²). In the climatic files rain was inputted equal to 
zero. The conditions of indoor air were constant, with RH=60% and T=20º C (comfort 
values). The short wave radiation absorptivity and the long-wave radiation emissivity 
considered were 0.4 (stucco-normal bright) and 0.9, respectively, and the initial conditions 
within the element were RH=70% and T=15º C. The ground short-wave reflectivity was 0.2 
and for WUFI 5.0 the ground long-wave emissivity was 0.9 and the ground long-wave 
reflectivity was 0.1. 
The condensation on surface was assessed by comparing the surface temperature with the 
dew point temperature of outdoor air. Whenever the surface temperature drops below the 
dew point temperature condensations occur. The risk of condensation was evaluated by the 
monthly accumulated value of the positive differences between the dew point temperature 
of outdoor air and the surface temperature. 

3.3 Numerical results and discussion 

In this case study simulations were done with three hygrothermal models to analyse the 
influence of the numerical treatment of the radiative balance in the exterior surface 
temperature of the wall in Figure 7. All input parameters, including material properties, 
climatic data, and initial conditions, were made to vary as little as possible between the 
models in order to ensure a fair comparison. 
WUFI 5.0 requires as material properties bulk density (kg/m3), porosity (m3/m3), heat 
capacity (J/kgK), water content (kg/m3), liquid transport coefficient (suction and 
redistribution) (m2/s), heat conductivity (W/mK) and diffusion resistance factor. 
HygIRC-1D requires similar material properties as WUFI 5.0 but uses different units. The 
material properties required for simulation are: air permeability (kg/mPas), thermal 
conductivity (W/mK), dry density (kg/m3), dry heat capacity (J/kgK), sorption curve 
moisture content (kg/kg), suction pressure (Pa), water vapour permeability (kg/mPas), 
liquid moisture diffusivity (m2/s) and water content (kg/kg). The liquid moisture 
diffusivity was assumed the same as the liquid transport coefficient by suction used in 
WUFI 5.0. The water content was converted from kg/m3 to kg/kg simply by dividing by the 
density of the material, and to m3/m3 by dividing by the density of the material and 
multiplying by the density of water (1000 kg/m3). The water vapour permeability and the 
suction pressure, s, were calculated using the water vapour diffusion resistance factor and 
the Kelvin equation (Galbraith et al., 1997), respectively. 
The properties required by HAM-Tools are the density of the dry material (kg/m3), open 
porosity (-), specific heat capacity of the dry material (J/kgK), thermal conductivity 
(W/mK), sorption isotherm, moisture capacity, water vapor permeability (kg/msPa) and 
liquid water conductivity (s).  
It was possible to obtain similar temperatures on surface using all the models. The existing 

differences may be related with the calculations of the solar radiation normal to the surface 
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that influences mostly the surface temperature during the day, but also after the sunset and 

at dawn. The differences can also be related with the formulation used to calculate the 

radiation emitted by the sky (WUFI 5.0_a and HAM-Tools use downward atmospheric 

radiation in a horizontal surface calculated by meteorological software and WUFI 5.0_b and 

HygIRC-1D calculate themselves the radiation using cloud index information). Differences 

in the governing equations and the conversion of the material properties may also have 

some effects on surface temperatures. 

Figure 8 shows the variation in time of the calculated surface temperatures during a winter 

day (23rd of January) and Figure 9 shows the accumulated degrees of condensation (or the 

sum of the positive differences between dew point temperature and the surface 

temperature) for the same day. It is possible to see that surface temperature drops below 

dew point temperature during the early morning hours for all models, due to the low 

thermal capacity of the system that allows the dissipation of the heat stored during the day 

in a few hours after sunset. Condensation occurs during this period of time. 
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Fig. 8. Surface temperatures obtained by each hygrothermal model for Porto (23-January). 

There is however small differences between the models that induce the results presented in 

Figure 9. Comparing WUFI 5.0_a and WUFI 5.0_b, of which only difference is the long-wave 

radiation used (in WUFI 5.0_a the radiation used was calculated by meteorological software 

and in WUFI 5.0_a was calculated by the equations included in the model using cloud index 

information), it shows that the values inputted for the long-wave radiation influence 

considerably the surface temperature and consequently the surface condensation. Figure 10 

shows that the model used to calculate the atmospheric radiation induces significant 

differences in the obtained values. This is related with the difficulty in modelling 

atmospheric radiation with cloudy sky, referred previously. As radiation used in WUFI 

5.0_a is higher than the one used in WUFI 5.0_b, surface temperatures are also higher and 

condensation reduce. 
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Fig. 9. Sum of positive differences between Tdp and Tsurf for Porto (23-January). 
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Fig. 10. Atmospheric radiation in a vertical plane in Porto (23-January).  

WUFI 5.0_b and HygIRC-1D present very similar variation of the surface temperature, 
especially during the night. This points to the similarity of the models, not only in term of 
governing equations but also in terms of boundary conditions. The effect of the ground 
included in WUFI 5.0_a may not have much influence in the phenomenon or it may 
compensate some differences existing between the two models. The similar values obtained 
for the surface temperature are also shown in Figure 9, where the condensation values are 
also similar. WUFI 5.0_a and HAM-Tools both use the atmospheric radiation calculated by 
the meteorological software and their results are quite similar. The considerations made 
previously for WUFI 5.0_b and HygIRC-1D can also be applied to this case. 
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Figure 11 displays monthly accumulated degrees of condensation. The results show that the 
most pronounced condensations occur during the late summer, fall and winter months. This 
is related with the climatic conditions in Porto, a coastal town, namely its high relative 
humidity and mild temperatures all year-round. However, it should be remarked, once 
more, that the effect of long-wave radiation is quite clear, as WUFI 5.0_a and HAM-Tools 
have similar results and WUFI 5.0_b and HygIRC-1D also have similar results, but these two 
groups don’t mach. In fact, the last two (WUFI 5.0_b and HygIRC-1D) have quite higher 
condensation as radiation is lower. 
Figure 11 also shows that there are very few accumulated degrees of condensation in every 
month, using any program, and this is due to the small differences between the dew point 
temperature and the surface temperature, which are, on average, around 0.2º C per hour. On 
the other hand, condensation occurs, on average, only half a hour per day during the year. 
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Fig. 11. Sum of positive differences between Tdp and Tsurf for Porto.  

4. Conclusion 

This book chapter presented a brief review of heat, air, and moisture (HAM) analysis 
methods commonly used in numerical simulation and methods that allow for their 
determination. The review has shown that there are numerous hygrothermal models with a 
range of capabilities and that these models are important tools to better understand the real 
problems and to provide correct solutions. 
Hygrothermal simulation can be implemented with different complexity degrees. An 
important difference between models is the ability to tackle transient behaviour, since 
steady state conditions will frequently be a rough approximation to reality. Standardization 
also supports hygrothermal simulation contributing to higher feasibility of model 
application by designers. 
A case study of interstitial condensation risk assessment allowed for comparison between 
two different complexity models. Although more advanced models are a better support for 
component optimization, they are more demanding regarding user ability to interpret 
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results and material data availability. If a designer is defining, for instance, a solution for 
improving the thermal resistance of an existing building element he must therefore decide 
which type of modelling should be applied to solve a specific problem. A possible approach 
could be to start with the simpler model and evaluate if the intended solution has any risk of 
interstitial condensation. This first approach should be developed on the safe side, using 
worst case scenario boundary conditions. If risk of condensation is detected and cost 
optimization is relevant, more complex modelling can be produced, allowing, for instance, 
for a suitable design of a vapour barrier. 
In the second case study, the numerical results show that these programs are useful tools to 
simulate the undercooling phenomenon and assessing the exterior condensation on façades, 
providing that all relevant components of radiation exchange at the exterior surface are 
included in calculations. The models present similar results except when different inputs of 
long-wave radiation are used. In fact, it seems to be the key factor for the differences 
observed in the calculated values. Using cloud index information or measured long-wave 
radiation, even in the same model, provided the most significant differences. 
Using accumulated degrees of condensation, a comparative measure of the risk of 
condensation on exterior surfaces can be obtained. Since very small differences between 
surface and dew point temperature contribute to this indicator, the calculations are therefore 
demanding in terms of required precision. 
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